RU2142518C1 - Способ выщелачивания никелево-медного штейна - Google Patents
Способ выщелачивания никелево-медного штейна Download PDFInfo
- Publication number
- RU2142518C1 RU2142518C1 RU95119423A RU95119423A RU2142518C1 RU 2142518 C1 RU2142518 C1 RU 2142518C1 RU 95119423 A RU95119423 A RU 95119423A RU 95119423 A RU95119423 A RU 95119423A RU 2142518 C1 RU2142518 C1 RU 2142518C1
- Authority
- RU
- Russia
- Prior art keywords
- leaching
- stage
- nickel
- copper
- solution
- Prior art date
Links
- 238000002386 leaching Methods 0.000 title claims abstract description 125
- 238000000034 method Methods 0.000 title claims abstract description 48
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 title claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 135
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 65
- 239000010949 copper Substances 0.000 claims abstract description 61
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 56
- 229910052802 copper Inorganic materials 0.000 claims abstract description 56
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims abstract description 3
- 150000002739 metals Chemical class 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 38
- 238000000926 separation method Methods 0.000 claims description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 23
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 23
- 230000001590 oxidative effect Effects 0.000 claims description 21
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 20
- 239000002253 acid Substances 0.000 claims description 19
- 239000010970 precious metal Substances 0.000 claims description 16
- 238000000746 purification Methods 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 12
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 12
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical class [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 claims description 12
- 230000007935 neutral effect Effects 0.000 claims description 11
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 11
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 10
- 229910052711 selenium Inorganic materials 0.000 claims description 10
- 239000011669 selenium Substances 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 239000010948 rhodium Substances 0.000 claims description 7
- 229910052703 rhodium Inorganic materials 0.000 claims description 7
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- 239000005749 Copper compound Substances 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 4
- 150000001880 copper compounds Chemical class 0.000 claims description 4
- 238000007670 refining Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical class [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 claims 1
- 238000006386 neutralization reaction Methods 0.000 claims 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 3
- 239000007800 oxidant agent Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000011084 recovery Methods 0.000 abstract 1
- 239000002244 precipitate Substances 0.000 description 41
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000002378 acidificating effect Effects 0.000 description 6
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 6
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 229910052955 covellite Inorganic materials 0.000 description 4
- 241000080590 Niso Species 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 229910052932 antlerite Inorganic materials 0.000 description 3
- BMWMWYBEJWFCJI-UHFFFAOYSA-K iron(3+);trioxido(oxo)-$l^{5}-arsane Chemical compound [Fe+3].[O-][As]([O-])([O-])=O BMWMWYBEJWFCJI-UHFFFAOYSA-K 0.000 description 3
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 3
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 2
- 239000005750 Copper hydroxide Substances 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910001956 copper hydroxide Inorganic materials 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 239000012527 feed solution Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000009853 pyrometallurgy Methods 0.000 description 2
- 230000003134 recirculating effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 241001487795 Chalcites Species 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001495 arsenic compounds Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- PTVDYARBVCBHSL-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu] PTVDYARBVCBHSL-UHFFFAOYSA-N 0.000 description 1
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960004887 ferric hydroxide Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229940093920 gynecological arsenic compound Drugs 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- IRPLSAGFWHCJIQ-UHFFFAOYSA-N selanylidenecopper Chemical compound [Se]=[Cu] IRPLSAGFWHCJIQ-UHFFFAOYSA-N 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- LITQZINTSYBKIU-UHFFFAOYSA-F tetracopper;hexahydroxide;sulfate Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Cu+2].[Cu+2].[Cu+2].[Cu+2].[O-]S([O-])(=O)=O LITQZINTSYBKIU-UHFFFAOYSA-F 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0063—Hydrometallurgy
- C22B15/0065—Leaching or slurrying
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0407—Leaching processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/04—Working-up slag
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Изобретение может быть использовано для выщелачивания никеля и меди из никелево-медного штейна, образующегося при пирометаллургическом получении никеля, с помощью многостадийного процесса. Сущность изобретения состоит в том, что выщелачивание никеля происходит по крайней мере на двух стадиях в условиях, когда практически отсутствует свободная серная кислота, на этих стадиях выщелачивание никеля, содержащегося в штейне, в основном проводят при помощи меди, которая является окислителем. Повышается степень извлечения ценных металлов. 8 з.п. ф-лы, 2 табл.
Description
Настоящее изобретение касается способа выщелачивания никеля и меди из полученного методом пирометаллургии никелево- медного штейна, образующегося при пирометаллургическом получении никеля с применением многостадийного процесса. Основной особенностью изобретения является то, что выщелачивание никеля происходит по крайней мере в две стадии, практически без применения свободной серной кислоты, и что окислителем при выщелачивании никеля, содержащегося в штейне, в основном является медь.
