RU2152355C1 - Улучшенный способ получения литированной шпинели литиево-марганцевого оксида - Google Patents

Улучшенный способ получения литированной шпинели литиево-марганцевого оксида Download PDF

Info

Publication number
RU2152355C1
RU2152355C1 RU98100422/12A RU98100422A RU2152355C1 RU 2152355 C1 RU2152355 C1 RU 2152355C1 RU 98100422/12 A RU98100422/12 A RU 98100422/12A RU 98100422 A RU98100422 A RU 98100422A RU 2152355 C1 RU2152355 C1 RU 2152355C1
Authority
RU
Russia
Prior art keywords
lithium
spinel
hours
temperature
reaction
Prior art date
Application number
RU98100422/12A
Other languages
English (en)
Other versions
RU98100422A (ru
Inventor
Уилль м Л. Боуден (US)
Уилльям Л. Боуден
Эноч Ванг (US)
Эноч Ванг
Эндрю Каллмес (US)
Эндрю Каллмес
Original Assignee
Дьюраселл Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дьюраселл Инк. filed Critical Дьюраселл Инк.
Publication of RU98100422A publication Critical patent/RU98100422A/ru
Application granted granted Critical
Publication of RU2152355C1 publication Critical patent/RU2152355C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к способу получения литированной шпинели литиево-марганцевого оксида. Шпинель формулы Li(1+x)Mn2O4, где 0<х≤1, получают контактированием шпинели литиево-марганцевого оксида формулы LiMn2O4 с карбоксилатом лития. Температура и время достаточны для разложения карбоксилата и высвобождения лития с образованием указанной литированной шпинели. Результат изобретения - упрощение способа. 2 с. и 8 з.п. ф-лы.

