RU2158626C1 - Испаритель-смеситель - Google Patents
Испаритель-смеситель Download PDFInfo
- Publication number
- RU2158626C1 RU2158626C1 RU99118630/12A RU99118630A RU2158626C1 RU 2158626 C1 RU2158626 C1 RU 2158626C1 RU 99118630/12 A RU99118630/12 A RU 99118630/12A RU 99118630 A RU99118630 A RU 99118630A RU 2158626 C1 RU2158626 C1 RU 2158626C1
- Authority
- RU
- Russia
- Prior art keywords
- chamber
- mixing
- liquid
- evaporator
- evaporation
- Prior art date
Links
Images
Abstract
Изобретение относится к химической технологии и может быть использовано в химической, нефтехимической, лакокрасочной, медицинской и других отраслях промышленности, где требуется высокодисперсное смешивание жидкости с жидкостью, жидкости с газом, в частности испарение жидкой фазы, например β-пиколина, и смешение с газовой смесью с последующей подачей на контактирование. Испаритель-смеситель содержит напорную и смесительную камеры и дополнительно испарительную камеру, причем за напорной камерой последовательно расположены смесительная и затем испарительная камеры, в смесительной камере расположен узел для подвода жидкого компонента, а в испарительной камере установлены испарительные элементы с развитой поверхностью и малым гидравлическим сопротивлением. Испаритель-смеситель для приготовления газожидкостных смесей высокой дисперсности имеет простую конструкцию и большую эффективность. 5 з.п. ф-лы, 2 ил.
Description
Изобретение относится к химической технологии и может быть использовано в химической, нефтехимической, лакокрасочной, медицинской и других отраслях промышленности, где требуется высокодисперсное смешивание жидкости с жидкостью, жидкости с газом, в частности испарение жидкой фазы, например β-пиколина, и смешение с газовой смесью с последующей подачей на контактирование.
Известен способ приготовления топливовоздушной смеси для двигателей внутреннего сгорания (патент РФ N 2041377, кл. F 02 M 17/28, 1995). Топливовоздушную смесь приготавливают путем пропуска жидкого топлива через пористый элемент и испарения топлива во всасываемый двигателем воздух. Топливо перед испарением разделяют на отдельные микроструйки при помощи несообщающихся пор в элементе, которым разграничивают топливо и воздух. Для повышения точности регулирования состава смеси изменяют площадь поверхности контакта пористого элемента с топливом или с топливом и воздухом. Для поддержания оптимальной температуры пористую перегородку подогревают.
Недостатком способа является небольшая поверхность контакта фаз и низкая производительность, не позволяющая использовать устройства для реализации этого способа в химической технологии.
Известно устройство для смешивания нескольких газовых или жидкостных потоков (заявка PCT (WO) N 90/14880, кл. B 01 F 5/00, 1990), имеющих разные температуры, в котором имеется только одна камера смешивания даже при высоких расходах.
Недостатком является низкая экономичность процесса, т.к. смешивание происходит только в одной камере и смесь имеет низкую степень однородности.
Известен смеситель (а. с. СССР N 395105, кл. B 01 F 5/06), лопасти рабочего органа которого выполнены в виде пустотелых полуколец с отверстиями перфорированной трубы. Кроме того, для удобства эксплуатации приводной вал выполнен пустотелым. Благодаря встречному истечению струй основного и подмешиваемого компонентов, а также прямого действия, вращающихся элементов рабочего органа, происходит диспергирование струй, турбулизация пристенных слоев жидкости и интенсивное перемешивание компонентов основного потока с дополнительными компонентами, вводимыми через штуцер.
Недостатком смесителя является относительно низкая интенсивность процесса.
Известен струйный аппарат для проведения процессов в жидких и газообразных средах (а. с. СССР N 386651, кл. B 01 F 5/04, 1973), содержащий сопло активного и сопло пассивного потоков, вмонтированные в камеру смешения, и диффузор. Камера смешения выполнена в виде тора и снабжена по периферии обтекаемыми соплами пассивного потока, доходящими до центра круга, образованного в сечении тора плоскостью, параллельной главной его оси.