Среди известных способов имеется способ, описанный в патенте США 3741752, согласно которому выщелачивание никелево-медного штейна проводили посредством трехстадийного процесса под давлением. Измельченный штейн выщелачивали на первой стадии путем окислительного выщелачивания под давлением при помощи анолита, рециркулирующего с электролитического выделения меди. Цель состояла в том, чтобы растворить основную часть никеля, но чтобы медь при этом осталась нерастворенной. При необходимости, заключительную часть этой первой стадии выщелачивания можно проводить без окисления. После разделения раствора и осадка, раствор передавался на стадии очистки, после которых проводилось электролитическое выделение никеля. Выщелачивание осадка продолжали на второй стадии окислительного выщелачивания под давлением, вновь применяя анолит после электролитического выделения меди, теперь уже с целью извлечь всю медь и никель, содержащиеся в осадке. Раствор, полученный после этого выщелачивания, передавался после очистки на электролитическое выделение меди. Если в исходном материале содержание драгоценных металлов было высоким, можно было при необходимости, осадок, поступающий со второй стадии, подвергнуть третьей стадии выщелачивания, проводимого в условиях усиленного окисления, так чтобы в остатке, содержащем драгоценные металлы, оставалось минимальное количество меди и никеля.
Среди известных способов также имеется способ выделения ценных материалов из никелево-медного штейна, описанный в патенте США 4093526. В этом способе первая стадия выщелачивания проводится при атмосферном давлении раствором, рециркулирующим со второй стадии выщелачивания; если необходимо, на этой стадии добавляется серная кислота. Цель первой стадии выщелачивания состоит в том, чтобы выделить никель из штейна в виде сульфата никеля, и в том, чтобы получить в осадке либо металлическую медь, либо гидроксид меди, которые растворятся а второй стадии выщелачивания. Раствор, полученный на первой стадии, передается на очистку и после этого на электролитическое выделение никеля. Осадок после выщелачивания при атмосферном давлении ("атмосферного выщелачивания") подвергают дальнейшему выщелачиванию, и вторая стадия выщелачивания проводится под давлением в условиях окисления, и на этой стадии в процесс вводят анолит, рециркулирующий после электролитического выделения меди, и серную кислоту. Медь, которая сцементировалась на первой стадии, в этих условиях растворяется и выщелачивается, а никель остается в осадке, и когда раствор со второй стадии возвращают на первую стадию, он реагирует с сульфидом никеля NiS2 и с элементарным никелем, содержащимся в штейне, выщелачивая оба эти вещества. В результате этих реакций медь осаждается в кислоторастворимой форме, как было указано выше. Осадок после второй стадии выщелачивается анолитом, поступающим с электролитического выделения меди, в окислительных условиях в автоклаве, т.е. в условиях так называемого полного выщелачивания, цель которого состоит в выщелачивании всего никеля, кобальта и меди, оставшихся в осадке. Раствор, образующийся на третьей стадии, подают после очистки на электролитическое выделение меди, а образовавшийся осадок представляет собой в основном осадок железа, который можно удалить как отходы.
В патенте США 4323541 предложен способ выщелачивания никелево-медного штейна, который включает в себя сначала двухстадийное окислительное выщелачивание при атмосферном давлении и затем стадию выщелачивания под давлением, цель которого состоит в том, чтобы извлечь никель, содержащийся в штейне, но оставить неизвлеченной основную часть меди. Таким образом, осадок, образующийся на третьей стадии выщелачивания, содержит большую часть меди и драгоценные металлы, и его можно подвергнуть дальнейшей переработке, например при рафинировании меди.
Другой способ выщелачивания никелево-медного штейна описан в патенте Великобритании 2108480. На первой стадии штейн подвергают выщелачиванию под давлением в условиях окисления анолитом, рециркулирующим с электролитического выделения меди. После того, как выщелачивается по крайней мере 70% никеля, содержащегося в штейне, выщелачивание продолжается в условиях отсутствия окисления. Раствор, полученный на первой стадии, далее обрабатывают, подвергая его окислительному очистительному выщелачиванию при атмосферном давлении, добавляя в него также тонкоизмельченный штейн. Цель очистительного выщелачивания состоит в удалении растворенной меди и железа из раствора. Раствор, полученный в результате очистительного выщелачивания, подается после очистки на электролитическое выделение никеля и затем обратно на первую стадию выщелачивания. Осадок после выщелачивания с первой стадии подается на вторую стадию выщелачивания под давлением, которая также проводится в условиях окисления анолитом, рециркулирующим с электролитического выделения меди. Цель второй стадии - провести полное выщелачивание меди, и раствор, полученный после этого выщелачивания, подается на электролитическое выделение меди, возможно, после удаления селена. Образовавшийся осадок содержит основную часть железа, которое содержалось в штейне.
Еще один способ выделения никеля на никелево-медного штейна описан в патенте Канады 2063031. В этом способе первая стадия представляет собой окислительное кислотное выщелачивание штейна при атмосферном давлении в анолите, рециркулирующем с электролитического выделения никеля, причем указанный анолит содержит примерно 50 г/л Ni и 50 г/л H2SO4. В результате выщелачивания получается раствор сульфата никеля, который после очистки передается на электролитическое выделение никеля. Образовавшийся осадок содержит сцементированные металлическую медь, сульфид меди, оксид меди в непрореагировавшие сульфид никеля и оксид никеля. Во время выщелачивания pH поддерживают в пределах 4.0 - 6.5.