Description

Изобретение относится к улучшенному способу получения литированной шпинели. В частности, изобретение относится к способу для литирования шпинели литиево-марганцевого оксида для образования шпинели, характеризующейся избытком лития, которая может быть использована в качестве активного электрохимического компонента во вторичных электрохимических элементах.
Литиевые вторичные электрохимические элементы, или перезаряжаемые элементы, обычно включают Li-несущее соединение включения (или интеркалационное соединение) в качестве положительного электрода и углеродный, обычно графитовый, отрицательный электрод, разделенные неводным электролитом с ионами лития. Шпинель литиево-марганцевого оксида, имеющую общую формулу LiMn2O4, обычно применяют в качестве электрохимически активного катодного компонента. Изучение внедрения лития в графит показало, однако, что когда шпинель литиево-марганцевого оксида используют в литиево-ионных перезаряжаемых элементах, в которых анодом или отрицательным электродом является графит, происходит заметная, вредная необратимая потеря емкости в процессе первого перезарядного цикла. Начальный подход к решению этой проблемы состоял просто в использовании большей массы положительного электрода [(1+x)LiMn2O4] для компенсации потери лития на графитовом аноде во время первого цикла. Однако увеличение массы катода не является эффективным средством, если учесть характеристику коэффициента полезного действия. Для того, чтобы компенсировать потерю лития без нежелательного серьезного воздействия на массовый или объемный коэффициент полезного действия, были разработаны литированные структуры шпинели литиево-марганцевого оксида, содержащие избыток лития (Li(1+x)Mn2O4). Избыток лития в составе шпинели необходим, чтобы компенсировать начальную потерю лития, связанного с отрицательным электродом, и, кроме того, некоторое количество лития нужно для регулирования обратимой емкости и сохранения уровня полезной энергии в элементе.
Хотя, как показано, такие соединения литированной шпинели литиево-марганцевого оксида являются полезным и эффективным катодным материалом во вторичных или перезаряжаемых электрохимических элементах, известные сейчас методы получения шпинели Li(1+x)Mn2O4 дороги и трудны при переходе от лабораторных условий к промышленному производству. В одном из таких методов производства, например, LiMn2O4 подвергают восстановительной реакции с нагретым раствором иодида лития (LiI) в ацетонитриле; другой включает восстановление шпинели литиево-марганцевого оксида раствором н-бутил-лития (н-BuLi) в гексане. Оба этих литийсодержащих реагента недопустимо дороги, в производственных процессах используют органические растворители, и, кроме того, н-BuLi обладает опасной способностью к самовозгоранию на воздухе. Таким образом, существует потребность в жизнеспособном способе промышленного производства литированной шпинели литиево-марганцевого оксида.
В настоящее время установлено, что литированная шпинель литиево-марганцевого оксида может быть экономически оправданно изготовлена с помощью простого способа, который включает контактирование шпинели литиево-марганцевого оксида формулы LiMn2O4 с карбоксилатом лития при температуре и в течение времени, достаточных для разложения карбоксилатного соединения и высвобождения лития с образованием указанной литированной шпинели Li(1+x)Mn2O4. Найдено, что эта литированная шпинель особенно полезна в качестве положительного электрода в литиево-ионном вторичном электрохимическом элементе.
Данный способ дает литированную шпинель литиево-марганцевого оксида формулы Li(1+x)Mn2O4 где 0 < x ≤ 1; значение x предпочтительно находится в интервале приблизительно от 0,05 до 1,0; наиболее предпочтительно х лежит в интервале приблизительно от 0,05 до 0,3.
Процесс проводят при температуре реакции, достаточной для разложения реагента карбоксилата лития и образования литированной шпинели, но ниже приблизительно 350oC, чтобы избежать разложения шпинели. Выше приблизительно 300oC шпинель начинает разлагаться в нешпинельные продукты разложения, такие как Li(1+x)MnO3 и MnO3, которые не применимы в качестве катодных компонентов в литиевом вторичном электрохимическом элементе. Температура реакции обычно варьируется приблизительно от 150oC до 300oC; предпочтительно, чтобы температура реакции варьировалась приблизительно от 230oC до 250oC.
Продолжительность реакции зависит от выбора реагентов и температуры реакции. В общем случае продолжительность реакции меняется приблизительно от 10 минут до 15 часов; предпочтительно используются продолжительности реакции приблизительно от 2 до 8 часов, так как найдено, что такое время реакции обеспечивает хорошие результаты.
Предпочтительно синтез проводят в инертной атмосфере, чтобы избежать реакций окисления, приводящих к образованию побочных продуктов, нежелательных для использования в электрохимическом катоде, таких как Li2CB3 и/или Li2MnO3. Подходящие инертные атмосферы включают благородные газы (He, Ne, Ar, Kr, Xe, Rn), вакуум, их комбинации и т.д. Атмосфера аргона предпочтительна.
Карбоксилат лития, используемый в настоящем способе, представляет собой любую соль моно- и поликарбоновых кислот, которая характеризуется температурой разложения ниже приблизительно 300oC и эффективна при литировании шпинели LiMn2O4 при нагревании в контакте с указанной шпинелью при температуре ниже приблизительно 300oC. Примеры подходящих карбоксилатов лития, применимых в настоящем способе, включают ацетат лития, цитрат лития, формиат лития, лактат лития, другие карбоксилаты лития, в которых карбоксильная группа присоединена к группе, являющейся электронакцепторной по отношению к метилу (такой как водород, перфторалкил, CF3SO2CH2 и (CF3SO2)2N), и т.д. Ацетат лития особенно предпочтителен в качестве карбоксилата лития.
Предлагаемый в настоящем изобретении способ может быть осуществлен различными методами. В одном из вариантов частицы шпинели LiMn2O4 смешивают с раствором, предпочтительно водным раствором, карбоксилата лития с получением пасты. Затем пасту сушат для удаления растворителя и полученную таким способом однородную смесь шпинели и карбоксилата нагревают до температуры и в течение времени, достаточных для разложения карбоксилата и инициирования реакции образования шпинели Li(1+x)Mn2O4.
