RU2123012C1 - Способ получения избирательно гидрированных сопряженных диолефиновых полимеров - Google Patents

Способ получения избирательно гидрированных сопряженных диолефиновых полимеров Download PDF

Info

Publication number
RU2123012C1
RU2123012C1 RU92016286A RU92016286A RU2123012C1 RU 2123012 C1 RU2123012 C1 RU 2123012C1 RU 92016286 A RU92016286 A RU 92016286A RU 92016286 A RU92016286 A RU 92016286A RU 2123012 C1 RU2123012 C1 RU 2123012C1
Authority
RU
Russia
Prior art keywords
titanium
bis
cyclopentadienyl
polymer
alkali metal
Prior art date
Application number
RU92016286A
Other languages
English (en)
Other versions
RU92016286A (ru
Inventor
Рей Чемберлейн Линда
Жолин Гиблер Карма
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Publication of RU92016286A publication Critical patent/RU92016286A/ru
Application granted granted Critical
Publication of RU2123012C1 publication Critical patent/RU2123012C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C2/00Treatment of rubber solutions
    • C08C2/02Purification
    • C08C2/04Removal of catalyst residues

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Способ гидрирования полимеров сопряженных диолефинов включает полимеризацию или сополимеризацию по меньшей мере одного сопряженного диолефина с щелочнометаллоорганическим инициатором полимеризации в подходящем растворителе с образованием растущего полимера. Растущий полимер обрывают с помощью гидрида щелочного металла. После чего проводят селективное гидрирование ненасыщенных двойных связей в сопряженных диолефиновых единицах цепи полимера водородом в присутствии по меньшей мере одного бис(циклопентадиенил)титанового соединения при отсутствии литий-углеводорода и алкоксилитиевых соединений. Обработка полимера реагентом, который реагирует с щелочным металлом, присутствующим в полимере до гидрирования, усиливает активность катализатора. 9 з.п. ф-лы, 1 табл.

Description

Настоящее изобретение относится к усовершенствованному способу получения селективно гидрированных полимеров сопряженных диенов, а конкретнее, к такому способу с использованием титанового катализатора гидрирования.
Патент США N 5291990 описывают способ гидрирования полимеров сопряженных диолефинов, который включает полимеризацию или сополимеризацию таких мономеров с щелочнометаллорганическим инициатором полимеризации в подходящем растворителе, с образованием таким образом растущего полимера. Растущий полимер обрывается добавлением водорода. Наконец, селективное гидрирование ненасыщенных двойных связей в сопряженных диолефиновых единицах замкнутой цепи полимера проводится в присутствии по меньшей мере одного бис(циклопентадиенил) титанового соединения, предпочтительно имеющего формулу
Figure 00000001

