RU2142518C1 - Способ выщелачивания никелево-медного штейна - Google Patents

Способ выщелачивания никелево-медного штейна Download PDF

Info

Publication number
RU2142518C1
RU2142518C1 RU95119423A RU95119423A RU2142518C1 RU 2142518 C1 RU2142518 C1 RU 2142518C1 RU 95119423 A RU95119423 A RU 95119423A RU 95119423 A RU95119423 A RU 95119423A RU 2142518 C1 RU2142518 C1 RU 2142518C1
Authority
RU
Russia
Prior art keywords
leaching
stage
nickel
copper
solution
Prior art date
Application number
RU95119423A
Other languages
English (en)
Other versions
RU95119423A (ru
Inventor
Фуглеберг Сигмунд
Хультхольм Стиг-Эрик
Холохан Терри
Original Assignee
Оутокумпу Энжинеринг Контракторс ОЙ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Оутокумпу Энжинеринг Контракторс ОЙ filed Critical Оутокумпу Энжинеринг Контракторс ОЙ
Publication of RU95119423A publication Critical patent/RU95119423A/ru
Application granted granted Critical
Publication of RU2142518C1 publication Critical patent/RU2142518C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Изобретение может быть использовано для выщелачивания никеля и меди из никелево-медного штейна, образующегося при пирометаллургическом получении никеля, с помощью многостадийного процесса. Сущность изобретения состоит в том, что выщелачивание никеля происходит по крайней мере на двух стадиях в условиях, когда практически отсутствует свободная серная кислота, на этих стадиях выщелачивание никеля, содержащегося в штейне, в основном проводят при помощи меди, которая является окислителем. Повышается степень извлечения ценных металлов. 8 з.п. ф-лы, 2 табл.