Выщелачивание на второй стадии проводят в условиях, аналогичных первой стадии, т.е. для выщелачивания используют никелевый анолит, и целью является выщелачивание основной массы оставшегося никеля и образование осадка, в котором содержится примерно 60% растворимых в кислоте соединений, например, основных сульфатов меди и никеля и арсената железа. Раствор со второй стадии выщелачивания подается на первую стадию, и в результате получают осадок с высоким содержанием меди, который передается на неокислительное выщелачивание под давлением, которое идет в кислой среде. Даже на этой стадии подается анолит, образующийся при электролитическом выделении никеля. Цель выщелачивания под давлением состоит в том, чтобы провести селективное выщелачивание никеля и арсената железа из осадка так, чтобы медь осталась в осадке. Образующийся раствор частично поступает на вторую стадию выщелачивания, а остаток обрабатывают с целью осаждения железа и мышьяка. Полученный осадок содержит медь и драгоценные металлы и его выгодно передать на рафинирование меди. Этот процесс аналогичен процессу, описанному в упомянутом выше патенте США 4323541, за исключением того, что последнее выщелачивание, осуществляемое в автоклаве, проводится не в "окислительных", а в "неокислительных" условиях, т.е. в отсутствие газообразного кислорода.
В способе, предлагаемом в настоящем изобретении, выщелачивание никелево-медного штейна также осуществляется в несколько стадий, первые из которых проводятся при атмосферном давлении, а последующие - под повышенным давлением. Характерной чертой способа, предложенного в настоящем изобретении, является то, что выщелачивание никеля, содержащегося в никелево-медном штейне, осуществляется в основном путем использования окислительного действия иона меди. Поэтому на первой стадии выщелачивания в процессе, описанном в настоящем изобретении, вместо кислой среды создаются условия, когда штейн выщелачивается в нейтральном растворе сульфата никеля, содержащем сульфат меди, так что сульфат меди, содержащийся в растворе, выщелачивает никель, содержащийся в штейне. В ходе выщелачивания здесь образуются несколько растворимых в кислоте соединений меди, таких как основные сульфаты меди и гидроксид меди, которые однако осаждаются на этой стадии выщелачивания в нейтральной среде.
Вторая стадия выщелачивания проводится в кислой среде, и образовавшиеся соединения меди реагируют с серной кислотой, превращаясь в сульфат меди, который далее опять выщелачивает никель, содержащийся в штейне. Третья стадия - это выщелачивание под давлением, где осадок со второй стадии выщелачивается в нейтральном растворе сульфата меди в слабоокислительных или неокислительных условиях, и результатом этой стадии является полное выщелачивание никеля, в то время как основная часть меди осаждается. Для того чтобы провести выщелачивание меди, которая содержится в осадке, полученном после полного выщелачивания никеля, проводится окислительное выщелачивание в кислой среде, в результате которого медь, содержащаяся в штейне, выщелачивается и передается на электролитическое выделение меди. Остающийся осадок содержит драгоценные металлы и может быть обработан известными способами. При необходимости, перед электролитическим выделением меди из раствора сульфата меди удаляют селен и родий известными способами. Способом, предложенный в настоящем изобретении, можно достичь хорошей степени извлечения ценных металлов. Под ценными металлами мы подразумеваем по крайней мере никель, кобальт, свинец и драгоценные металлы, к которым мы относим серебро, золото, платину, палладий, селен и родий.
Другой отличительной особенностью способа, предложенного в настоящем изобретении, является то, что по крайней мере одна стадия выщелачивания при атмосферном давлении и одна стадия выщелачивания под давлением (при повышенном давлении) проводятся в нейтральной среде, и что даже на других стадиях есть тенденция использовать, насколько возможно, нейтральные растворы. Здесь нейтральная среда означает такую среду, где практически отсутствуют свободные кислоты. Преимущество нейтральных стадий состоит в том, что в таких условиях коррозия происходит в меньшей степени, чем в тех способах, где все стадии выщелачивания проводятся в кислой среде, например, с добавлением возвратной кислоты (анолита) после электролитического выделения никеля или меди. Еще одно преимущество, которое стоит отметить, заключается в том, что, как мы обнаружили, более нейтральная среда увеличивает тенденцию к образованию таких промежуточных продуктов, которые на следующей стадии процесса быстро растворяются. Основные новые отличительные черты изобретения станут очевидными из приведенной здесь формулы изобретения.
Далее изобретение описывается со ссылкой на технологическую схему процесса, показанную на фиг.1.
Никель, содержащийся в никелево-медном штейне, присутствует в нескольких различных формах, таких как элементарный никель Ni или сульфид никеля Ni3S2, который можно назвать первичным сульфидом, потому что он является продуктом пирометаллургического процесса. Избыточный сульфат удаляется из анолита, полученного при электролитическом выделении никеля 5, при помощи карбоната натрия, и образовавшийся карбонат никеля используется для нейтрализации свободной серной кислоты на стадии 6. Карбонат никеля может также использоваться позже, для нейтрализации осадков, содержащих железо и мышьяк. Сульфат натрия, образовавшийся при удалении сульфата, выводится из процесса. Практически нейтральный раствор NiSO4 подается на первую стадию выщелачивания при атмосферном давлении (стадия 1). Кроме этого, на первую стадию выщелачивания подают раствор сульфата меди, содержащий сульфат никеля, рециркулирующий со следующей стадии атмосферного выщелачивания 2, а также кислород или воздух. Благодаря действию сульфата меди и кислорода элементарный никель и сульфид никеля окисляются в сульфат никеля. В ходе процесса также получается основной сульфат меди CuSO4 • 2Cu(OH)2 - антлерит, а также небольшое количество куприта Cu2O и арсената железа, который на этой стадии полностью переходит в осадок. Следовательно, эту стадию можно также назвать стадией удаления меди. Выщелачивание проводят при атмосферном давлении, при температурах 80 - 100oC. После выщелачивания жидкость и осадок разделяют на стадии 7 при помощи обычных методов разделения. Раствор сульфата никеля, образовавшийся при выщелачивании, подается после удаления кобальта 8 на электролитическое выделение никеля 5.