В другом, альтернативном варианте способа частицы шпинели LiMn2O4 и карбоксилат лития смешивают в сухом виде до образования однородной смеси. Сухую смесь затем подвергают термической обработке для литирования шпинели и образования желаемого продукта Li(1+x)Mn2O4. Любое подходящее оборудование для сухого смешивания может быть использовано для получения смеси реагентов; такое оборудование включает барабанные смесители, шаровые смесители, стержневые смесители и тому подобное.
В предпочтительном способе ацетат лития в качестве карбоксилата лития растворяют в воде, и к раствору добавляют шпинель литиево-марганцевого оксида с образованием пасты. Пасту LiOAc/LiMn2O4 сушат на воздухе при температуре приблизительно от 50oC до 150oC, предпочтительно приблизительно при 100oC. Сухая смесь затем взаимодействует при нагревании ее в атмосфере аргона до температуры приблизительно от 230oC до 250oC в течение периода приблизительно от 2 до 8 часов.
Следующие примеры приведены для дополнительной иллюстрации изобретения.
Пример 1.
Литированную шпинель формулы Li1,1Mn2O4 готовят путем растворения 1,695 г ацетата лития (LiOAc) в приблизительно 30 мл деионизированной (ДИ) воды. Стехиометрическое количество частиц шпинели литиево-марганцевого оксида LiMn2O4, 30 г, добавляют к раствору LiOAc и образовавшуюся суспензию перемешивают для поддержания шпинели во взвешенном состоянии и обеспечения однородности между шпинелью и LiOAc, при этом суспензию выдерживают при 80-90oC в течение приблизительно 3 часов с целью удаления излишней влаги и превращения суспензии в пасту. Пасту затем сушат в вакууме при 80oC. Образовавшийся порошок медленно нагревают в трубчатой печи в присутствии потока аргона от комнатной температуры до 250oC в течение 1,5 часа и выдерживают при этой температуре в течение 2 часов, получают синевато-черный порошкообразный продукт. Порошок охлаждают до 110oC в течение 3 часов в потоке аргона. Во время реакции в нижнем по течению потока конце трубчатой печи конденсируется вода. Потеря веса составляет приблизительно 17-20% от общего веса LiOAc и шпинели. Порошкообразный продукт шпинели Li1,1Mn2O4 исследуют атомно-адсорбционным методом (AA) для определения концентрации Li и Mn и характеризуют с помощью рентгенографического (РГ) анализа порошка.
Пример 2.
Литированную шпинель формулы Li1,2Mn2O4 готовят путем растворения 3,39 г LiOAc в приблизительно 30 мл деионизированной (ДИ) воды. Стехиометрическое количество частиц шпинели литиево-марганцевого оксида LiMn2O4, 30 г, добавляют к раствору LiOAc, и образовавшуюся суспензию перемешивают для поддержания шпинели во взвешенном состоянии и обеспечения однородности между шпинелью и LiOAc и выдерживают при 80-90oC в течение приблизительно 3 часов с целью удаления излишней влаги до тех пор, пока суспензия не превратится в пасту. Пасту затем сушат в вакууме при 80oC. Образовавшийся порошок медленно нагревают в трубчатой печи в присутствии потока аргона от комнатной температуры до 250oC в течение 1,5 часа и выдерживают при этой температуре в течение 2 часов, получают шпинель LiMn2O4 в виде синевато-черного порошка. Порошок охлаждают до 110oC в течение 3 часов в потоке аргона. Во время реакции в нижнем по течению потока конце трубчатой печи конденсируется вода. Порошкообразную шпинель Li1,2Mn2O4 характеризуют с помощью рентгенографического (РГ) анализа порошка и исследуют атомно-адсорбционным методом (AA) для определения концентраций Li и Mn с целью подтверждения ее структуры.
Пример 3.
Литированную шпинель формулы Li2Mn2O4 готовят путем растворения 16,95 г ацетата лития (LiOAc) в приблизительно 30 мл деионизированной (ДИ) воды. Стехиометрическое количество частиц шпинели LiMn2O4, 30 г, добавляют к раствору LiOAc и образовавшуюся суспензию перемешивают для поддержания шпинели во взвешенном состоянии и обеспечения однородности между шпинелью и LiOAc, при этом суспензию выдерживают при 80-90oC в течение приблизительно 3 часов с целью удаления излишней влаги до тех пор, пока суспензия не превратится в пасту. Пасту затем сушат в вакууме при 80oC. Образовавшийся порошок медленно нагревают в трубчатой печи в присутствии потока аргона от комнатной температуры до 250oC в течение 1,5 часа и выдерживают при этой температуре в течение 2 часов. Порошок охлаждают до 110oC в течение 3 часов в потоке аргона. Во время реакции в нижнем по течению потока конце печи конденсируется вода. В ходе реакции наблюдается изменение цвета от синевато-черного до коричневого, и шпиналь Li2Mn2O4 имеет коричневый цвет, отличный от синевато-черного цвета шпинели LiMn2O4. Порошок шпинели Li2Mn2O4 характеризуют с помощью рентгенографического (РГ) анализа порошка и исследуют атомно-адсорбционным методом (AA) для определения концентраций Li и Mn.
Пример 4.
Литированную шпинель формулы Li1,1Mn2O4 готовят путем растворения 3,482 г цитрата лития в приблизительно 30 мл деионизированной воды. Стехиометрическое количество LiMn2O2, 30 г, добавляют к раствору цитрата лития, и образовавшуюся суспензию перемешивают для поддержания шпинели во взвешенном состоянии и обеспечения однородности между шпинелью и цитратом лития. Суспензию подогревают и перемешивают при 80-90oC в течение приблизительно 3 часов с целью удаления излишней влаги до тех пор, пока суспензия не превратится в пасту. Пасту затем сушат в вакууме при нагревании при 80oC в течение приблизительно 3 часов. Образовавшийся порошок медленно нагревают в трубчатой печи в присутствии потока аргона от комнатной температуры до 250oC в течение 1,5 часа и выдерживают при этой температуре в течение 2 часов, получают синевато-черный порошкообразный продукт. Порошок затем охлаждают до 110oC в течение 3 часов в потоке аргона. Во время реакции наблюдается конденсация воды в нижнем по течению потока конце трубчатой печи. Потеря веса во время реакции составляет приблизительно 40-45% от общего веса цитрата и шпинели. Порошок характеризуют с помощью РГ анализа и исследуют атомно-адсорбционным методом (AA) для определения концентрации Li и Mn, чтобы подтвердить, что он имеет структуру шпинели Li1,1Mn2O4.
Пример 5