Description

Настоящее изобретение касается способа выщелачивания никеля и меди из полученного методом пирометаллургии никелево- медного штейна, образующегося при пирометаллургическом получении никеля с применением многостадийного процесса. Основной особенностью изобретения является то, что выщелачивание никеля происходит по крайней мере в две стадии, практически без применения свободной серной кислоты, и что окислителем при выщелачивании никеля, содержащегося в штейне, в основном является медь.
Среди известных способов имеется способ, описанный в патенте США 3741752, согласно которому выщелачивание никелево-медного штейна проводили посредством трехстадийного процесса под давлением. Измельченный штейн выщелачивали на первой стадии путем окислительного выщелачивания под давлением при помощи анолита, рециркулирующего с электролитического выделения меди. Цель состояла в том, чтобы растворить основную часть никеля, но чтобы медь при этом осталась нерастворенной. При необходимости, заключительную часть этой первой стадии выщелачивания можно проводить без окисления. После разделения раствора и осадка, раствор передавался на стадии очистки, после которых проводилось электролитическое выделение никеля. Выщелачивание осадка продолжали на второй стадии окислительного выщелачивания под давлением, вновь применяя анолит после электролитического выделения меди, теперь уже с целью извлечь всю медь и никель, содержащиеся в осадке. Раствор, полученный после этого выщелачивания, передавался после очистки на электролитическое выделение меди. Если в исходном материале содержание драгоценных металлов было высоким, можно было при необходимости, осадок, поступающий со второй стадии, подвергнуть третьей стадии выщелачивания, проводимого в условиях усиленного окисления, так чтобы в остатке, содержащем драгоценные металлы, оставалось минимальное количество меди и никеля.
Среди известных способов также имеется способ выделения ценных материалов из никелево-медного штейна, описанный в патенте США 4093526. В этом способе первая стадия выщелачивания проводится при атмосферном давлении раствором, рециркулирующим со второй стадии выщелачивания; если необходимо, на этой стадии добавляется серная кислота. Цель первой стадии выщелачивания состоит в том, чтобы выделить никель из штейна в виде сульфата никеля, и в том, чтобы получить в осадке либо металлическую медь, либо гидроксид меди, которые растворятся а второй стадии выщелачивания. Раствор, полученный на первой стадии, передается на очистку и после этого на электролитическое выделение никеля. Осадок после выщелачивания при атмосферном давлении ("атмосферного выщелачивания") подвергают дальнейшему выщелачиванию, и вторая стадия выщелачивания проводится под давлением в условиях окисления, и на этой стадии в процесс вводят анолит, рециркулирующий после электролитического выделения меди, и серную кислоту. Медь, которая сцементировалась на первой стадии, в этих условиях растворяется и выщелачивается, а никель остается в осадке, и когда раствор со второй стадии возвращают на первую стадию, он реагирует с сульфидом никеля NiS2 и с элементарным никелем, содержащимся в штейне, выщелачивая оба эти вещества. В результате этих реакций медь осаждается в кислоторастворимой форме, как было указано выше. Осадок после второй стадии выщелачивается анолитом, поступающим с электролитического выделения меди, в окислительных условиях в автоклаве, т.е. в условиях так называемого полного выщелачивания, цель которого состоит в выщелачивании всего никеля, кобальта и меди, оставшихся в осадке. Раствор, образующийся на третьей стадии, подают после очистки на электролитическое выделение меди, а образовавшийся осадок представляет собой в основном осадок железа, который можно удалить как отходы.
В патенте США 4323541 предложен способ выщелачивания никелево-медного штейна, который включает в себя сначала двухстадийное окислительное выщелачивание при атмосферном давлении и затем стадию выщелачивания под давлением, цель которого состоит в том, чтобы извлечь никель, содержащийся в штейне, но оставить неизвлеченной основную часть меди. Таким образом, осадок, образующийся на третьей стадии выщелачивания, содержит большую часть меди и драгоценные металлы, и его можно подвергнуть дальнейшей переработке, например при рафинировании меди.
Другой способ выщелачивания никелево-медного штейна описан в патенте Великобритании 2108480. На первой стадии штейн подвергают выщелачиванию под давлением в условиях окисления анолитом, рециркулирующим с электролитического выделения меди. После того, как выщелачивается по крайней мере 70% никеля, содержащегося в штейне, выщелачивание продолжается в условиях отсутствия окисления. Раствор, полученный на первой стадии, далее обрабатывают, подвергая его окислительному очистительному выщелачиванию при атмосферном давлении, добавляя в него также тонкоизмельченный штейн. Цель очистительного выщелачивания состоит в удалении растворенной меди и железа из раствора. Раствор, полученный в результате очистительного выщелачивания, подается после очистки на электролитическое выделение никеля и затем обратно на первую стадию выщелачивания. Осадок после выщелачивания с первой стадии подается на вторую стадию выщелачивания под давлением, которая также проводится в условиях окисления анолитом, рециркулирующим с электролитического выделения меди. Цель второй стадии - провести полное выщелачивание меди, и раствор, полученный после этого выщелачивания, подается на электролитическое выделение меди, возможно, после удаления селена. Образовавшийся осадок содержит основную часть железа, которое содержалось в штейне.
