RU2115472C1 - Катализатор для оксихлорирования этилена в 1,2-дихлорэтан и способ его приготовления - Google Patents

Катализатор для оксихлорирования этилена в 1,2-дихлорэтан и способ его приготовления Download PDF

Info

Publication number
RU2115472C1
RU2115472C1 RU97108303A RU97108303A RU2115472C1 RU 2115472 C1 RU2115472 C1 RU 2115472C1 RU 97108303 A RU97108303 A RU 97108303A RU 97108303 A RU97108303 A RU 97108303A RU 2115472 C1 RU2115472 C1 RU 2115472C1
Authority
RU
Russia
Prior art keywords
catalyst
copper
alumina
carrier
dichloroethane
Prior art date
Application number
RU97108303A
Other languages
English (en)
Other versions
RU97108303A (ru
Inventor
Б.П. Золотовский
А.Я. Бакаев
Е.А. Тарабан
Н.М. Молчанова
А.В. Селезнев
Т.В. Симон
В.И. Харитонов
А.Ф. Перевалов
А.В. Крылова
Original Assignee
Акционерное общество открытого типа "Катализатор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "Катализатор" filed Critical Акционерное общество открытого типа "Катализатор"
Priority to RU97108303A priority Critical patent/RU2115472C1/ru
Application granted granted Critical
Publication of RU2115472C1 publication Critical patent/RU2115472C1/ru
Publication of RU97108303A publication Critical patent/RU97108303A/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к каталитической химии, в частности к катализаторам для синтеза дихлорэтана оксихлорированием этилена. 1,2-дихлорэтан является исходным соединением для производства винилхлорида - важнейшего мономера в производстве поливинилхлорида и виниловых сополимеров. Катализатор состоит из соединения меди на алюмооксидном носителе, содержащем ион металла, носитель представляет собой твердый раствор ионов металлов Me2+ и/или Me3+ в оксиде алюминия с соотношением Al3+ и Me2+ и/или Me3+ в пределах от 200 : 1 до 20 : 1, при следующем содержании компонентов в катализаторе, мас. %: соединение меди (в пересчете на медь) 3,5 - 5,5; твердый раствор ионов металлов Me2+ и/или Me3+ в оксиде алюминия остальное, причем в качестве Me2+ и/или Me3+ используются Ce3+, Ga3+, Mg2+, Mn2+, Cu2+, в качестве соединений меди используют водорастворимые соединения меди. Способ приготовления катализатора включает нанесение активного компонента (соединений меди) на алюмооксидный носитель, представляющий собой твердый раствор ионов Me2+ и/или Me3+ в оксиде алюминия. Нанесение активного компонента (соединений меди) на носитель ведут напылением раствора и термообработкой в условиях, обеспечивающих полную кристаллизацию активного компонента за время менее 30 мин, причем процесс ведут при соотношении компонентов, обеспечивающих следующее содержание в катализаторе, мас.%: соединение меди (в пересчете на медь) 3,5 - 5,5, твердый раствор ионов металлов Me2+ и/или Me3+ в оксиде алюминия остальное. В качестве Me2+ и/или Me3+ используют предпочтительно Ce3+, Ga3+, Mg2+, Mn2+, Cu2+. Изобретение решает задачу увеличения эффективности катализатора за счет повышения активности, позволяющей повышать конверсию исходных компонентов в 1,2-дихлорэтан. При этом упрощается способ приготовления катализатора, уменьшаются энергозатраты и стоки. 2 с. и 3 з.п. ф-лы, 1 табл.