Литированную шпинель Li1,2Mn2O4 готовят путем растворения 6,964 г цитрата лития в приблизительно 30 мл деионизированной воды. Стехиометрическое количество LiMn2O4, 30 г, добавляют к раствору цитрата лития и образовавшуюся суспензию перемешивают для поддержания шпинели во взвешенном состоянии и обеспечения однородности между шпинелью и цитратом лития. Суспензию затем нагревают и перемешивают при 80-90oC в течение приблизительно 3 часов с целью удаления излишней влаги до тех пор, пока суспензия не превратится в пасту. Пасту сушат в вакууме при нагревании при 80oC в течение нескольких часов. Образовавшийся порошок медленно нагревают в трубчатой печи в присутствии потока аргона от комнатной температуры до 250oC в течение 1,5 часа и выдерживают при этой температуре в течение 2 часов до образования порошкообразного продукта. Порошок охлаждают до 110oC в течение 3 часов в потоке аргона. Во время реакции наблюдается конденсация воды в нижнем по течению потока конце трубчатой печи, при этом происходит изменение цвета от синевато-черного до коричневого, а порошкообразный продукт имеет коричневый цвет, отличный от синевато-черного цвета шпинели LiMn2O4. Порошкообразный продукт характеризуют с помощью РГ анализа и определяют концентрации Li и Mn, чтобы подтвердить, что он имеет структуру шпинели Li1,2Mn2O4.
Пример 6
Литированную шпинель формулы Li2Mn2O4 готовят путем растворения 34,82 г цитрата лития в приблизительно 30 мл деионизированной воды. Стехиометрическое количество шпинели LiMn2O4, 30 г, добавляют к раствору цитрата лития, и образовавшуюся суспензию перемешивают для поддержания шпинели во взвешенном состоянии и обеспечения однородности между шпинелью и цитратом лития, при этом суспензию выдерживают при 80-90oC в течение приблизительно 3 часов с целью удаления излишней влаги до тех пор, пока суспензия не превратится в пасту. Пасту затем сушат в вакууме при 80oC. Образовавшийся порошок медленно нагревают в трубчатой печи в присутствии потока аргона от комнатной температуры до 250oC в течение 1,5 часа и выдерживают при этой температуре в течение 2 часов для образования порошкообразного продукта. Порошок охлаждают до 110oC в течение 3 часов в потоке аргона. Во время реакции в нижнем по течению потока конце трубчатой печи конденсируется вода, при этом наблюдается изменение цвета от синевато-черного до коричневого, а порошкообразный продукт имеет коричневый цвет, отличный от синевато-черного цвета шпинели LiMn2O4. Порошкообразный продукт характеризуют с помощью рентгенографического (РГ) анализа порошка и исследуют атомно-адсорбционным методом (AA) для определения концентраций Li и Mn, чтобы подтвердить, что он имеет структуру шпинели Li1,2Mn2O4.
Пример 7
Литированную шпинель Li1,1Mn2O4 готовят путем растворения 1,591 г лактата лития в приблизительно 30 мл деионизированной (ДИ) воды. Стехиометрическое количество частиц шпинели LiMn2O4, 30 г, добавляют к раствору лактата лития, и образовавшуюся суспензию перемешивают для поддержания шпинели во взвешенном состоянии и обеспечения однородности между шпинелью и лактатом лития и выдерживают при 80-90oC в течение приблизительно 3 часов с целью удаления излишней влаги до тех пор, пока суспензия не превратится в пасту. Пасту затем сушат в вакууме при 80oC. Образовавшийся порошок медленно нагревают в трубчатой печи в присутствии потока аргона от комнатной температуры до 250oC в течение 1 часа и выдерживают при этой температуре в течение 2 часов до образования синевато-черного порошкообразного продукта. Порошок охлаждают до 110oC в течение 3 часов в потоке аргона. Во время реакции в нижнем по течению потока конце трубчатой печи конденсируется вода. Потеря веса во время реакции составляет приблизительно 20% от общего веса лактата лития и шпинели. Порошкообразный продукт характеризуют с помощью рентгенографического (РГ) анализа порошка и исследуют атомно-адсорбционным (АА) методом для определения концентраций Li и Mn, чтобы подтвердить, что он имеет структуру шпинели Li1,1Mn2O4.
Пример 8
Литированную шпинель Li1,2Mn2O4 готовят из лактата лития путем растворения 3,182 г лактата лития в приблизительно 30 мл деионизированной (ДИ) воды. Стехиометрическое количество частиц шпинели LiMn2O4, 30 г, добавляют к раствору лактата лития, и образовавшуюся суспензию перемешивают для поддержания шпинели во взвешенном состоянии и обеспечения однородности между шпинелью и лактатом лития и выдерживают суспензию при 80-90oC в течение приблизительно 3 часов с целью удаления излишней влаги до тех пор, пока суспензия не превратится в пасту. Пасту затем сушат в вакууме при 80oC. Образовавшийся порошок медленно нагревают в трубчатой печи в присутствии потока аргона от комнатной температуры до 250oC в течение 1 часа и выдерживают при этой температуре в течение 2 часов до образования синевато-черного порошкообразного продукта. Порошок охлаждают до 110oC в течение 3 часов в потоке аргона. Во время реакции в нижнем по течению потока конце трубчатой печи конденсируется вода. Порошкообразный продукт характеризуют с помощью рентгенографического (РГ) анализа порошка и исследуют атомно-адсорбционным методом (AA) для определения концентраций Li и Mn, чтобы подтвердить, что он имеет структуру шпинели Li1,2Mn2O4.
Пример 9
Литированную шпинель Li2Mn2O4 готовят путем растворения 15,91 г лактата лития в приблизительно 30 мл деионизированной (ДИ) воды. Стехиометрическое количество частиц шпинели LiMn2O4, 30 г, добавляют к раствору лактата лития, и образовавшуюся суспензию перемешивают для поддержания шпинели во взвешенном состоянии и обеспечения однородности между шпинелью и лактатом лития, и суспензию выдерживают при 80-90oC в течение приблизительно 3 часов с целью удаления излишней влаги до тех пор, пока суспензия не превратится в пасту. Пасту затем сушат в вакууме при 80oC. Образовавшийся порошок медленно нагревают в трубчатой печи в присутствии потока аргона от комнатной температуры до 250oC в течение 1 часа и выдерживают при этой температуре в течение 2 часов до образования порошкообразного продукта. Порошок охлаждают до 110oC в течение 3 часов в потоке аргона. Во время реакции в нижнем по течению потока конце трубчатой печи конденсируется вода, при этом наблюдается изменение цвета от синевато-черного до коричневого, а порошкообразный продукт имеет коричневый цвет, отличный от синевато-черного цвета шпинели LiMn2O4. Порошкообразный продукт характеризуют с помощью рентгенографического (РГ) анализа порошка и исследуют атомно-адсорбционным методом (AA) для определения концентраций Li и Mn, чтобы подтвердить, что он имеет структуру шпинели Li2Mn2O4.