Еще один способ выделения никеля на никелево-медного штейна описан в патенте Канады 2063031. В этом способе первая стадия представляет собой окислительное кислотное выщелачивание штейна при атмосферном давлении в анолите, рециркулирующем с электролитического выделения никеля, причем указанный анолит содержит примерно 50 г/л Ni и 50 г/л H2SO4. В результате выщелачивания получается раствор сульфата никеля, который после очистки передается на электролитическое выделение никеля. Образовавшийся осадок содержит сцементированные металлическую медь, сульфид меди, оксид меди в непрореагировавшие сульфид никеля и оксид никеля. Во время выщелачивания pH поддерживают в пределах 4.0 - 6.5.
Выщелачивание на второй стадии проводят в условиях, аналогичных первой стадии, т.е. для выщелачивания используют никелевый анолит, и целью является выщелачивание основной массы оставшегося никеля и образование осадка, в котором содержится примерно 60% растворимых в кислоте соединений, например, основных сульфатов меди и никеля и арсената железа. Раствор со второй стадии выщелачивания подается на первую стадию, и в результате получают осадок с высоким содержанием меди, который передается на неокислительное выщелачивание под давлением, которое идет в кислой среде. Даже на этой стадии подается анолит, образующийся при электролитическом выделении никеля. Цель выщелачивания под давлением состоит в том, чтобы провести селективное выщелачивание никеля и арсената железа из осадка так, чтобы медь осталась в осадке. Образующийся раствор частично поступает на вторую стадию выщелачивания, а остаток обрабатывают с целью осаждения железа и мышьяка. Полученный осадок содержит медь и драгоценные металлы и его выгодно передать на рафинирование меди. Этот процесс аналогичен процессу, описанному в упомянутом выше патенте США 4323541, за исключением того, что последнее выщелачивание, осуществляемое в автоклаве, проводится не в "окислительных", а в "неокислительных" условиях, т.е. в отсутствие газообразного кислорода.
В способе, предлагаемом в настоящем изобретении, выщелачивание никелево-медного штейна также осуществляется в несколько стадий, первые из которых проводятся при атмосферном давлении, а последующие - под повышенным давлением. Характерной чертой способа, предложенного в настоящем изобретении, является то, что выщелачивание никеля, содержащегося в никелево-медном штейне, осуществляется в основном путем использования окислительного действия иона меди. Поэтому на первой стадии выщелачивания в процессе, описанном в настоящем изобретении, вместо кислой среды создаются условия, когда штейн выщелачивается в нейтральном растворе сульфата никеля, содержащем сульфат меди, так что сульфат меди, содержащийся в растворе, выщелачивает никель, содержащийся в штейне. В ходе выщелачивания здесь образуются несколько растворимых в кислоте соединений меди, таких как основные сульфаты меди и гидроксид меди, которые однако осаждаются на этой стадии выщелачивания в нейтральной среде.
Вторая стадия выщелачивания проводится в кислой среде, и образовавшиеся соединения меди реагируют с серной кислотой, превращаясь в сульфат меди, который далее опять выщелачивает никель, содержащийся в штейне. Третья стадия - это выщелачивание под давлением, где осадок со второй стадии выщелачивается в нейтральном растворе сульфата меди в слабоокислительных или неокислительных условиях, и результатом этой стадии является полное выщелачивание никеля, в то время как основная часть меди осаждается. Для того чтобы провести выщелачивание меди, которая содержится в осадке, полученном после полного выщелачивания никеля, проводится окислительное выщелачивание в кислой среде, в результате которого медь, содержащаяся в штейне, выщелачивается и передается на электролитическое выделение меди. Остающийся осадок содержит драгоценные металлы и может быть обработан известными способами. При необходимости, перед электролитическим выделением меди из раствора сульфата меди удаляют селен и родий известными способами. Способом, предложенный в настоящем изобретении, можно достичь хорошей степени извлечения ценных металлов. Под ценными металлами мы подразумеваем по крайней мере никель, кобальт, свинец и драгоценные металлы, к которым мы относим серебро, золото, платину, палладий, селен и родий.
Другой отличительной особенностью способа, предложенного в настоящем изобретении, является то, что по крайней мере одна стадия выщелачивания при атмосферном давлении и одна стадия выщелачивания под давлением (при повышенном давлении) проводятся в нейтральной среде, и что даже на других стадиях есть тенденция использовать, насколько возможно, нейтральные растворы. Здесь нейтральная среда означает такую среду, где практически отсутствуют свободные кислоты. Преимущество нейтральных стадий состоит в том, что в таких условиях коррозия происходит в меньшей степени, чем в тех способах, где все стадии выщелачивания проводятся в кислой среде, например, с добавлением возвратной кислоты (анолита) после электролитического выделения никеля или меди. Еще одно преимущество, которое стоит отметить, заключается в том, что, как мы обнаружили, более нейтральная среда увеличивает тенденцию к образованию таких промежуточных продуктов, которые на следующей стадии процесса быстро растворяются. Основные новые отличительные черты изобретения станут очевидными из приведенной здесь формулы изобретения.