Осадок, образовавшийся на первой стадии атмосферного выщелачивания 1, подают на вторую стадию атмосферного выщелачивания 2, на которую также подают анолит с электролитического выделения никеля 5. Существенно для всего процесса, что рециркулирующая кислота (анолит) с электролитического выделения никеля поступает только на эту стадию. Благодаря действию свободной серной кислоты, содержащейся в анолите (около 50 г/л H2SO4) первичный сульфид никеля Ni3S2, содержащийся в никелево-медном штейне, частично выщелачивается и образует один моль сульфата никеля и два моля вторичного сульфида никеля NiS на один моль Ni3S2. Реакция протекает по следующему уравнению:
Ni3S2 + H2SO4 + 0.5О2 ---> NiSO4 + H2O + 2NiS (1)
Однако нежелательно, чтобы образовавшийся сульфид никеля NiS реагировал далее с серной кислотой с образованием другого сульфида Ni3S4, поскольку этот сульфид на последующих стадиях выщелачивания разлагается очень медленно. Эта нежелательная реакция идет по уравнению:
4NiS + H2SO4 0.5О2 ---> Ni3S4 + NiSO4 + H2O (2)
На второй стадии выщелачивания первичный сульфид меди халькосит Cu2S также частично выщелачивается в результате реакции с серной кислотой и образует вторичный сульфид меди ковеллит CuS и сульфат меди. Кроме того, основной сульфат меди также растворяется в этих условиях и образует дополнительное количество сульфата меди в растворе. На этой стадии в реакциях выщелачивания также необходима кислота. Раствор, образующийся на второй стадии, возвращается на первую стадию выщелачивания, и как было указано выше, он содержит сульфат меди, требуемый для выщелачивания. После выщелачивания на второй стадии можно сказать, что выщелачивание элементарного никеля и сульфида никеля Ni3S2, содержавшихся в штейне, фактически закончено, и из соединений никеля в образовавшемся осадке содержится в основном вторичный сульфид никеля NiS, который образовался в реакциях на этой стадии. Кроме того, осадок естественно содержит нерастворимые соединения меди, драгоценные металлы и некоторые соединения железа и мышьяка. Раствор и осадок вновь разделяют на стадии разделения 9.
Ni3S2 + H2SO4 + 0.5О2 ---> NiSO4 + H2O + 2NiS (1)
Однако нежелательно, чтобы образовавшийся сульфид никеля NiS реагировал далее с серной кислотой с образованием другого сульфида Ni3S4, поскольку этот сульфид на последующих стадиях выщелачивания разлагается очень медленно. Эта нежелательная реакция идет по уравнению:
4NiS + H2SO4 0.5О2 ---> Ni3S4 + NiSO4 + H2O (2)
На второй стадии выщелачивания первичный сульфид меди халькосит Cu2S также частично выщелачивается в результате реакции с серной кислотой и образует вторичный сульфид меди ковеллит CuS и сульфат меди. Кроме того, основной сульфат меди также растворяется в этих условиях и образует дополнительное количество сульфата меди в растворе. На этой стадии в реакциях выщелачивания также необходима кислота. Раствор, образующийся на второй стадии, возвращается на первую стадию выщелачивания, и как было указано выше, он содержит сульфат меди, требуемый для выщелачивания. После выщелачивания на второй стадии можно сказать, что выщелачивание элементарного никеля и сульфида никеля Ni3S2, содержавшихся в штейне, фактически закончено, и из соединений никеля в образовавшемся осадке содержится в основном вторичный сульфид никеля NiS, который образовался в реакциях на этой стадии. Кроме того, осадок естественно содержит нерастворимые соединения меди, драгоценные металлы и некоторые соединения железа и мышьяка. Раствор и осадок вновь разделяют на стадии разделения 9.
Осадок после второго выщелачивания при атмосферном давлении подают на третью стадию выщелачивания 3, проводимую под давлением, где осадок выщелачивается раствором сульфата меди, рециркулирующим с последующей стадии процесса (выщелачивания меди под давлением). Температура на третьей стадии выщелачивания составляет по крайней мере 110oC. В автоклаве поддерживается слабоокислительная атмосфера, и в него подают кислород или воздух, хотя основные реакции сами по себе не требуют подачи кислорода. Слабоокислительная атмосфера благоприятна для процесса, поскольку оставшийся первичный сульфид никеля выщелачивается согласно следующей реакции:
4Ni3S2 + 9CuSO4 ---> 12NiSO4 + 5Cu1.8S (3)
Вторичный сульфид никеля NiS, образовавшийся во время второго выщелачивания при атмосферном давлении, растворяется в ходе реакций между самим NiS, сульфатом меди и водой, так что после этой стадии выщелачивания можно сказать, что весь никель перешел в раствор. Можно считать, что основной реакцией является следующая:
6NiS + 9CuSO4 + 4H2O ---> 6NiSO4 + 5Cu1.8S + H2SO4 (4)
Таким образом, реакции на этой стадии не требуют присутствия свободной кислоты в растворе. В процессе выщелачивания никеля медь осаждается в виде дигенита Cu1.8S, помимо которого в реакциях образуется серная кислота. Ковеллит CuS также частично реагирует с сульфатом меди, образуя дополнительное количество дигенита и серную кислоту. Железо и мышьяк, осажденные из штейна, частично растворяются на этой стадии, потому что их растворение зависит от количества кислоты. Раствор, полученный на этой стадии выщелачивания, подают после отделения осадка 10 на удаление железа 11 и затем на второе атмосферное выщелачивание 2. Удаление железа проводится по какому-либо известному методу, например путем нейтрализации с помощью карбоната никеля и окисления железа до гидроксида трехвалентного железа с помощью кислорода.