Claims (10)

1. Способ получения литированной шпинели литиево-марганцевого оксида формулы Li(1+x)Mn2O4, где 0<x≤1, включающий взаимодействие шпинели литиево-марганцевого оксида формулы LiMn2O4 с карбоксилатом лития при температуре и в течение времени, достаточных для разложения указанного карбоксилата и образования литированной шпинели.
2. Способ по п.1, в котором карбоксилат лития выбирают из группы, состоящей из ацетата лития, цитрата лития, лактата лития и других карбоксилатов лития, в которых карбоксильная группа присоединена к группе, являющейся электроноакцепторной по отношению к метилу.
3. Способ по п.2, в котором карбоксилатом лития является ацетат лития.
4. Способ по п.1, в котором реакция протекает при температуре приблизительно от 150 до менее 350oС.
5. Способ по п.4, в котором температура находится в интервале приблизительно от 150 до не выше 300oС.
6. Способ по п.1, в котором продолжительность реакции находится в интервале приблизительно от 10 мин до приблизительно 15 ч.
7. Способ по п.5, в котором продолжительность реакции находится в интервале приблизительно от 2 до приблизительно 8 ч.
8. Способ по п.1, в котором реакцию проводят в инертной атмосфере.
9. Способ по п.1, в котором шпинель литиево-марганцевого оксида реагирует с ацетатом лития при температуре приблизительно от 230 до 250oС в течение периода приблизительно 2 - 8 ч в инертной атмосфере аргона.
10. Литированная шпинель литиево-марганцевого оксида формулы Li(1+x)Mn2O4, где 0 < x ≤ 1, полученная способом по п.1.
RU98100422/12A 1995-06-07 1996-06-05 Улучшенный способ получения литированной шпинели литиево-марганцевого оксида RU2152355C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/474,806 US5693307A (en) 1995-06-07 1995-06-07 Process for making a lithiated lithium manganese oxide spinel
US08/474,806 1995-06-07