Далее изобретение описывается со ссылкой на технологическую схему процесса, показанную на фиг.1.
Никель, содержащийся в никелево-медном штейне, присутствует в нескольких различных формах, таких как элементарный никель Ni или сульфид никеля Ni3S2, который можно назвать первичным сульфидом, потому что он является продуктом пирометаллургического процесса. Избыточный сульфат удаляется из анолита, полученного при электролитическом выделении никеля 5, при помощи карбоната натрия, и образовавшийся карбонат никеля используется для нейтрализации свободной серной кислоты на стадии 6. Карбонат никеля может также использоваться позже, для нейтрализации осадков, содержащих железо и мышьяк. Сульфат натрия, образовавшийся при удалении сульфата, выводится из процесса. Практически нейтральный раствор NiSO4 подается на первую стадию выщелачивания при атмосферном давлении (стадия 1). Кроме этого, на первую стадию выщелачивания подают раствор сульфата меди, содержащий сульфат никеля, рециркулирующий со следующей стадии атмосферного выщелачивания 2, а также кислород или воздух. Благодаря действию сульфата меди и кислорода элементарный никель и сульфид никеля окисляются в сульфат никеля. В ходе процесса также получается основной сульфат меди CuSO4 • 2Cu(OH)2 - антлерит, а также небольшое количество куприта Cu2O и арсената железа, который на этой стадии полностью переходит в осадок. Следовательно, эту стадию можно также назвать стадией удаления меди. Выщелачивание проводят при атмосферном давлении, при температурах 80 - 100oC. После выщелачивания жидкость и осадок разделяют на стадии 7 при помощи обычных методов разделения. Раствор сульфата никеля, образовавшийся при выщелачивании, подается после удаления кобальта 8 на электролитическое выделение никеля 5.
Осадок, образовавшийся на первой стадии атмосферного выщелачивания 1, подают на вторую стадию атмосферного выщелачивания 2, на которую также подают анолит с электролитического выделения никеля 5. Существенно для всего процесса, что рециркулирующая кислота (анолит) с электролитического выделения никеля поступает только на эту стадию. Благодаря действию свободной серной кислоты, содержащейся в анолите (около 50 г/л H2SO4) первичный сульфид никеля Ni3S2, содержащийся в никелево-медном штейне, частично выщелачивается и образует один моль сульфата никеля и два моля вторичного сульфида никеля NiS на один моль Ni3S2. Реакция протекает по следующему уравнению:
Ni3S2 + H2SO4 + 0.5О2 ---> NiSO4 + H2O + 2NiS (1)
Однако нежелательно, чтобы образовавшийся сульфид никеля NiS реагировал далее с серной кислотой с образованием другого сульфида Ni3S4, поскольку этот сульфид на последующих стадиях выщелачивания разлагается очень медленно. Эта нежелательная реакция идет по уравнению:
4NiS + H2SO4 0.5О2 ---> Ni3S4 + NiSO4 + H2O (2)
На второй стадии выщелачивания первичный сульфид меди халькосит Cu2S также частично выщелачивается в результате реакции с серной кислотой и образует вторичный сульфид меди ковеллит CuS и сульфат меди. Кроме того, основной сульфат меди также растворяется в этих условиях и образует дополнительное количество сульфата меди в растворе. На этой стадии в реакциях выщелачивания также необходима кислота. Раствор, образующийся на второй стадии, возвращается на первую стадию выщелачивания, и как было указано выше, он содержит сульфат меди, требуемый для выщелачивания. После выщелачивания на второй стадии можно сказать, что выщелачивание элементарного никеля и сульфида никеля Ni3S2, содержавшихся в штейне, фактически закончено, и из соединений никеля в образовавшемся осадке содержится в основном вторичный сульфид никеля NiS, который образовался в реакциях на этой стадии. Кроме того, осадок естественно содержит нерастворимые соединения меди, драгоценные металлы и некоторые соединения железа и мышьяка. Раствор и осадок вновь разделяют на стадии разделения 9.
Осадок после второго выщелачивания при атмосферном давлении подают на третью стадию выщелачивания 3, проводимую под давлением, где осадок выщелачивается раствором сульфата меди, рециркулирующим с последующей стадии процесса (выщелачивания меди под давлением). Температура на третьей стадии выщелачивания составляет по крайней мере 110oC. В автоклаве поддерживается слабоокислительная атмосфера, и в него подают кислород или воздух, хотя основные реакции сами по себе не требуют подачи кислорода. Слабоокислительная атмосфера благоприятна для процесса, поскольку оставшийся первичный сульфид никеля выщелачивается согласно следующей реакции:
4Ni3S2 + 9CuSO4 ---> 12NiSO4 + 5Cu1.8S (3)