в которой R1 и R2 - одинаковые или разные и выбираются из групп, состоящих из галогенов, (C1-C8)-алкилов и алкокси, (C6-C8)-арилокси, аралкилов, циклоалкилов, силилов и карбонилов. Этап гидрирования проводится при отсутствии углеводородно-литиевых и алкокси-литиевых соединений.
Вышеуказанный способ, являясь весьма выгодным при гидрировании большинства полимеров, имеет все же несколько недостатков. Было обнаружено, что для полимеров с низким молекулярным весом, т. е. с молекулярным весом (истинным пиковым молекулярным весом, определенным гельпроницаемой хроматографией) ниже 100,000 и/или когда концентрация полимера в растворе велика, вышеуказанный способ может дать избыток гидрида лития, который мешает эффективному гидрированию, поскольку избыток щелочного металла, а в особенности гидрида лития (LiH), может способствовать максимальной дестабилизации катализатора гидрирования. Эта проблема наиболее очевидна, когда используется небольшие количества бис(циклопентадиенил)титановых соединений. Эта проблема может также возникнуть при гидрировании полимеров, имеющих более высокие молекулярные веса, когда такие полимеры находятся в растворах в концентрациях, больших, чем нормальные концентрации (т.е. больших, чем 15-35%), см. США 5039755, A, 1991, см. DЕ 3401983, В1, 1984.
Настоящее изобретение является усовершенствованным по отношению к способу, описанному выше. Раствор полимера, содержащий гидрид щелочного металла, обычно LiH, реагирует с реагентом. Обычно для увеличения активности катализатора гидрирования требуется лишь небольшое количество реагента. Было выявлено, что очень важно, чтобы только избыток гидрида реагировал с реагентом. Оказалось, что если реагирует слишком много гидрида, то система катализатора не будет эффективной при гидрировании полимера. Было обнаружено, что молярное соотношение гидрид: Ti не снижалось менее 6:1.
Как известно, полимеры с этиленовой ненасыщенностью или с ароматической и с этиленовой ненасыщенностью можно получить сополимеризацией одного или нескольких полиолефинов, особенно диолефинов, между собой или с одним или несколькими алкенильными ароматическими углеводородными мономерами. Сополимеры могут, конечно, быть произвольной формы, клиновидными, блоковыми или их комбинациями, так же как и линейными, звездообразными или радиальными.
Как известно, полимеры с этиленовой ненасыщенностью или с ароматической и с этиленовой ненасыщенностью можно получить с использованием анионных инициаторов или катализаторов полимеризации. Такие полимеры могут быть получены с применением объемной, растворной или эмульсионной технологии. В любом случае полимер, содержащий по меньшей мере этиленовую ненасыщенность, будет обычно регенерироваться в виде твердого вещества, такого как крошка, порошок, гранулы и т.п. Полимеры, содержащие этиленовую ненасыщенность, и полимеры, содержащие и ароматическую и этиленовую ненасыщенность, безусловно, коммерчески доступны от нескольких поставщиков.
В общем, когда применяется анионная технология в растворе, полимеры сопряженных диолефинов и сополимеры сопряженных диолефинов и алкенильных ароматических углеводородов получаются контактированием мономера или мономеров, подлежащих полимеризации одновременно или последовательно с инициатором анионной полимеризации, таким как металлы группы 1А, их алкилы, амиды, силаноляты, нафталиды, бифенилы и производные антраценила. Предпочтительно использовать щелочнометаллорганическое соединение (такого металла, как литий, натрий или калий) в подходящем растворителе при температуре в пределах от -150oC до 300oC, предпочтительно при температуре в пределах от 0oC до 100oC. Особенно эффективными инициаторами анионной полимеризации являются литий-органические соединения с общей формулой:
RLin
в которой
R - алифатический, циклоалифатический, ароматический или алкил-замещенный ароматический углеводородный радикал, имеющий от 1 до 20 атомов углерода;
n - целое число от 1 до 4.
Сопряженные олефины, которые можно полимеризовать по механизму анионной полимеризации, включают такие сопряженные диолефины, которые содержат от 4 до 12 атомов углерода, например, 1,3-бутадиен, изопрен, пиперилен, метилпентадиен, фенилбутадиен, 3,4-диметил-1,3-гексадиен, 4,5-диэтил-1,3-октадиен и т. п. Предпочтительными для использования в таких полимерах являются сопряженные диолефины, содержащие от 4 до 8 атомов углерода. Алкенильные ароматические углеводороды, которые можно сополимеризовать, включают винилариловые соединения, такие как стирол, различные алкилзамещенные стиролы, алкокси-замещенные стиролы, 2-винилпиридин, 4-винилпиридин, винилнафталин, алкилзамещенные винилнафталины и т.п.