Publications (2)

Publication Number Publication Date
RU98100422A RU98100422A (ru) 2000-01-10
RU2152355C1 true RU2152355C1 (ru) 2000-07-10

Family

ID=23885010

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98100422/12A RU2152355C1 (ru) 1995-06-07 1996-06-05 Улучшенный способ получения литированной шпинели литиево-марганцевого оксида

Country Status (20)

Country Link
US (1) US5693307A (ru)
EP (1) EP0842120B1 (ru)
JP (1) JPH11507320A (ru)
KR (1) KR19990022253A (ru)
CN (1) CN1084305C (ru)
AT (1) ATE231823T1 (ru)
AU (1) AU716975B2 (ru)
BG (1) BG62395B1 (ru)
BR (1) BR9609184A (ru)
CA (1) CA2221738C (ru)
CZ (1) CZ371797A3 (ru)
DE (1) DE69626023T2 (ru)
HK (1) HK1010866A1 (ru)
NZ (1) NZ310242A (ru)
PL (1) PL324489A1 (ru)
RO (1) RO115348B1 (ru)
RU (1) RU2152355C1 (ru)
TW (1) TW362090B (ru)
WO (1) WO1996040590A1 (ru)
ZA (1) ZA963655B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2591154C1 (ru) * 2015-09-03 2016-07-10 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Способ получения литированного двойного оксида лития и марганца со структурой шпинели