Вторичный сульфид никеля NiS, образовавшийся во время второго выщелачивания при атмосферном давлении, растворяется в ходе реакций между самим NiS, сульфатом меди и водой, так что после этой стадии выщелачивания можно сказать, что весь никель перешел в раствор. Можно считать, что основной реакцией является следующая:
6NiS + 9CuSO4 + 4H2O ---> 6NiSO4 + 5Cu1.8S + H2SO4 (4)
Таким образом, реакции на этой стадии не требуют присутствия свободной кислоты в растворе. В процессе выщелачивания никеля медь осаждается в виде дигенита Cu1.8S, помимо которого в реакциях образуется серная кислота. Ковеллит CuS также частично реагирует с сульфатом меди, образуя дополнительное количество дигенита и серную кислоту. Железо и мышьяк, осажденные из штейна, частично растворяются на этой стадии, потому что их растворение зависит от количества кислоты. Раствор, полученный на этой стадии выщелачивания, подают после отделения осадка 10 на удаление железа 11 и затем на второе атмосферное выщелачивание 2. Удаление железа проводится по какому-либо известному методу, например путем нейтрализации с помощью карбоната никеля и окисления железа до гидроксида трехвалентного железа с помощью кислорода.
Это третье выщелачивание под давлением дополнительно служит для того, чтобы осадить весь растворимый селен или драгоценные металлы с четвертой стадии выщелачивания 4, возвращаемые вместе с раствором сульфата меди. Раствор, выходящий после третьей стадии выщелачивания под давлением 3, будет в основном свободен от растворимого селена и драгоценных металлов.
Осадок после стадии выщелачивания никеля под давлением, содержащий в основном дигенит, подается на следующую стадию, т.е. на стадию выщелачивания меди под давлением 4, которая также может быть названа полным выщелачиванием, поскольку вся медь, а также последние остатки никеля и кобальта, возможно еще оставшиеся в осадке, выщелачиваются анолитом, рециркулирующим со стадии электролитического выделения меди 12, расположенной далее по ходу процесса. Кроме того, на эту стадию выщелачивания подают кислород или воздух. Температура при выщелачивании составляет 80 - 150oC, предпочтительно 110 - 130o. Выщелачивание хорошо идет и в очень кислой среде, но выгодно проводить его в условиях, когда осаждается антлерит, т.е. при pH 2.7 - 3.2, предпочтительно около 3. Осажденный антлерит выщелачивают непосредственно перед разделением жидкости и осадка, путем добавления небольшого количества анолита или кислоты. Остаток, полученный после выщелачивания, в основном состоит из драгоценных металлов, и этот остаток подается на рафинирование с целью выделения драгоценных металлов.
Раствор, полученный после выщелачивания меди под давлением, после разделения 13 поступает на удаление селена 14, которое проводится, например, при помощи диоксида серы, и селен осаждается в виде селенида меди. Раствор, полученный на стадии разделения 15, представляет собой достаточно чистый нейтральный сульфат меди, который выгодно направить на выщелачивание никеля 3; это означает, что на этой стадии получается раствор, практически не содержащий свободной кислоты. Однако нет необходимости возвращать весь этот раствор на выщелачивание никеля; часть его, после удаления родия 16 и последующего разделения раствора и осадка 17, можно направить на электролитическое выделение меди 12. Удаление родия также проводится путем осаждения диоксидом серы, по это происходит при более высоком содержании кислоты, чем осаждение селена, и поэтому на эту стадию подается анолит (возвратная кислота) со стадии электролитического выделения меди. Осадок родия отделяют, а очищенный раствор передают на электролитическое выделение меди.
Далее изобретение описывается при помощи приведенных ниже примеров. Примеры показывают, что на обеих стадиях выщелачивания под давлением (3 и 4) выгодно добавлять как можно меньшее количество кислоты.
Пример 1
Никелево-медный штейн, имеющий состав 41.4% Ni, 31.2% Cu и 22% S, обрабатывали по способу, предложенному в настоящем изобретении. Условия и результаты даны в табл. 1. Из этих результатов видно, что на стадии 3 никель выщелачивается очень хорошо, хотя содержание кислоты в подаваемом растворе составляет только 5 г/л. Это доказывает, что этот способ работает, хотя подаваемый раствор вообще не содержит кислоты.
Основным компонентом в осадке, полученном в результате выщелачивания под давлением (стадия 4), является антрелит CuSO4 • Cu(OH)2, который легко растворяется в кислоте. Этот осадок выщелачивали при pH 2, и после выщелачивания количество нерастворившегося осадка составляло 1.9 г. Состав нерастворившегося осадка был следующим. Cu 3.1%, Fe 15.6%, Ni 0.4%, Pb 5.1%, S 6.1%, Pt 10.4%, Pd 7.7%, Au 3.1% и Ag 4.7%. Эти результаты показывают, что все вещества, которые могли быть окислены в этих условиях, прореагировали, и в результате был получен высокосортный концентрат драгоценных металлов.
Пример 2
Стадии 1 и 2 проводили так же, как в примере 1, и в табл. 2 приведены данные, иллюстрирующие только стадии 3 и 4. Из приведенных результатов видно, что высокая начальная концентрация кислоты не является предпочтительной на стадии 3, поскольку содержание остаточного никеля в осадке выше, чем в примере 1. Высокое содержание кислоты оказывает отрицательное влияние также на стадии 4. При выщелачивании здесь образуется элементарная сера, которая также частично препятствует полному выщелачиванию сульфида меди.