Полимеры, которые можно использовать в соответствии со способом настоящего изобретения, включают все полимеры, описанные в вышеупомянутом патенте США N 5291990. При получении всех их реакция полимеризации обрывается посредством применения газообразного водорода вместо обыкновенного используемого спиртового обрывающего цепь агента. Растущий полимер, а точнее, растущий конец полимерной цепи обрывается добавлением к нему водорода. Теоретическая реакция обрыва цепи показана на примере стирол-бутадиен-стирол (Ст-Б-Ст) блок-сополимера:
Ст-Б-Ст-Li++ H2 -> Ст-Б-СтH + LiH
Как показано на схеме, теоретически гидрид лития образуется во время реакции обрыва цепи. Упомянутый LiH, как выяснилось, не является инициатором реактивной полимеризации. Он инертен по отношению к полимеризации, и не мешает контролированию молекулярного веса следующей полимеризационной загрузки, как спирт.
В конце реакции полимеризации обычно желательно контактирование и тщательное перемешивание газа с полимеризационным раствором. Такой контакт и тщательное перемешивание может дать добавление газообразного водорода через распределители в смешивающем реакторе, содержащем раствор полимера. Время контакта должно быть не меньше 10 секунд и предпочтительно 20 минут, чтобы время контакта было достаточно для того, чтобы произошла реакция. Время зависит от эффективности оборудования, растворимости газа, вязкости раствора и температуры. В другом случае можно использовать непрерывную систему, в которой водород закачивается в раствор до попадания в реактор непрерывного действия со статическим перемешиванием. Водород можно также растворить в подходящем растворе и затем добавить к раствору полимера, цепь которого нужно оборвать. Еще один способ - поглотить водород абсорбционным слоем и затем пропустить полимерный раствор через этот абсорбционный слой. Контактирование с водородом можно также проводить путем добавления материала, который выделяет водород при разложении, например диимида.
Как упоминалось выше, этап гидрирования настоящего способа проводится в присутствии бис(циклопентадиенил)титанового соединения, имеющего формулу, изображенную выше. Этап гидрирования проводится в отсутствие литий-углеводорода и алкокси-литиевых соединений. Отдельно бис(циклопентадиенил)-соединения, которые можно использовать, описаны в патенте США N 5291990.
Этот процесс будет селективно гидрировать сопряженные диолефиновые полимерные блоки без гидрирования алкенильных ароматических углеводородных полимерных блоков. Легко достичь процентов гидрирования, больших, чем 50%, но было выявлено, что для того, чтобы достичь процент гидрирования, больший, чем 95%, как часто требуется, отношение гидрида щелочного металла (например, гидрида лития) к титану для многих полимеров должно быть по меньшей мере 6:1 и может увеличиваться до 30:1. Необходим эффективный гидрид щелочного металла, чтобы обеспечить быстрое и эффективное взаимодействие между двумя металлами. Однако, поскольку количество гидрида щелочного металла, а конкретнее - гидрида лития, фиксируется количеством инициатора, необходимого для полимеризации, часто во время этапа обрыва цепи выделяется слишком много гидрида металла, и выгодно добавить другой реагент, который реагирует с гидридом щелочного металла, чтобы увеличить активность катализатора.
Соответственно, настоящее изобретение относится к способу получения селективно гидрированных полимеров сопряженных диолефинов, который включает:
(a) полимеризацию или сополимеризацию по меньшей мере одного сопряженного диолефина с щелочнометалло-органическим инициатором полимеризации в подходящем растворителе, с образованием таким образом растущего полимера;
(b) завершение полимеризации посредством добавления H2 перед гидрированием, образование гидрида щелочного металла; и
(c) селективное гидрирование ненасыщенных двойных связей в сопряженных диолефиновых единицах упомянутого полимера с оборванной цепью путем контактирования полимера, в отсутствие литий-углеводорода и алкоксилитиевых соединений, с водородом в присутствии по меньшей мере одного бис(циклопентадиенил)титанового соединения формулы
Figure 00000002