4Ni3S2 + 9CuSO4 ---> 12NiSO4 + 5Cu1.8S (3)
Вторичный сульфид никеля NiS, образовавшийся во время второго выщелачивания при атмосферном давлении, растворяется в ходе реакций между самим NiS, сульфатом меди и водой, так что после этой стадии выщелачивания можно сказать, что весь никель перешел в раствор. Можно считать, что основной реакцией является следующая:
6NiS + 9CuSO4 + 4H2O ---> 6NiSO4 + 5Cu1.8S + H2SO4 (4)
Таким образом, реакции на этой стадии не требуют присутствия свободной кислоты в растворе. В процессе выщелачивания никеля медь осаждается в виде дигенита Cu1.8S, помимо которого в реакциях образуется серная кислота. Ковеллит CuS также частично реагирует с сульфатом меди, образуя дополнительное количество дигенита и серную кислоту. Железо и мышьяк, осажденные из штейна, частично растворяются на этой стадии, потому что их растворение зависит от количества кислоты. Раствор, полученный на этой стадии выщелачивания, подают после отделения осадка 10 на удаление железа 11 и затем на второе атмосферное выщелачивание 2. Удаление железа проводится по какому-либо известному методу, например путем нейтрализации с помощью карбоната никеля и окисления железа до гидроксида трехвалентного железа с помощью кислорода.
Это третье выщелачивание под давлением дополнительно служит для того, чтобы осадить весь растворимый селен или драгоценные металлы с четвертой стадии выщелачивания 4, возвращаемые вместе с раствором сульфата меди. Раствор, выходящий после третьей стадии выщелачивания под давлением 3, будет в основном свободен от растворимого селена и драгоценных металлов.
Осадок после стадии выщелачивания никеля под давлением, содержащий в основном дигенит, подается на следующую стадию, т.е. на стадию выщелачивания меди под давлением 4, которая также может быть названа полным выщелачиванием, поскольку вся медь, а также последние остатки никеля и кобальта, возможно еще оставшиеся в осадке, выщелачиваются анолитом, рециркулирующим со стадии электролитического выделения меди 12, расположенной далее по ходу процесса. Кроме того, на эту стадию выщелачивания подают кислород или воздух. Температура при выщелачивании составляет 80 - 150oC, предпочтительно 110 - 130o. Выщелачивание хорошо идет и в очень кислой среде, но выгодно проводить его в условиях, когда осаждается антлерит, т.е. при pH 2.7 - 3.2, предпочтительно около 3. Осажденный антлерит выщелачивают непосредственно перед разделением жидкости и осадка, путем добавления небольшого количества анолита или кислоты. Остаток, полученный после выщелачивания, в основном состоит из драгоценных металлов, и этот остаток подается на рафинирование с целью выделения драгоценных металлов.
Раствор, полученный после выщелачивания меди под давлением, после разделения 13 поступает на удаление селена 14, которое проводится, например, при помощи диоксида серы, и селен осаждается в виде селенида меди. Раствор, полученный на стадии разделения 15, представляет собой достаточно чистый нейтральный сульфат меди, который выгодно направить на выщелачивание никеля 3; это означает, что на этой стадии получается раствор, практически не содержащий свободной кислоты. Однако нет необходимости возвращать весь этот раствор на выщелачивание никеля; часть его, после удаления родия 16 и последующего разделения раствора и осадка 17, можно направить на электролитическое выделение меди 12. Удаление родия также проводится путем осаждения диоксидом серы, по это происходит при более высоком содержании кислоты, чем осаждение селена, и поэтому на эту стадию подается анолит (возвратная кислота) со стадии электролитического выделения меди. Осадок родия отделяют, а очищенный раствор передают на электролитическое выделение меди.
Далее изобретение описывается при помощи приведенных ниже примеров. Примеры показывают, что на обеих стадиях выщелачивания под давлением (3 и 4) выгодно добавлять как можно меньшее количество кислоты.
Пример 1
Никелево-медный штейн, имеющий состав 41.4% Ni, 31.2% Cu и 22% S, обрабатывали по способу, предложенному в настоящем изобретении. Условия и результаты даны в табл. 1. Из этих результатов видно, что на стадии 3 никель выщелачивается очень хорошо, хотя содержание кислоты в подаваемом растворе составляет только 5 г/л. Это доказывает, что этот способ работает, хотя подаваемый раствор вообще не содержит кислоты.
Никелево-медный штейн, имеющий состав 41.4% Ni, 31.2% Cu и 22% S, обрабатывали по способу, предложенному в настоящем изобретении. Условия и результаты даны в табл. 1. Из этих результатов видно, что на стадии 3 никель выщелачивается очень хорошо, хотя содержание кислоты в подаваемом растворе составляет только 5 г/л. Это доказывает, что этот способ работает, хотя подаваемый раствор вообще не содержит кислоты.