Claims (9)

1. Способ извлечения ценных металлов из тонкоизмельченного никелево-медного штейна, включающий, по меньшей мере, одну стадию выщелачивания при атмосферном давлении, по меньшей мере, одну стадию выщелачивания под давлением и подачу образованного в процессе раствора сульфата никеля после очистки на электролитическое выделение никеля, отличающийся тем, что на первую стадию выщелачивания при атмосферном давлении и первую стадию выщелачивания под давлением подают выщелачивающие растворы, содержащие сульфат меди и не содержащие заметного количества свободной серной кислоты, причем на вторую стадию выщелачивания при атмосферном давлении, осуществляемую между первым выщелачиванием при атмосферном давлении и первым выщелачиванием под давлением, подают содержащий свободную серную кислоту никелевый анолит, полученный в процессе электролитического получения никеля, и кислород для окисления первичных сульфидов никеля и меди, а образованный на второй стадии выщелачивания под давлением раствор сульфата меди после очистки подают на электролитическое выделение меди.
2. Способ по п.1, отличающийся тем, что на первую стадию выщелачивания при атмосферном давлении подают выщелачивающий раствор, дополнительно содержащий анолит, образованный в процессе электролитического выделения никеля, предварительно подвергнутый нейтрализации для удаления свободной серной кислоты.
3. Способ по п.1, отличающийся тем, что на первую и вторую стадию выщелачивания, проводимые при атмосферном давлении, подают кислород, воздух или их смесь.
4. Способ по п.1, отличающийся тем, что остаток, полученный на второй стадии выщелачивания при атмосферном давлении, выщелачивают на первой стадии выщелачивания под давлением в растворе сульфата меди, образующемся на второй окислительной стадии выщелачивания под давлением.
5. Способ по п.1, отличающийся тем, что остаток, образованный на первой стадии выщелачивания под давлением, обрабатывают на второй окислительной стадии выщелачивания под давлением, на которой используют свободную кислоту и анолит, рециркулированный со стадии электролитического выделения меди, для выщелачивания содержащихся в остатке меди, никеля и кобальта с образованием на этой стадии остатка, содержащего драгоценные металлы.
6. Способ по п.1, отличающийся тем, что вторую стадию выщелачивания под давлением осуществляют при pH 2,7 - 3,2, преимущественно при pH 3,0.
7. Способ по п.1, отличающийся тем, что на второй стадии выщелачивания под давлением из раствора осаждают селен и родий.
8. Способ по п.1, отличающийся тем, что, по меньшей мере, часть образованного на второй стадии выщелачивания под давлением раствора после очистки подают на электролитическое выделение меди.
9. Способ по п.1, отличающийся тем, что выщелачивание никелево-медного штейна на первой стадии выщелачивания при атмосферном давлении осуществляют выщелачивающим раствором, состоящим из раствора сульфата меди, содержащего сульфат никеля, полученного со второй стадии выщелачивания при атмосферном давлении в окислительных условиях при температуре 80 - 100oС, дополнительно содержащего анолит от электролитического выделения никеля, предварительно подвергнутый нейтрализации для удаления свободной серной кислоты, с получением сульфата никеля и соединений меди, растворимых в кислоте, затем полученные раствор и остаток разделяют и раствор сульфата никеля после очистки подают на электролитическое выделение никеля, а остаток, полученный с первой стадии выщелачивания, выщелачивают на второй стадии в анолите, рециркулированном со стадии электролитического выделения никеля, в окислительных условиях при атмосферном давлении и при температуре 80 - 100oС для выщелачивания первичных сульфидов никеля и меди, содержащихся в остатке, с получением сульфатов никеля и меди и вторичных сульфидов никеля и меди, и образованный при выщелачивании раствор, содержащий в основном сульфаты, подают на первую стадию выщелачивания, остаток со второй стадии выщелачивания выщелачивают под давлением в практически нейтральном растворе сульфата меди при температуре не ниже 110oС в неокислительных или слабоокислительных условиях для выщелачивания никеля, содержащегося в остатке, и осаждения из образовавшегося раствора, который рециркулируют на вторую стадию выщелачивания, железа и мышьяка, остаток, оставшийся от первой стадии выщелачивания под давлением, выщелачивают под давлением в анолите от электролитического выделения меди в окислительных условиях при температуре 80 - 150oС, предпочтительно 110 - 130oС для выщелачивания меди и содержащихся в остатке малых остаточных количеств никеля и кобальта, оставшийся после выщелачивания остаток, содержащий драгоценные металлы, подают на рафинирование для выделения драгоценных металлов, а раствор после очистки от селена и родия направляют на электролитическое выделение меди.
RU95119423A 1994-11-15 1995-11-14 Способ выщелачивания никелево-медного штейна RU2142518C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI945379 1994-11-15
FI945379A FI97154C (fi) 1994-11-15 1994-11-15 Menetelmä nikkelikuparikiven liuottamiseksi