Description

Изобретение относится к каталитической химии, в частности к катализаторам для синтеза дихлорэтана оксихлорированием этилена.
1,2-дихлорэтан является исходным соединением для производства винилхлорида - важнейшего мономера в производстве поливинилхлорида и виниловых сополимеров.
1,2-дихлорэтан в промышленных условиях получают взаимодействием этилена, хлористого водорода и кислорода в псевдоожиженном слое катализатора.
Известные катализаторы оксихлорирования этилена в 1,2-дихлорэтан представляют собой носитель с нанесенным на него активным компонентом, как правило, соединением меди(11).
Известен катализатор, содержащий 2-15 мас.% (в пересчете на медь) хлорида меди, нанесенного на природный или синтетический алюмосиликат. Основным недостатком такого катализатора является низкая степень превращения этилена в дихлорэтан: при температуре проведения процесса 220oС степень превращения составляет 70% [1].
Наиболее близким по составу и достигаемым показателям по каталитическим свойствам является катализатор, представляющий собой хлорид меди, нанесенный на оксидный алюмомагниевый носитель, причем часть оксида магния находится в виде соединения с оксидом алюминия. Состав этого катализатора соответствует следующему содержанию компонентов, мас.%: активный компонент - соединение меди (в пересчете на медь) 1 - 15; носитель - остальное, причем мольное отношение МgО : Al3O2 = (0,2-2,5) : 1 в пересчете на ионное соотношение Аl3+: Mg2+ = (0,2 - 2,5) : 1) [2].
Алюмомагниевый носитель готовят осаждением при смешении растворов алюмината натрия и нитрата магния. Осадок отмывают, готовят суспензию (7% твердой фазы) и сушат распылительной сушкой. Полученный порошок алюмомагниевого носителя прокаливают при 730oС. На носитель из раствора наносят активный компонент, например хлорид меди, и сушат при 130oС.
Основным недостатком синтеза 1,2-дихлорэтана с использованием катализатора является высокая температура проведения реакции оксихлорирования 240-250oС. Полезная конверсия этилена в 1,2-дихлорэтан, проверенная в наших условиях (220oС), составляет 85%. К недостаткам данного способа получения катализатора относятся и значительные энергозатраты на распылительную сушку малоконцентрированной (7%) суспензии, а также большое количество разбавленных стоков и промывных вод.
Основным недостатком известных катализаторов является невысокая каталитическая активность, что не позволяет достигать высокой степени конверсии. При этом непрореагировавший этилен выбрасывается с абгазами и безвозвратно теряется. Таким образом, для процесса оксихлорирования необходим высокоэффективный катализатор, обеспечивающий практически полную конверсию этилена.
Изобретение решает задачу увеличения эффективности катализатора за счет повышения активности, позволяющей повышать конверсию исходных компонентов в 1,2-дихлорэтан.
Изобретение также решает задачу упрощения способа приготовления катализатора, уменьшения энергозатрат и стоков.
Задача решается использованием в процессе оксихлорирования этилена катализатора следующего состава, мас.%: соединение меди (в пересчете на медь) 3,5 - 5,5; твердый раствор ионов Ме2+ и/или Ме3+ в оксиде алюминия - остальное.
В качестве Ме2+ используют кальций, барий, цинк, стронций, медь, магний, марганец; Ме3+ - церий, галлий, причем отношение ионов Аl3+ к Ме2+ и/или Ме3+ в носителе находится в пределах от 200 : 1 до 20 : 1.
В качестве соединений меди используют растворимые в воде соединения меди: соли (хлориды, нитраты и т.д.) или комплексы меди (например, аммиачные).
Задача решается следующим способом приготовления. Катализатор готовят путем термообработки технического гидрата глинозема при 300-800oС в зоне высокой турбулентности парогазовой смеси с парциальным давлением водяного пара от 2 до 90 кПа в течение 1-9 с. Активированный таким образом продукт подвергают гидратации при температуре 50-100oС в течение 0,5 - 4 ч в водном растворе соединения Ме2+ и/или Ме3+, концентрация которого должна обеспечить в конечном продукте (носителе) отношение ионов Аl3+ к Ме2+ и/или Ме3+ в пределах от 200 : 1 до 20 : 1. После фильтрации осадок сушат и прокаливают при 700-800oС в течение 0,5 - 4 ч. На полученный носитель, который является твердым раствором ионов Ме2+ и/или Ме3+ в оксиде алюминия, наносят соединения меди в количестве 3,5-5,5 мас.% в пересчете на медь.
Свойства катализатора, полученного по предлагаемому способу, в основном определяются химическим составом носителя (твердого раствора), природой и количеством катионов Ме, растворенных в оксиде алюминия, при одинаковых условиях нанесения активного компонента на носитель.