в которой
R1 и R2 - одинаковые или разные и выбираются из группы, состоящей из галогеновых групп, C1-C8 алкила и алкокси групп, аралкила, циклоалкильных групп, силильных групп и карбонильных групп; способ отличается обработкой раствора полимера с оборванной цепью реагентом для снижения количества ранее образовавшегося гидрида щелочного металла, взятым в количестве, которое уменьшило бы отношение гидрида щелочного металла к титану до соотношения не менее, чем 6:1. Предпочтительным инициатором полимеризации является литий-органическое соединение, а более предпочтительным - фтор-бутиллитий.
Обычно полимеры с молекулярными весами, меньшими, чем 100,000 (и, возможно, выше, если содержание твердого вещества в полимерном растворе высоко) вполне могут содержать избыток гидрида щелочного металла (лития) после завершения полимеризации. Поскольку обнаружено, что соотношение гидрид щелочного металла (лития): титан является важным в этом процессе, количество добавляемого титана определяет количество избыточного гидрида щелочного металла (лития), так же, как и молекулярный вес полимера и концентрацию полимера в растворе. Соотношение не может быть меньше, чем 6:1.
В результате последований и экспериментов было обнаружено, что полимер с оборванной цепью, предпочтительно в растворе, для достижения оптимальной степени гидрирования можно обработать одним из указанных ниже реагентов. Такие реагенты могут быть выбраны из группы, состоящей из соединений формулы RxSi X4-x, где X - галоген, а x = 0 - 3, и включающей тетрахлорид кремния, дифтордифенилсилан, диметил-дихлорсилан, и гексахлорид кремния; спирты, включая метанол, этанол, изопропанол и 2-этил-1-гексанол; карбоновые кислоты, включая 2-этил-1-гексановую кислоту; фенолы, включая 4-метилфенол; воду; и галогеносодержащие углеводороды, включая дибромэтан, или их комбинации. Обычно требуется лишь небольшое количество реагента для реакции с гидридом лития в полимерном растворе для эффективного повышения активности катализатора и увеличения степени конверсий гидрирования. Эти реакции проходят быстро, что помогает исключать задержки в рабочем времени процесса.
Полимерный раствор нужно обрабатывать по меньшей мере частью реагента, но не большим количество, чем количество, которое позволило бы достичь соотношения гидрид щелочного металла (лития):титан - 6:1. Если же реагент используется в большем количестве, и соотношение гидрид щелочного металла (лития): титан опускается ниже значения 6:1, то превращения при гидрировании не происходит. Обычно это означает, что молярное отношение реагента к титану в полимерном растворе не должно быть больше, чем 2:1, и вероятно, может быть много меньше, в зависимости от эквивалентов реактивных мест, доступных молекуле реагента. Например, дибромэтан имеет два реактивных места, в то время как тетрахлорид кремния имеет четыре реактивных места, т.е. атомы галогена могут быть удалены и замещены водородом. В зависимости от используемого реагента, может быть так, что не все из реактивных мест пространственно доступны или реактивны, как в случае тетрахлорида кремния. С увеличением молекулярного веса полимера будет требоваться меньше реагента для достижения преимущества настоящего изобретения, а с понижением молекулярного веса будет требоваться больше реагента. Причиной этому служит то, что на вес полимера требуется меньше литиевого инициатора с увеличением молекулярного веса полимера. Это приводит к тому, что на вес полимера идет меньше гидрида лития с последующим завершением полимеризации с помощь водорода.
Например, в (стирол-бутадиен-стирол)-блок-сополимере с молекулярным весом 50,000 (20% по весу полимера в растворе), полученном с использованием водородного обрыва цепи полимера, количество гидрида лития было определено как 33 частей на миллион на основании раствора. В качестве реагента был выбран тетрахлорид кремния и использовался он в количестве 100 частей на миллион. Молярное соотношение LiH:Ti было 11:1, а SiCl4:Ti=2,0:1. Гидрирование с использованием тетрахлорида кремния увеличивало до 96% конверсию олефиновых двойных связей по сравнению с 92% конверсии без использования тетрахлорида кремния.