Publications (2)

Publication Number Publication Date
RU95119423A RU95119423A (ru) 1997-11-20
RU2142518C1 true RU2142518C1 (ru) 1999-12-10

Family

ID=8541810

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95119423A RU2142518C1 (ru) 1994-11-15 1995-11-14 Способ выщелачивания никелево-медного штейна

Country Status (8)

Country Link
US (1) US5628817A (ru)
CN (1) CN1045624C (ru)
AU (1) AU703707B2 (ru)
BR (1) BR9505194A (ru)
CA (1) CA2162626C (ru)
FI (1) FI97154C (ru)
RU (1) RU2142518C1 (ru)
ZA (1) ZA959715B (ru)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058056C (zh) * 1997-07-28 2000-11-01 中国科学院化工冶金研究所 氯络氧化法选择性浸取镍钴铜硫化矿的工艺
US5993514A (en) * 1997-10-24 1999-11-30 Dynatec Corporation Process for upgrading copper sulphide residues containing nickel and iron
FI106636B (fi) * 1998-08-17 2001-03-15 Outokumpu Oy Menetelmä rikin poistamiseksi nikkelikiven liuotusprosessista
US7224373B1 (en) 2000-04-07 2007-05-29 Danger, Inc. Adjustable data processing display
US20050126923A1 (en) * 2001-07-25 2005-06-16 Phelps Dodge Corporation Process for recovery of copper from copper-bearing material using medium temperature pressure leaching, direct electrowinning and solvent/solution extraction
WO2003021408A2 (en) * 2001-08-29 2003-03-13 Danger, Inc. Sliding display apparatus
US7305631B1 (en) 2002-09-30 2007-12-04 Danger, Inc. Integrated motion sensor for a data processing device
US7799296B2 (en) * 2003-12-04 2010-09-21 Ovonic Battery Company, Inc. Method of producing a nickel salt solution
US7364717B2 (en) * 2003-12-04 2008-04-29 Ovonic Battery Company, Inc. Process for converting nickel to nickel sulfate
BRPI0419191B1 (pt) * 2004-10-29 2013-05-14 mÉtodo de recuperaÇço de cobre a partir de um material metalÍfero.
US7736487B2 (en) 2004-10-29 2010-06-15 Freeport-Mcmoran Corporation Process for recovery of copper from copper-bearing material using pressure leaching, direct electrowinning and solution extraction
US8692816B2 (en) * 2005-04-22 2014-04-08 Microsoft Corporation State-based auxiliary display operation
FI117941B (fi) * 2005-10-13 2007-04-30 Outokumpu Technology Oyj Menetelmä metallisulfidimineraalien liuottamiseksi
US8057850B2 (en) * 2006-11-09 2011-11-15 Alliance For Sustainable Energy, Llc Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors
EP2944383A3 (en) * 2006-11-09 2016-02-10 Alliance for Sustainable Energy, LLC Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films
WO2009155634A1 (en) * 2008-06-26 2009-12-30 Gladstone Pacific Nickel Ltd Counter current atmospheric leach process
FI122188B (fi) * 2010-03-18 2011-09-30 Outotec Oyj Hydrometallurginen menetelmä metallisen nikkelin valmistamiseksi
WO2011146115A1 (en) 2010-05-21 2011-11-24 Heliovolt Corporation Liquid precursor for deposition of copper selenide and method of preparing the same
JP5445777B2 (ja) * 2010-07-28 2014-03-19 住友金属鉱山株式会社 低品位ニッケル酸化鉱石からのフェロニッケル製錬原料の製造方法
US9142408B2 (en) 2010-08-16 2015-09-22 Alliance For Sustainable Energy, Llc Liquid precursor for deposition of indium selenide and method of preparing the same
FI20110278A0 (fi) 2011-08-29 2011-08-29 Outotec Oyj Menetelmä metallien talteenottamiseksi sulfidirikasteesta
FI20110279A0 (fi) 2011-08-29 2011-08-29 Outotec Oyj Menetelmä metallien talteenottamiseksi niitä sisältävästä materiaalista
US9105797B2 (en) 2012-05-31 2015-08-11 Alliance For Sustainable Energy, Llc Liquid precursor inks for deposition of In—Se, Ga—Se and In—Ga—Se
CN103725892B (zh) * 2013-12-13 2015-08-05 金川集团股份有限公司 一种回收稀贵熔炼炉渣中有价金属的方法
CN109371245B (zh) * 2018-11-13 2020-04-28 成都理工大学 镍精炼系统铜渣资源化处理方法
CN110241310B (zh) * 2019-06-18 2021-10-01 深圳市坤鹏冶金工程技术有限公司 一种高铁高铜含镍物料选择性氧压浸出富集贵金属的方法
RU2706400C9 (ru) * 2019-07-11 2020-01-17 Публичное акционерное общество "Горно-металлургическая компания "Норильский никель" Способ переработки медно-никелевых сульфидных материалов
CN111187922B (zh) * 2020-02-18 2022-05-06 云南锡业研究院有限公司 一种常压下从高镍铜锍中选择性浸出镍的方法
CN112280978A (zh) * 2020-11-19 2021-01-29 金川集团股份有限公司 一种高硫低铜镍物料加压浸出的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218161A (en) * 1961-02-27 1965-11-16 Sherritt Gordon Mines Ltd Process for the precipitation of metal values from solutions
US4093526A (en) * 1977-09-08 1978-06-06 Amax Inc. Hydrometallurgical leaching and refining of nickel-copper concentrates, and electrowinning of copper
CA1173655A (en) * 1981-10-30 1984-09-04 Derek G.E. Kerfoot Acid leach process for treating magnetic and non- magnetic nickel-copper mattes
CA1234289A (en) * 1984-10-24 1988-03-22 Derik G.E. Kerfoot Recovery of platinum group metals from nickel-copper- iron matte
US5344479A (en) * 1992-03-13 1994-09-06 Sherritt Gordon Limited Upgrading copper sulphide residues containing nickel and arsenic