Недостатком смесителя является также недостаточно высокая эффективность смешения.
Наиболее близким техническим решением является смеситель (патент РФ N 2040322, кл. B 01 F 5/00, 5/04, 1995), позволяющий значительно интенсифицировать массообмен за счет закрутки и прецессионного движения смеси на выходе сопла и разнонаправленного движения потоков основного компонента и инжектируемой среды, а также изменять степень дисперсности смеси за счет осевого перемещения сопел, при котором изменяется интенсивность закрутки потока в сопле нагнетательного патрубка и соотношение расходов основного компонента.
Выполнение винтовой нарезки сопла нагнетательного патрубка в виде многозаходной резьбы обеспечивает технологичность конструкции закручивающегося устройства и простоту изготовления сопла.
Недостатком его является сложность конструкции, невысокая производительность и не имеется возможности испарения жидкого компонента и приготовления высокодисперсных газовых смесей.
Задачей, решаемой предлагаемым изобретением, является разработка испарителя-смесителя для приготовления газожидкостных смесей высокой дисперсности, имеющего простую конструкцию и большую эффективность.
Поставленная задача решается с помощью испарителя-смесителя, содержащего напорную и смесительную камеры. Смеситель содержит дополнительно испарительную камеру, причем за напорной камсой последовательно расположены смесительная и затем испарительная камеры, в смесительной камере расположен узел для подвода жидкого компонента, а в испарительной камере установлены испарительные элементы с развитой поверхностью и малым гидравлическим сопротивлением.
Напорная камера выполнена в виде эжектора.
В напорную камеру введено сопло для подачи пара в камеру смешения газов.
Отношение длины испарительных элементов к диаметру камеры составляет 10 : 1.
Испарительные элементы выполнены в форме уголков, размещенных вершиной вверх в несколько горизонтальных рядов таким образом, что вершины уголков нижних рядов размещены в просветах между основаниями уголков верхнего ряда.
Испарительные элементы выполнены в виде пластинчатых рассекателей или в виде перфорированных пластин с добавлением слоев насадки.
На фиг. 1 изображен испаритель-смеситель и его разрез по А-А.
На фиг. 2 изображен вариант исполнения насадки.
Испаритель-смеситель содержит напорную камеру 1, затем смесительную камеру 2 с узлом для подвода жидкого компонента, который состоит из коллектора 3, в котором установлены форсунки тонкого распыления 4. За смесительной камерой 2 расположена испарительная камера 5, в которой установлены испарительные элементы 6, закрепленные в решетке 7. Через штуцер 8 и соединительную трубу 9 газожидкостая смесь подается на дальнейшее контактирование. Напорная камера 1 выполнена в виде эжектора, состоящего из конфузора 10 со штуцером 11 для подвода газов в эжектор. Затем конфузор 10 переходит в эжекционную (сужающуюся) часть - камеру эжекции 12, связанную с диффузором 13. В конфузоре 10 имеется штуцер 14 для ввода сопла 15 в камеру эжекции 12 для подачи паров газов, пара.
Испаритель-смеситель работает следующим образом:
Через штуцер 11 в напорную камеру вводят горячие газы (воздух, газы рецикла), нагретые до температуры 200-290oC, через штуцер 14 в камеру эжекции 12 через сопло 15 вводят пар с теми же температурными параметрами. В смесительной части эжектора 12 и в диффузоре 13 происходит смешение газов (воздух, газы рецикла) с паром. За счет истечения пара из сопла с большой скоростью в камере эжекции создается разрежение, которое способствует поступлению газов в камеру эжекции. Смесь газов (воздух, пар, газы рецикла) через диффузор 13 входит в смесительную 2 и затем в испарительную 5 камеры. В смесительную камеру 2 через коллектор 3 и форсунки тонкого распыления 4 подается жидкость, например β-пиколин. Происходит очень тонкое распыление жидкой фазы за счет давления, создаваемого питающим насосом (на чертеже не показан) и конструктивных особенностей форсунок.