В общем, гидрирование проводится в подходящем растворителе при температуре в пределах от 0oC до 120oC, предпочтительно от 60oC до 90oC, и при водородном парциальном давлении в пределах от 1 бар (1 фунт/дюйм) до 84 бар (1200 фунтов/кв.дюйм), предпочтительно - от 8 бар (100 фунтов/кв.дюйм) до 15 бар (200 фунтов/кв.дюйм). Концентрации катализатора - в пределах от 0,01 мМ (миллимоль) на 100 грамм полимера до 20 мМ на 100 грамм полимера, предпочтительно - от 0,04 до 1 мМ катализатора на 100 грамм полимера, а контактирование в условиях гидрирования обычно продолжается в течение периода времени в пределах от 15 до 1140 минут, а предпочтительно - от 30 до 360 минут. Подходящими растворителями для гидрирования являются, среди других, н-гептан, н-пентан, тетрагидрофуран, циклогексан, циклопентан, толуол, гексан и бензол. Из-за маленького количества катализатора гидрирования, присутствующего в полимерном растворе после гидрирования, необязательно отделять катализатор гидрирования и остаток катализатора от полимера. Однако, если такое отделение желательно, его можно провести с использованием способов, хорошо известных в данной области. Гидрирование можно также проводить другими способами, например, с помощью непрерывных процессов, периодических процессов и полунепрерывных процессов.
Этап гидрирования настоящего способа проводится в присутствии бис(циклопентадиенил)титанового соединения, выбранного из группы: бис(циклопентадиенил)титан-дихлорид, бис(циклопентадиенил)титан-дибромид, бис(циклопентадиенил)титан-дийодид, бис (циклопентадиенил)титан-дифторид, бис(циклопентадиенил)титан-дикарбонил, бис(циклопентадиенил)титан-диметил, бис(циклопентадиенил)титан-диэтил, бис(циклопентадиентил)титан-дибутил, бис(циклопентадиенил)титан-бис(триметилсилилметил), бис(циклопентадиентил)титан-дибензил, бис(циклопентадиенил)титан-дигексил, бис(циклопентадиенил)титан-диметоксид, бис(циклопентадиенил)титан-диэтоксид, бис(циклопентадиенил)титан-дибутоксид, бис(циклопентадиенил)-титан-дипентоксид, бис(циклопентадиенил)-титан-динеопентоксид, бис(циклопентадиенил)титан-дифеноксид и их смеси, а более предпочтительно -бис(циклопентадиенил)титан-дихлорида.
Примеры
В 661-литровом /15 галлонов/ реакторе с давлением анионной полимеризацией с использованием фтор-бутиллития в качестве инициатора была получена 272 кг /600 фунтов/ порция полистиролполибутадиен-полистирол /-B- -+/ блок-сополимера с молекулярным весом 50,00 /общий пик МВ определен ХГЦ/. Полимеризация шла в смеси циклогексана и диэтилового эфира. Полученный полимерный раствор содержал 20% полимера по весу. В конце реакции полимеризации реакционная температура была приблизительно 60oC. Реактор продувался водородом приблизительно 20 минут для завершения реакции полимеризации.
К полимерным растворам до гидрирования и добавления титанового катализатора прибавлялись разные количества реагентов, как указано в таблице 1. Экспериментальные испытания гидрирования состояли в переносе под давлением в реактор объемом 4 литра 1560 г 20% по весу раствора полимера. Этот раствор содержал 6,5 мМ LiH или 33 част/мил. LiH на основании раствора. Реагенты для повышения активности добавлялись к полимерному раствору в количествах, указанных в таблице. Температура реактора поддерживалась на уровне 75oC. При этой температуре в реактор загружалось в виде толуолового или циклогенсанового шлама 0,125 г или 0,5 мМ катализатора, бис/циклопендадиенил/титан дихлорида /Cp2TiCl2/. Если бы не добавлялось никакого реагента, молярное соотношение LiH:Ti было бы 13:1. После добавления катализатора реактор доводился до избыточного давления 140 фунтов/кв.дюйм с помощью газообразного водорода. Реакция шла 3 часа, в течение которых из реактора брались образцы и анализировались протонным ЯМР для определения конечного процента конверсии олефина. На конечных образцах была проведена хроматография гелевой проницаемости /ХГЦ/ для определения изменений в строении молекул.
Результаты, показанные в таблице, свидетельствуют, что обработка полимерного раствора реагентами настоящего изобретения увеличивает конверсию олефиновых двойных связей по сравнению с контрольным экспериментом, в котором не было добавлено никакого реагента. Эксперимент, выполненный с 244 частей на миллион дибромэтана, дал плохие результаты потому, что количество гидрида лития было снижено слишком сильно, практически снижение уровня до цифр вне рабочего диапазона для эффективного гидрирования с использованием этой каталитической системы, или молярное соотношение реагент:Ti было слишком большим. Вода снизила соотношение LiH:Ti ниже 6:1 и отрицательно повлияла на % конверсии. По-видимому, причиной этому послужило слишком большое количество используемой воды. Меньшие количества должны привести к улучшенной конверсии.