Also Published As

Publication number Publication date
FI945379A0 (fi) 1994-11-15
FI97154B (fi) 1996-07-15
AU703707B2 (en) 1999-04-01
US5628817A (en) 1997-05-13
FI97154C (fi) 1996-10-25
AU3668995A (en) 1996-05-23
CN1131199A (zh) 1996-09-18
CA2162626A1 (en) 1996-05-16
BR9505194A (pt) 1997-09-16
CA2162626C (en) 2002-07-09
ZA959715B (en) 1996-05-30
CN1045624C (zh) 1999-10-13
FI945379A (fi) 1996-05-16

Similar Documents

Publication Publication Date Title
RU2142518C1 (ru) Способ выщелачивания никелево-медного штейна
EP0924307B1 (en) Solvent extraction of cobalt and nickel values from a magnesium containing solution
CA1155084A (en) Process for the recovery of metal values from anode slimes
US6383460B2 (en) Process for the recovery of nickel and/or cobalt from a concentrate
US6054105A (en) Process for the solvent extraction of nickel and cobalt values in the presence of magnesium ions from a solution
US6663689B2 (en) Process for direct electrowinning of copper
RU95119423A (ru) Способ выщелачивания никелево-медного штейна
FI70252B (fi) Foerfarande foer utvinning av koppar nickel och kobolt ur skaersten
FI125575B (en) Recycling of solids in oxidative pressure extraction of metals using halide ions
EA013604B1 (ru) Способ гидрометаллургической обработки сульфидного концентрата, содержащего несколько представляющих ценность металлов
WO2007039665A1 (en) Method for processing nickel bearing raw material in chloride-based leaching
EA023157B1 (ru) Способ выщелачивания халькопиритового концентрата
ZA200501592B (en) Method for the recovery of metals using chloride leaching and extraction
AU728941B2 (en) Process for the recovery of nickel and/or cobalt from a concentrate
AU3878201A (en) Process for the recovery of nickel, and/or cobalt from a concentrate
MXPA97009729A (en) Hydrometalurgical extraction of nickel and cobalt assisted by chloride, from sulf minerals