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797263A2 (en) * 1996-03-19 1997-09-24 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary cell
IT1283968B1 (it) * 1996-03-29 1998-05-07 Consiglio Nazionale Ricerche Batteria ricaricabile al litio o a ioni-litio in grado di sostenere prolungate ciclazioni.
US6869547B2 (en) * 1996-12-09 2005-03-22 Valence Technology, Inc. Stabilized electrochemical cell active material
US6183718B1 (en) * 1996-12-09 2001-02-06 Valence Technology, Inc. Method of making stabilized electrochemical cell active material of lithium manganese oxide
US6110442A (en) * 1997-05-30 2000-08-29 Hughes Electronics Corporation Method of preparing Lix Mn2 O4 for lithium-ion batteries
US6455198B1 (en) 1997-11-10 2002-09-24 Ngk Insulators, Ltd. Lithium secondary battery with a lithium manganese oxide positive electrode
US5939043A (en) * 1998-06-26 1999-08-17 Ga-Tek Inc. Process for preparing Lix Mn2 O4 intercalation compounds
US6468695B1 (en) 1999-08-18 2002-10-22 Valence Technology Inc. Active material having extended cycle life
JP2001266874A (ja) * 2000-03-16 2001-09-28 Toho Titanium Co Ltd リチウムイオン二次電池
KR101352836B1 (ko) 2010-10-27 2014-01-20 전남대학교산학협력단 리튬 과잉의 리튬 망간계 산화물의 제조 방법 및 이를 이용한 리튬 이차전지
JP5765179B2 (ja) * 2011-10-14 2015-08-19 日産自動車株式会社 電気化学デバイス用正極材料およびこれを用いた電気化学デバイス
KR101383681B1 (ko) * 2011-11-15 2014-04-10 전남대학교산학협력단 리튬망간산화물 전극재료 제조방법, 그 방법으로 제조된 리튬망간산화물 전극재료, 및 상기 전극재료를 포함하는 2차 전지
CN105977471A (zh) * 2016-07-06 2016-09-28 福建师范大学 酸式盐改善尖晶石富锂锰酸锂正极材料性能的方法
CN112960814A (zh) * 2021-02-03 2021-06-15 中环国投(重庆)环保产业开发有限公司 一种电解锰渣的渗滤液无害化处理方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070529A (en) * 1976-07-07 1978-01-24 Agence Nationale De Valorisation De La Recherche (Anvar) Solid electrolyte
US4246253A (en) * 1978-09-29 1981-01-20 Union Carbide Corporation MnO2 derived from LiMn2 O4
US4312930A (en) * 1978-09-29 1982-01-26 Union Carbide Corporation MnO2 Derived from LiMn2 O4
AU532635B2 (en) * 1979-11-06 1983-10-06 South African Inventions Development Corporation Metal oxide cathode
US4507371A (en) * 1982-06-02 1985-03-26 South African Inventions Development Corporation Solid state cell wherein an anode, solid electrolyte and cathode each comprise a cubic-close-packed framework structure
US4959282A (en) * 1988-07-11 1990-09-25 Moli Energy Limited Cathode active materials, methods of making same and electrochemical cells incorporating the same
CA1331506C (en) * 1988-07-12 1994-08-23 Michael Makepeace Thackeray Method of synthesizing a lithium manganese oxide
US5153081A (en) * 1989-07-28 1992-10-06 Csir Lithium manganese oxide compound
CA2022898C (en) * 1989-08-15 1995-06-20 Nobuhiro Furukawa Non-aqueous secondary cell
JP2933645B2 (ja) * 1989-08-28 1999-08-16 日立マクセル株式会社 リチウム二次電池の製造方法
JPH03225750A (ja) * 1990-01-30 1991-10-04 Bridgestone Corp リチウム電池用正極シート
GB2242898B (en) * 1990-04-12 1993-12-01 Technology Finance Corp Lithium transition metal oxide
US5166012A (en) * 1990-05-17 1992-11-24 Technology Finance Corporation (Proprietary) Limited Manganese oxide compounds
JP3028582B2 (ja) * 1990-10-09 2000-04-04 ソニー株式会社 非水電解質二次電池
JPH04169065A (ja) * 1990-10-31 1992-06-17 Mitsubishi Electric Corp リチウム電池用正極材料の製法
US5244757A (en) * 1991-01-14 1993-09-14 Kabushiki Kaisha Toshiba Lithium secondary battery
US5196279A (en) * 1991-01-28 1993-03-23 Bell Communications Research, Inc. Rechargeable battery including a Li1+x Mn2 O4 cathode and a carbon anode
US5266299A (en) * 1991-01-28 1993-11-30 Bell Communications Research, Inc. Method of preparing LI1+XMN204 for use as secondary battery electrode
US5262255A (en) * 1991-01-30 1993-11-16 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery
US5135732A (en) * 1991-04-23 1992-08-04 Bell Communications Research, Inc. Method for preparation of LiMn2 O4 intercalation compounds and use thereof in secondary lithium batteries
JP3145748B2 (ja) * 1991-11-14 2001-03-12 富士写真フイルム株式会社 有機電解液二次電池
US5192629A (en) * 1992-04-21 1993-03-09 Bell Communications Research, Inc. High-voltage-stable electrolytes for Li1+x Mn2 O4 /carbon secondary batteries
ZA936168B (en) * 1992-08-28 1994-03-22 Technology Finance Corp Electrochemical cell
US5425932A (en) * 1993-05-19 1995-06-20 Bell Communications Research, Inc. Method for synthesis of high capacity Lix Mn2 O4 secondary battery electrode compounds
DE69409352T2 (de) * 1993-12-24 1998-07-23 Sharp Kk Nichtwässrige Sekundärbatterie, aktives Material für positive Elektrode und Verfahren zu dessen Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Прикладная электрохимия. /Под ред. ТОМИЛОВА А.П. - М.: Химия, 1984, с.61-75, 116-117. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2591154C1 (ru) * 2015-09-03 2016-07-10 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Способ получения литированного двойного оксида лития и марганца со структурой шпинели