Claims (10)

1. Способ получения избирательно гидрированных сопряженных диолефиновых полимеров, по которому (а) проводят полимеризацию или сополимеризацию, по меньшей мере, одного сопряженного диолефина с инициатором полимеризации на основе органического соединения щелочного металла в подходящем растворителе, создавая таким образом "живущий" полимер, (б) обрывают полимеризацию путем добавления H2 перед гидрированием, создавая гидрид щелочного металла, и (в) избирательно гидрируют ненасыщенные двойные связи в сопряженных диолефиновых звеньях указанногоо полимера с оборванной цепью путем контактирования полимера в отстутсвии углеводородного соединения лития и алкоксильных соединений лития с водородом в присутствии по меньшей мере одного бис(циклопентадиенильного) соединения титана формулы
Figure 00000003

где R1 и R2 одинаковые или разные, и их выбирают из группы, состоящей из галогенидной группы, C1 - C8-алкильной и алкоксильной групп, C6 - C8-арилоксильных групп, аралкильной, циклоалкильных групп, силильных групп и карбонильных групп, отличающийся тем, что проводят обработку раствора полимера с оборванной водородом цепью реагентом, выбранным из группы, состоящей из
RaSiX4-a,
где R - фенил или метил;
X - галоген;
а равно 0 - 3,
гексахлорида кремния, фенолов, карбоновых кислот и галогеносодержащих углеводородов для снижения первоначально образованного количества гидрида щелочного металла и титана в реакционной среде до соотношения гидрид лития: титан, равного от 6 : 1 до 30 : 1 соответственно.
2. Способ по п.1, отличающийся тем, что реагент добавляют так, что молярное соотношение между реагентом и титаном не превышает 2 : 1.
3. Способ по п.1, отличающийся тем, что полимер имеет молекулярный вес менее 100,000.
4. Способ по п.1, отличающийся тем, что реагент выбирают из группы, состоящей из тетрахлорида кремния, дифтордифенилсилана, диметилдихлорсилана, 2-этил-1-гексановой кислоты, 4-метилфенола и дибромтана.
5. Способ по п.1, отличающийся тем, что гидрирование осуществляют при температуре 0 до 120oC и давлении 1 - 84 бар и концентрация катализатора составляет 0,01 - 20 мМ титана на 100 г полимера, и контактирование происходит в интервале времени 15 - 1440 мин.
6. Способ по п.1, отличающийся тем, что инициатор на основе щелочного металла является литийорганическим соединением.
7. Способ по п.1, отличающийся тем, что титанорганическое соединение выбирают из группы, состоящей из бис(циклопентадиенил)-титан-дихлорида, бис(циклопентадиенил)-титан-дибромида, бис(циклопентадиенил)титан-дийодида, бис(циклопентадиенил)титан-дифторида, бис(циклопентадиенил)титан-дикарбонила, бис(циклопентадиенил)титан-диметила, бис(циклопентадиенил)титан-диэтила, бис(циклопентадиенил)титан-дибутила, бис(циклопентадиенил)титан-бис(триметилсилилметила), бис(циклопентадиенил)титан-дибензила, бис(циклопентадиенил)титан-дигексила, бис(циклопентадиенил)титан-диметоксида, бис(циклопентадиенил)титан-диэтоксида. бис(циклопентадиенил)титан-дибутоксида, бис(циклопентадиенил)-титан-дипентоксида, бис(циклопентадиенил)-титан-динеопентоксида, бис(циклопентадиенил)-титан-дифеноксида и их смесей.
8. Способ по п. 7, отличающийся тем, что соединением титана является бис(циклопентадиенил)-титан-дихлорид.
9. Способ по п.1 - 8, отличающийся тем, что сополимером является блоксополимер, имеющий по меньшей мере один сопряженный диеновый полимерный блок и по меньшей мере один блок стирола или производного стирола.
10. Способ по п.1 - 9, отличающийся тем, что по меньшей мере 95% ненасыщенных связей в сопряженных диеновых единицах гидрируются.
RU92016286A 1991-12-20 1992-12-17 Способ получения избирательно гидрированных сопряженных диолефиновых полимеров RU2123012C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US071811219 1991-12-20
US07/811219 1991-12-20
US07/811,219 US5173537A (en) 1991-12-20 1991-12-20 Selective hydrogenation of conjugated diolefin poylmers