Основным компонентом в осадке, полученном в результате выщелачивания под давлением (стадия 4), является антрелит CuSO4 • Cu(OH)2, который легко растворяется в кислоте. Этот осадок выщелачивали при pH 2, и после выщелачивания количество нерастворившегося осадка составляло 1.9 г. Состав нерастворившегося осадка был следующим. Cu 3.1%, Fe 15.6%, Ni 0.4%, Pb 5.1%, S 6.1%, Pt 10.4%, Pd 7.7%, Au 3.1% и Ag 4.7%. Эти результаты показывают, что все вещества, которые могли быть окислены в этих условиях, прореагировали, и в результате был получен высокосортный концентрат драгоценных металлов.
Пример 2
Стадии 1 и 2 проводили так же, как в примере 1, и в табл. 2 приведены данные, иллюстрирующие только стадии 3 и 4. Из приведенных результатов видно, что высокая начальная концентрация кислоты не является предпочтительной на стадии 3, поскольку содержание остаточного никеля в осадке выше, чем в примере 1. Высокое содержание кислоты оказывает отрицательное влияние также на стадии 4. При выщелачивании здесь образуется элементарная сера, которая также частично препятствует полному выщелачиванию сульфида меди.
Стадии 1 и 2 проводили так же, как в примере 1, и в табл. 2 приведены данные, иллюстрирующие только стадии 3 и 4. Из приведенных результатов видно, что высокая начальная концентрация кислоты не является предпочтительной на стадии 3, поскольку содержание остаточного никеля в осадке выше, чем в примере 1. Высокое содержание кислоты оказывает отрицательное влияние также на стадии 4. При выщелачивании здесь образуется элементарная сера, которая также частично препятствует полному выщелачиванию сульфида меди.
Claims (9)
1. Способ извлечения ценных металлов из тонкоизмельченного никелево-медного штейна, включающий, по меньшей мере, одну стадию выщелачивания при атмосферном давлении, по меньшей мере, одну стадию выщелачивания под давлением и подачу образованного в процессе раствора сульфата никеля после очистки на электролитическое выделение никеля, отличающийся тем, что на первую стадию выщелачивания при атмосферном давлении и первую стадию выщелачивания под давлением подают выщелачивающие растворы, содержащие сульфат меди и не содержащие заметного количества свободной серной кислоты, причем на вторую стадию выщелачивания при атмосферном давлении, осуществляемую между первым выщелачиванием при атмосферном давлении и первым выщелачиванием под давлением, подают содержащий свободную серную кислоту никелевый анолит, полученный в процессе электролитического получения никеля, и кислород для окисления первичных сульфидов никеля и меди, а образованный на второй стадии выщелачивания под давлением раствор сульфата меди после очистки подают на электролитическое выделение меди.
2. Способ по п.1, отличающийся тем, что на первую стадию выщелачивания при атмосферном давлении подают выщелачивающий раствор, дополнительно содержащий анолит, образованный в процессе электролитического выделения никеля, предварительно подвергнутый нейтрализации для удаления свободной серной кислоты.
3. Способ по п.1, отличающийся тем, что на первую и вторую стадию выщелачивания, проводимые при атмосферном давлении, подают кислород, воздух или их смесь.
4. Способ по п.1, отличающийся тем, что остаток, полученный на второй стадии выщелачивания при атмосферном давлении, выщелачивают на первой стадии выщелачивания под давлением в растворе сульфата меди, образующемся на второй окислительной стадии выщелачивания под давлением.
5. Способ по п.1, отличающийся тем, что остаток, образованный на первой стадии выщелачивания под давлением, обрабатывают на второй окислительной стадии выщелачивания под давлением, на которой используют свободную кислоту и анолит, рециркулированный со стадии электролитического выделения меди, для выщелачивания содержащихся в остатке меди, никеля и кобальта с образованием на этой стадии остатка, содержащего драгоценные металлы.
6. Способ по п.1, отличающийся тем, что вторую стадию выщелачивания под давлением осуществляют при pH 2,7 - 3,2, преимущественно при pH 3,0.
7. Способ по п.1, отличающийся тем, что на второй стадии выщелачивания под давлением из раствора осаждают селен и родий.
8. Способ по п.1, отличающийся тем, что, по меньшей мере, часть образованного на второй стадии выщелачивания под давлением раствора после очистки подают на электролитическое выделение меди.