Also Published As

Publication number Publication date
CZ371797A3 (cs) 1998-06-17
AU6100496A (en) 1996-12-30
TW362090B (en) 1999-06-21
WO1996040590A1 (en) 1996-12-19
BR9609184A (pt) 1999-05-11
DE69626023T2 (de) 2003-10-16
EP0842120B1 (en) 2003-01-29
JPH11507320A (ja) 1999-06-29
PL324489A1 (en) 1998-05-25
RO115348B1 (ro) 2000-01-28
CA2221738A1 (en) 1996-12-19
NZ310242A (en) 1998-11-25
ZA963655B (en) 1996-11-21
KR19990022253A (ko) 1999-03-25
CA2221738C (en) 2001-02-27
DE69626023D1 (de) 2003-03-06
ATE231823T1 (de) 2003-02-15
BG62395B1 (bg) 1999-10-29
EP0842120A4 (en) 1998-12-09
EP0842120A1 (en) 1998-05-20
AU716975B2 (en) 2000-03-09
US5693307A (en) 1997-12-02
CN1084305C (zh) 2002-05-08
CN1189143A (zh) 1998-07-29
HK1010866A1 (en) 1999-07-02
BG102161A (en) 1998-08-31

Similar Documents

Publication Publication Date Title
JP3970323B2 (ja) リチウム化リチウム酸化マンガンスピネルの改良された製造法
RU2152355C1 (ru) Улучшенный способ получения литированной шпинели литиево-марганцевого оксида
JP4128627B2 (ja) リチウムマンガン酸化物スピネルを製造する方法
US5565688A (en) Method for preparing an active substance of lithium secondary cells
US8153302B2 (en) Method of producing active material for lithium secondary battery, method of producing electrode for lithium secondary battery, method of producing lithium secondary battery, and method of monitoring quality of active material for lithium secondary battery
US20070248520A1 (en) Method for making electrode active material
KR102539249B1 (ko) 리튬 이온 배터리용 캐소드 활성 물질의 제조 방법
US7056486B2 (en) Method for preparing lithium manganese spinel complex oxide having improved electrochemical performance
KR100315227B1 (ko) 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
US20150171467A1 (en) Fluorinated electrolyte compositions
KR20010056565A (ko) 전기화학적 성능이 향상된 리튬망간 스피넬 산화물의제조방법
JP2003157850A (ja) 2次電池用正極材料、および2次電池
EP1089365B1 (en) Lithium manganese oxide, and process for its production and secondary cell employing it
JP2002319399A (ja) γ相酸化バナジウム銀を出発物質としてε相酸化バナジウム銀を調製する方法
JP6236956B2 (ja) 正極活物質、正極並びにリチウムイオン二次電池及びナトリウムイオン二次電池
JPH10172570A (ja) リチウム二次電池及びその正極活物質
JP2002343356A (ja) リチウムマンガン系複酸化物粒子、その製造方法及び二次電池
MXPA97009535A (en) Improved process for the manufacture of a lithium-manganese litificum oxide spinela
JPH09320601A (ja) 正極活物質の製造方法及び非水系二次電池
JPH06163046A (ja) 非水電解液電池用正極活物質の製造法
JP3631875B2 (ja) 非水リチウム二次電池用のリチウムマンガン複合酸化物の製造法及びその用途
JP2897217B2 (ja) 有機電解質二次電池
Lee et al. SYNTHESIS AND ELECTROCHEMICAL STUDIES OF LiMn2O4 PREPARD BY HYDROTHERMAL SYNTHESIS
JP2001048544A (ja) 非水リチウム二次電池用のリチウムマンガン複合酸化物の製造方法及びその用途

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20030606