Publications (2)

Publication Number Publication Date
RU92016286A RU92016286A (ru) 1996-06-20
RU2123012C1 true RU2123012C1 (ru) 1998-12-10

Family

ID=25205924

Family Applications (1)

Application Number Title Priority Date Filing Date
RU92016286A RU2123012C1 (ru) 1991-12-20 1992-12-17 Способ получения избирательно гидрированных сопряженных диолефиновых полимеров

Country Status (11)

Country Link
US (1) US5173537A (ru)
EP (1) EP0549063B1 (ru)
JP (1) JP3204763B2 (ru)
KR (1) KR100270296B1 (ru)
CN (1) CN1045608C (ru)
BR (1) BR9205044A (ru)
DE (1) DE69206590T2 (ru)
ES (1) ES2080435T3 (ru)
MX (1) MX9207381A (ru)
RU (1) RU2123012C1 (ru)
TW (1) TW216426B (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244980A (en) * 1992-12-07 1993-09-14 Shell Oil Company Selective hydrogenation of conjugated diolefin polymers with Tebbe's reagent
CN1130383C (zh) * 1996-03-15 2003-12-10 国际壳牌研究有限公司 共轭二烯聚合物的氢化方法及其适用的催化剂组合物
US5814709A (en) * 1996-04-12 1998-09-29 Shell Oil Company Process for hydrogenation on conjugataed diene polymers and catalyst composition suitable for use therein
US5705571A (en) * 1996-05-17 1998-01-06 Taiwan Synthetic Rubber Corporation Process for selective hydrogenation of conjugated diene polymer
JPH1053614A (ja) * 1996-05-29 1998-02-24 Shell Internatl Res Maatschappij Bv 共役ジエンポリマーの水素化のためのプロセスとこのプロセスで使用するのに適した触媒組成物
JPH10101727A (ja) * 1996-09-24 1998-04-21 Shell Internatl Res Maatschappij Bv オレフィン又はポリマーを水素化するための触媒及び方法
TW583027B (en) * 1998-10-30 2004-04-11 Shell Int Research A method for preparing a hydrogenation catalyst system
US6313230B1 (en) * 1999-09-21 2001-11-06 Industrial Technology Research Institute Catalyst composition for hydrogenation of conjugated diene based synthetic rubbers
KR100348761B1 (ko) * 1999-11-26 2002-08-13 금호석유화학 주식회사 공액디엔을 포함하는 중합체의 선택적 수소화 방법
KR100332465B1 (ko) * 2000-02-09 2002-04-13 박찬구 불포화 이중결합을 가진 중합체의 수소화방법
PT2272588E (pt) * 2009-06-22 2013-08-01 Dynasol Elastomeros Sa Catalisador para a hidrogenação de compostos insaturados
US9738742B2 (en) * 2013-01-16 2017-08-22 Asahi Kasei Chemicals Corporation Method for producing polymer