9. Способ по п.1, отличающийся тем, что выщелачивание никелево-медного штейна на первой стадии выщелачивания при атмосферном давлении осуществляют выщелачивающим раствором, состоящим из раствора сульфата меди, содержащего сульфат никеля, полученного со второй стадии выщелачивания при атмосферном давлении в окислительных условиях при температуре 80 - 100oС, дополнительно содержащего анолит от электролитического выделения никеля, предварительно подвергнутый нейтрализации для удаления свободной серной кислоты, с получением сульфата никеля и соединений меди, растворимых в кислоте, затем полученные раствор и остаток разделяют и раствор сульфата никеля после очистки подают на электролитическое выделение никеля, а остаток, полученный с первой стадии выщелачивания, выщелачивают на второй стадии в анолите, рециркулированном со стадии электролитического выделения никеля, в окислительных условиях при атмосферном давлении и при температуре 80 - 100oС для выщелачивания первичных сульфидов никеля и меди, содержащихся в остатке, с получением сульфатов никеля и меди и вторичных сульфидов никеля и меди, и образованный при выщелачивании раствор, содержащий в основном сульфаты, подают на первую стадию выщелачивания, остаток со второй стадии выщелачивания выщелачивают под давлением в практически нейтральном растворе сульфата меди при температуре не ниже 110oС в неокислительных или слабоокислительных условиях для выщелачивания никеля, содержащегося в остатке, и осаждения из образовавшегося раствора, который рециркулируют на вторую стадию выщелачивания, железа и мышьяка, остаток, оставшийся от первой стадии выщелачивания под давлением, выщелачивают под давлением в анолите от электролитического выделения меди в окислительных условиях при температуре 80 - 150oС, предпочтительно 110 - 130oС для выщелачивания меди и содержащихся в остатке малых остаточных количеств никеля и кобальта, оставшийся после выщелачивания остаток, содержащий драгоценные металлы, подают на рафинирование для выделения драгоценных металлов, а раствор после очистки от селена и родия направляют на электролитическое выделение меди.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI945379 | 1994-11-15 | ||
FI945379A FI97154C (fi) | 1994-11-15 | 1994-11-15 | Menetelmä nikkelikuparikiven liuottamiseksi |
Publications (2)
Publication Number | Publication Date |
---|---|
RU95119423A RU95119423A (ru) | 1997-11-20 |
RU2142518C1 true RU2142518C1 (ru) | 1999-12-10 |
Family
ID=8541810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU95119423A RU2142518C1 (ru) | 1994-11-15 | 1995-11-14 | Способ выщелачивания никелево-медного штейна |
Country Status (8)
Country | Link |
---|---|
US (1) | US5628817A (ru) |
CN (1) | CN1045624C (ru) |
AU (1) | AU703707B2 (ru) |
BR (1) | BR9505194A (ru) |
CA (1) | CA2162626C (ru) |
FI (1) | FI97154C (ru) |
RU (1) | RU2142518C1 (ru) |
ZA (1) | ZA959715B (ru) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1058056C (zh) * | 1997-07-28 | 2000-11-01 | 中国科学院化工冶金研究所 | 氯络氧化法选择性浸取镍钴铜硫化矿的工艺 |
US5993514A (en) * | 1997-10-24 | 1999-11-30 | Dynatec Corporation | Process for upgrading copper sulphide residues containing nickel and iron |
FI106636B (fi) * | 1998-08-17 | 2001-03-15 | Outokumpu Oy | Menetelmä rikin poistamiseksi nikkelikiven liuotusprosessista |
US7224373B1 (en) | 2000-04-07 | 2007-05-29 | Danger, Inc. | Adjustable data processing display |
US20050126923A1 (en) * | 2001-07-25 | 2005-06-16 | Phelps Dodge Corporation | Process for recovery of copper from copper-bearing material using medium temperature pressure leaching, direct electrowinning and solvent/solution extraction |
WO2003021408A2 (en) * | 2001-08-29 | 2003-03-13 | Danger, Inc. | Sliding display apparatus |
US7305631B1 (en) | 2002-09-30 | 2007-12-04 | Danger, Inc. | Integrated motion sensor for a data processing device |
US7799296B2 (en) * | 2003-12-04 | 2010-09-21 | Ovonic Battery Company, Inc. | Method of producing a nickel salt solution |
US7364717B2 (en) * | 2003-12-04 | 2008-04-29 | Ovonic Battery Company, Inc. | Process for converting nickel to nickel sulfate |
BRPI0419191B1 (pt) * | 2004-10-29 | 2013-05-14 | mÉtodo de recuperaÇço de cobre a partir de um material metalÍfero. | |
US7736487B2 (en) | 2004-10-29 | 2010-06-15 | Freeport-Mcmoran Corporation | Process for recovery of copper from copper-bearing material using pressure leaching, direct electrowinning and solution extraction |
US8692816B2 (en) * | 2005-04-22 | 2014-04-08 | Microsoft Corporation | State-based auxiliary display operation |
FI117941B (fi) * | 2005-10-13 | 2007-04-30 | Outokumpu Technology Oyj | Menetelmä metallisulfidimineraalien liuottamiseksi |
US8057850B2 (en) * | 2006-11-09 | 2011-11-15 | Alliance For Sustainable Energy, Llc | Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors |
EP2944383A3 (en) * | 2006-11-09 | 2016-02-10 | Alliance for Sustainable Energy, LLC | Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films |