Через штуцер 11 в напорную камеру вводят горячие газы (воздух, газы рецикла), нагретые до температуры 200-290oC, через штуцер 14 в камеру эжекции 12 через сопло 15 вводят пар с теми же температурными параметрами. В смесительной части эжектора 12 и в диффузоре 13 происходит смешение газов (воздух, газы рецикла) с паром. За счет истечения пара из сопла с большой скоростью в камере эжекции создается разрежение, которое способствует поступлению газов в камеру эжекции. Смесь газов (воздух, пар, газы рецикла) через диффузор 13 входит в смесительную 2 и затем в испарительную 5 камеры. В смесительную камеру 2 через коллектор 3 и форсунки тонкого распыления 4 подается жидкость, например β-пиколин. Происходит очень тонкое распыление жидкой фазы за счет давления, создаваемого питающим насосом (на чертеже не показан) и конструктивных особенностей форсунок.
Распыление жидкости можно проводить любыми известными способами без воздуха или в токе воздуха, аргона, азота, т.е. с использованием газового распыления (с использованием эффекта пульверизатора). Конструкция форсунок может быть выбрана из любых известных. Смесь газов с температурой 200-290oC контактирует с пылевым облаком распыленной жидкой фазы, захватывает частицы жидкости и транспортирует их вдоль испарительных элементов 6 камеры 5. За счет тепла газового потока происходит испарение тонко распыленной жидкой фазы, пары которой смешиваются с газовым потоком во времени на длине испарительной камеры. Частички жидкости, которые попадают на нагретую развитую поверхность испарительного элемента, испаряется за счет тепла этого элемента, разогретого до температуры 200-290oC с горячими газами, вводимыми в аппарат. Кроме того, что испарительный элемент имеет достаточно развитую площадь испарения он способствует перемешиванию газопарового потока, для чего отношение его длины к диаметру камеры приняты в соотношении 10:1, что достаточно для полного смешения газовых потоков. Форма выполнения испарительных элементов может быть разных диаметров. Например, в форме уголков, размещенных вершиной вверх в несколько горизонтальных рядов так, что вершины уголков нижних рядов размещаются в просветах между основаниями уголков верхнего ряда. Или в виде пластинчатых рассекателей, либо в виде перфорированных пластин с добавлением небольшого слоя колец Рашига. И в то же время имеет минимальное гидродинамическое сопротивление с развитой поверхностью испарению. В результате этого капельки жидкости, стекая по поверхности верхних уголков, попадают на боковые поверхности ниже расположенных уголков, а газы направлены вдоль уголков испарительного элемента, при этом длина последнего не менее отношения 10:1 к диаметру испарительной камеры, что способствует полному испарению жидкой фазы.
Образовавшаяся спиртово-газовая смесь через штуцер 8 и соединительную трубку 9 направляется в контактный аппарат на контактирование.
Таким образом, испаритель-смеситель является аппаратом, составляющим элемент трубопровода, соединяющим аппараты и машины для транспортировки и нагрева газов (воздух, абгазы), т.е. воздуходувку, нагреватель с контактным аппаратом. Особенностью аппарата является то, что смешение горячих газов и пара осуществляется в эжекторе испарителя, а жидкая фаза с помощью коллектора и форсунок тонкого распыления, установленных непосредственно в корпусе испарителя, вводится в тонком дисперсном состоянии в поток газов, испаряется за счет тепла этих газов и пара и пары ее смешиваются с горячими газами, этому способствуют испарительные элементы, размещенные внутри корпуса испарительной камеры, имеющие развитую площадь испарения.
Claims (6)
1. Испаритель-смеситель, содержащий напорную и смесительную камеры, отличающийся тем, что смеситель содержит дополнительно испарительную камеру, причем за напорной камерой последовательно расположены смесительная и затем испарительная камеры, в смесительной камере расположен узел для подвода жидкого компонента, а в испарительной камере установлены испарительные элементы с развитой поверхностью и малым гидравлическим сопротивлением.
2. Испаритель-смеситель по п.1, отличающийся тем, что напорная камера выполнена в виде эжектора.