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6814139A (ru) * 1967-10-05 1969-04-09
BE756177A (fr) * 1969-09-17 1971-03-15 Shell Int Research Procede de preparation de copolymeres a blocs hydrogenes
US4076914A (en) * 1976-06-08 1978-02-28 Phillips Petroleum Company Treatment of coupled polymers prior to hydrogenation
US4076915A (en) * 1976-06-08 1978-02-28 Phillips Petroleum Company Treatment of coupled polymers prior to hydrogenation
GB2134909B (en) * 1983-01-20 1986-08-20 Asahi Chemical Ind Catalytic hydrogenation of conjugated diene polymer
GB2144430B (en) * 1983-08-04 1986-11-19 Shell Int Research Hydrogenated modified star-shaped polymers
JPS60220147A (ja) * 1984-04-18 1985-11-02 Asahi Chem Ind Co Ltd オレフイン水添触媒および該触媒を用いた重合体の水添方法
JPH066639B2 (ja) * 1984-05-30 1994-01-26 日本合成ゴム株式会社 ゴム組成物
JPS6147706A (ja) * 1984-08-13 1986-03-08 Asahi Chem Ind Co Ltd リビングポリマ−の水添法
US4656230A (en) * 1985-07-12 1987-04-07 Phillips Petroleum Company Hydrogenation process
JPS62209102A (ja) * 1986-03-10 1987-09-14 Asahi Chem Ind Co Ltd ポリマ−の水添法
JPS62209103A (ja) * 1986-03-10 1987-09-14 Asahi Chem Ind Co Ltd ポリマ−の水添方法
JP2577900B2 (ja) * 1987-02-18 1997-02-05 イハラケミカル工業 株式会社 ポリ尿素樹脂の製造方法
ES2059446T3 (es) * 1987-07-16 1994-11-16 Asahi Chemical Ind Composicion de copolimero bloque hidrogenado especifico y procedimiento para su fabricacion.
US5017660A (en) * 1987-08-04 1991-05-21 Asahi Kasei Kogyo Kabushiki Kaisha Selectively, partially hydrogenated polymer and rubber composition and impact resistant styrenic resin containing the same
JP2718059B2 (ja) * 1988-04-28 1998-02-25 日本合成ゴム株式会社 重合体の水素添加方法および触媒
EP0709413B1 (en) * 1989-05-19 1999-07-14 Japan Synthetic Rubber Co., Ltd. (Modified) Hydrogenated diene block copolymer and composition comprising the same
US5039755A (en) * 1990-05-29 1991-08-13 Shell Oil Company Selective hydrogenation of conjugated diolefin polymers

Also Published As

Publication number Publication date
DE69206590T2 (de) 1996-05-15
CN1045608C (zh) 1999-10-13
KR100270296B1 (ko) 2000-10-16
BR9205044A (pt) 1993-06-22
KR930012845A (ko) 1993-07-21
ES2080435T3 (es) 1996-02-01
US5173537A (en) 1992-12-22
JP3204763B2 (ja) 2001-09-04
TW216426B (ru) 1993-11-21
CN1073687A (zh) 1993-06-30
DE69206590D1 (de) 1996-01-18
MX9207381A (es) 1993-07-01
JPH05239126A (ja) 1993-09-17
EP0549063B1 (en) 1995-12-06
EP0549063A2 (en) 1993-06-30
EP0549063A3 (en) 1993-11-03

Similar Documents

Publication Publication Date Title
JP3162103B2 (ja) 共役ジオレフィンポリマーの選択水素化
KR100348761B1 (ko) 공액디엔을 포함하는 중합체의 선택적 수소화 방법
US6020439A (en) Method of hydrogenation of living polymer
US5242986A (en) Selective partial hydrogenation of conjugated diolefin polymers
RU2123012C1 (ru) Способ получения избирательно гидрированных сопряженных диолефиновых полимеров
RU2093524C1 (ru) Способ получения гидрированных блок-полимеров на основе сопряженных диенов
EP1124863B1 (en) Process for hydrogenating a conjugated diene polymer
US5141997A (en) Selective hydrogenation of conjugated diolefin polymers
KR100219260B1 (ko) 리빙 중합체 수첨용 신규 촉매 및 촉매를 이용한 수첨방법
US5132372A (en) Process for selective hydrogenation of conjugated diolefin polymers
US6040390A (en) Process for hydrogenating conjugated diene polymers
KR100515452B1 (ko) 고속분사 노즐 장착 반응기로부터 제조된 리튬하이드라이드를 사용하여 선택적으로 수소화된 공역디엔 중합체를 제조하는 방법
KR100295601B1 (ko) 공액디엔 중합체의 수소화 방법
KR100356533B1 (ko) 공액디엔 중합체의 선택적 수소화 방법
KR100332465B1 (ko) 불포화 이중결합을 가진 중합체의 수소화방법
KR20000021700A (ko) 공역디엔 중합체의 수소화 방법
KR20010078570A (ko) 공액디엔 중합체의 선택적 수소화를 위한 촉매 및 이를이용한 수소화 방법