WO2009155634A1 (en) * | 2008-06-26 | 2009-12-30 | Gladstone Pacific Nickel Ltd | Counter current atmospheric leach process |
FI122188B (fi) * | 2010-03-18 | 2011-09-30 | Outotec Oyj | Hydrometallurginen menetelmä metallisen nikkelin valmistamiseksi |
WO2011146115A1 (en) | 2010-05-21 | 2011-11-24 | Heliovolt Corporation | Liquid precursor for deposition of copper selenide and method of preparing the same |
JP5445777B2 (ja) * | 2010-07-28 | 2014-03-19 | 住友金属鉱山株式会社 | 低品位ニッケル酸化鉱石からのフェロニッケル製錬原料の製造方法 |
US9142408B2 (en) | 2010-08-16 | 2015-09-22 | Alliance For Sustainable Energy, Llc | Liquid precursor for deposition of indium selenide and method of preparing the same |
FI20110278A0 (fi) | 2011-08-29 | 2011-08-29 | Outotec Oyj | Menetelmä metallien talteenottamiseksi sulfidirikasteesta |
FI20110279A0 (fi) | 2011-08-29 | 2011-08-29 | Outotec Oyj | Menetelmä metallien talteenottamiseksi niitä sisältävästä materiaalista |
US9105797B2 (en) | 2012-05-31 | 2015-08-11 | Alliance For Sustainable Energy, Llc | Liquid precursor inks for deposition of In—Se, Ga—Se and In—Ga—Se |
CN103725892B (zh) * | 2013-12-13 | 2015-08-05 | 金川集团股份有限公司 | 一种回收稀贵熔炼炉渣中有价金属的方法 |
CN109371245B (zh) * | 2018-11-13 | 2020-04-28 | 成都理工大学 | 镍精炼系统铜渣资源化处理方法 |
CN110241310B (zh) * | 2019-06-18 | 2021-10-01 | 深圳市坤鹏冶金工程技术有限公司 | 一种高铁高铜含镍物料选择性氧压浸出富集贵金属的方法 |
RU2706400C9 (ru) * | 2019-07-11 | 2020-01-17 | Публичное акционерное общество "Горно-металлургическая компания "Норильский никель" | Способ переработки медно-никелевых сульфидных материалов |
CN111187922B (zh) * | 2020-02-18 | 2022-05-06 | 云南锡业研究院有限公司 | 一种常压下从高镍铜锍中选择性浸出镍的方法 |
CN112280978A (zh) * | 2020-11-19 | 2021-01-29 | 金川集团股份有限公司 | 一种高硫低铜镍物料加压浸出的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3218161A (en) * | 1961-02-27 | 1965-11-16 | Sherritt Gordon Mines Ltd | Process for the precipitation of metal values from solutions |
US4093526A (en) * | 1977-09-08 | 1978-06-06 | Amax Inc. | Hydrometallurgical leaching and refining of nickel-copper concentrates, and electrowinning of copper |
CA1173655A (en) * | 1981-10-30 | 1984-09-04 | Derek G.E. Kerfoot | Acid leach process for treating magnetic and non- magnetic nickel-copper mattes |
CA1234289A (en) * | 1984-10-24 | 1988-03-22 | Derik G.E. Kerfoot | Recovery of platinum group metals from nickel-copper- iron matte |
US5344479A (en) * | 1992-03-13 | 1994-09-06 | Sherritt Gordon Limited | Upgrading copper sulphide residues containing nickel and arsenic |
-
1994
- 1994-11-15 FI FI945379A patent/FI97154C/fi not_active IP Right Cessation
-
1995
- 1995-11-08 AU AU36689/95A patent/AU703707B2/en not_active Expired
- 1995-11-10 CA CA 2162626 patent/CA2162626C/en not_active Expired - Lifetime
- 1995-11-13 US US08/554,972 patent/US5628817A/en not_active Expired - Fee Related
- 1995-11-14 CN CN95120979A patent/CN1045624C/zh not_active Expired - Lifetime
- 1995-11-14 RU RU95119423A patent/RU2142518C1/ru active
- 1995-11-15 ZA ZA959715A patent/ZA959715B/xx unknown
- 1995-11-16 BR BR9505194A patent/BR9505194A/pt not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
FI945379A0 (fi) | 1994-11-15 |
FI97154B (fi) | 1996-07-15 |
AU703707B2 (en) | 1999-04-01 |
US5628817A (en) | 1997-05-13 |
FI97154C (fi) | 1996-10-25 |
AU3668995A (en) | 1996-05-23 |
CN1131199A (zh) | 1996-09-18 |
CA2162626A1 (en) | 1996-05-16 |
BR9505194A (pt) | 1997-09-16 |
CA2162626C (en) | 2002-07-09 |
ZA959715B (en) | 1996-05-30 |
CN1045624C (zh) | 1999-10-13 |
FI945379A (fi) | 1996-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2142518C1 (ru) | Способ выщелачивания никелево-медного штейна | |
EP0924307B1 (en) | Solvent extraction of cobalt and nickel values from a magnesium containing solution | |
CA1155084A (en) | Process for the recovery of metal values from anode slimes | |
US6383460B2 (en) | Process for the recovery of nickel and/or cobalt from a concentrate | |
US6054105A (en) | Process for the solvent extraction of nickel and cobalt values in the presence of magnesium ions from a solution | |
US6663689B2 (en) | Process for direct electrowinning of copper | |
RU95119423A (ru) | Способ выщелачивания никелево-медного штейна | |
FI70252B (fi) | Foerfarande foer utvinning av koppar nickel och kobolt ur skaersten | |
FI125575B (en) | Recycling of solids in oxidative pressure extraction of metals using halide ions | |
EA013604B1 (ru) | Способ гидрометаллургической обработки сульфидного концентрата, содержащего несколько представляющих ценность металлов | |
WO2007039665A1 (en) | Method for processing nickel bearing raw material in chloride-based leaching | |
EA023157B1 (ru) | Способ выщелачивания халькопиритового концентрата | |
ZA200501592B (en) | Method for the recovery of metals using chloride leaching and extraction | |
AU728941B2 (en) | Process for the recovery of nickel and/or cobalt from a concentrate | |
AU3878201A (en) | Process for the recovery of nickel, and/or cobalt from a concentrate | |
MXPA97009729A (en) | Hydrometalurgical extraction of nickel and cobalt assisted by chloride, from sulf minerals |