3. Испаритель-смеситель по пп.1 и 2, отличающийся тем, что в напорную камеру введено сопло для подачи пара в камеру смешения газов.
4. Испаритель-смеситель по п.1, отличающийся тем, что отношение длины испарительных элементов к диаметру камеры составляет 10:1.
5. Испаритель-смеситель по п. 1, отличающийся тем, что испарительные элементы выполнены в форме уголков, размещенных вершиной вверх в несколько горизонтальных рядов таким образом, что вершины уголков нижних рядов размещены в просветах между основаниями уголков верхнего ряда.
6. Испаритель-смеситель по п.1, отличающийся тем, что испарительные элементы выполнены в виде пластинчатых рассекателей или в виде перфорированных пластин с добавлением слоев насадки.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99118630/12A RU2158626C1 (ru) | 1999-08-26 | 1999-08-26 | Испаритель-смеситель |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99118630/12A RU2158626C1 (ru) | 1999-08-26 | 1999-08-26 | Испаритель-смеситель |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2158626C1 true RU2158626C1 (ru) | 2000-11-10 |
Family
ID=20224405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99118630/12A RU2158626C1 (ru) | 1999-08-26 | 1999-08-26 | Испаритель-смеситель |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2158626C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU186246U1 (ru) * | 2018-09-03 | 2019-01-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Испаритель |
RU2744173C1 (ru) * | 2020-09-18 | 2021-03-03 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)" | Микрореактор-смеситель со встречными закрученными потоками |
RU2766935C2 (ru) * | 2018-01-05 | 2022-03-16 | Сабик Ск Некслен Компани Пте. Лтд. | Система перемешивания |
-
1999
- 1999-08-26 RU RU99118630/12A patent/RU2158626C1/ru not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2766935C2 (ru) * | 2018-01-05 | 2022-03-16 | Сабик Ск Некслен Компани Пте. Лтд. | Система перемешивания |
RU186246U1 (ru) * | 2018-09-03 | 2019-01-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Испаритель |
RU2744173C1 (ru) * | 2020-09-18 | 2021-03-03 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)" | Микрореактор-смеситель со встречными закрученными потоками |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3917173A (en) | Atomizing apparatus for finely distributing a liquid in an air stream | |
US4094625A (en) | Method and device for evaporation and thermal oxidation of liquid effluents | |
JP3662023B2 (ja) | 接線方向から導入する燃料ノズル | |
JPH04500721A (ja) | キャリアガス流内を搬送可能な液霧を発生させるための方法およびこの方法を実施するための装置 | |
KR101201624B1 (ko) | 액체 탄화수소 연료의 컨디셔닝을 위한 방법 및 장치 | |
US5160664A (en) | High output monodisperse aerosol generator | |
JP2942336B2 (ja) | 燃焼器および燃焼設備 | |
KR20010090536A (ko) | 고온 가스 분무 방법 | |
JP2006298753A5 (ru) | ||
RU2158626C1 (ru) | Испаритель-смеситель | |
JP2001152343A (ja) | 気化装置 | |
RU2252065C1 (ru) | Способ двухступенчатого смешения жидкости и газа с повышенной однородностью смеси | |
US11806679B2 (en) | Dissolution method | |
JP2004292223A (ja) | 粉体製造装置 | |
JPS5950885B2 (ja) | 燃焼装置 | |
JPS60232408A (ja) | 液体燃料燃焼装置 | |
JPS61134515A (ja) | 接触燃焼装置 | |
JPH10318888A (ja) | 気化ガス供給装置 | |
JPS6026248Y2 (ja) | 液体燃料燃焼装置 | |
SU737733A1 (ru) | Устройство дл распыливани жидких материалов в сушилке | |
JPH0512575Y2 (ru) | ||
SU1417858A1 (ru) | Аэрозольный генератор | |
SU673810A1 (ru) | Форсунка | |
JPH0460205A (ja) | 流体噴出ノズル | |
JP2004232875A (ja) | 液体燃料燃焼装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20060827 |