При разработке состава эффективного катализатора оксихлорирования этилена в 1,2-дихлорэтан приготовлено и исследовано значительное количество твердых растворов ионов Ме2+ и/или Me3+ в оксиде алюминия. К носителям, обеспечивающим высокую активность катализатора, относятся твердые на основе оксида алюминия, содержащие ионы Са2+, Zn2+, Ba2+, Sr2+, Mg2+, Cu2+, Mn2+, Cе3+, Ga3+ и некоторые другие. Предлагаемый способ приготовления твердых растворов ионов Ме2+ и/или Ме3+ в оксиде алюминия позволяет получать носитель с необходимой прочностью для работы катализатора в условиях кипящего слоя.
Использование предлагаемого катализатора в реакции оксихлорирования этилена позволяет достигать высокой конверсии этилена в дихлорэтан, а следовательно, уменьшить потери этилена с абгазами. Так, при температуре проведения процесса 225oС конверсия этилена достигает 98-99% при низком горении и содержании основного вещества 1,2-дихлорэтана в продукте 98,5%. Кроме этого, многие из исследованных твердых растворов имеют механическую прочность на истирание, превышающую прочность на истирание оксида алюминия, что является важным фактором при эксплуатации катализатора в данном процессе.
Таким образом, отличительным признаком предлагаемого катализатора является новое фазовое состояние носителя, а именно твердый раствор ионов Ме2+ и/или Ме3+ в оксиде алюминия, что позволяет повысить активность катализатора, представляющего собой соединение меди на данном носителе, и увеличить механическую прочность катализатора, работающего в кипящем слое.
Отличительным признаком предлагаемого способа получения катализатора является упрощение технологии приготовления носителя за счет новой последовательности стадий синтеза и условий их проведения. Приготовление твердого раствора ионов Ме2+ и/или Ме3+ в оксиде алюминия проводят путем взаимодействия компонентов, находящихся в состоянии повышенной реакционной способности после термической активации. Кратковременная термообработка технического гидрата глинозема в указанных выше условиях приводит к его частичной дегидратации с одновременным разрушением кристаллической структуры, в результате чего образующийся промежуточный продукт обладает повышенной реакционной способностью. Второй компонент твердого раствора (Ме2+ и/или Ме3+) вводится в виде хорошо растворимых солей, например нитратов, на стадии гидратации термоактивированного технического гидрата алюминия. Благодаря повышенной реакционной способности последнего взаимодействие между компонентами происходит уже в процессе гидратации. Далее при термообработке (700-800oС) легко образуются твердые растворы ионов Ме2+ и/или Ме3+ в оксиде алюминия. Предложенный способ значительно упрощает технологию получения носителя, сокращает стоки и вредные выбросы, уменьшает энергозатраты.
Соотношение между ионами Аl3+ и Ме2+ и/или Ме3+ в твердом растворе должно быть в пределах от 200:1 до 20:1. При соотношении компонентов в твердом растворе больше 200: 1 снижается механическая прочность катализатора; при соотношении компонентов в носителе меньше 20:1 уменьшается активность катализатора.
Отличительным признаком предлагаемого способа получения катализатора является условие быстрой сушки наносимого из раствора на носитель соединения меди. Это позволяет увеличить дисперсность активного компонента и вследствие этого повысить активность катализатора.
Быстрая кристаллизация соединения меди достигается путем быстрого удаления воды пропиточного раствора, что возможно как на стадии пропитки, так и при сушке. Активность катализатора уменьшается, если продолжительность высушивания влажного катализатора составляет более 30 мин.
Все вышеописанное является существенно новым по отношению к известному уровню технологии приготовления катализатора оксихлорирования этилена в 1,2-дихлорэтан как по составу носителя и способу его получения, так и по условиям получения катализатора.
Пример 1. Технический гидрат глинозема, активированный путем быстрой термообработки при 350oС в течение 5 с, подвергают гидратации водным раствором нитрата церия при температуре 80oС в течение 2 ч. При этом к 1 кг активированного технического гидрата глинозема (содержание оксида алюминия около 85 мас.%) добавляют 2,5 л водного раствора нитрата церия концентрации 11 г/л. Осадок отфильтровывают, сушат при 110oС и прокаливают при 750oС в течение 2 ч. Затем к 1 кг полученного носителя, представляющего собой твердый раствор ионов церия в оксиде алюминия с соотношением Аl3+ : Се3+ = 200: 1, напылением добавляют 0,3 л раствора хлорида меди концентрации 350 г/л. После пропитки катализатор сушат 3 мин при 90oС и перемешивании, а затем поднимают температуру до 140oС за 15 мин.
Состав полученного катализатора, мас. %: хлорид меди (в пересчете на медь) 4,5; твердый раствор ионов Се3+ в оксиде алюминия (соотношение Аl3+ : Се3+ = 200:1) - остальное.
Каталитические свойства образца в реакции оксихлорирования этилена определяют в реакторе проточного типа, представляющего собой кварцевую трубку диаметром 42 мм и длиной 1500 мм с электрообогревом и карманом для термопары. Объем катализатора в реакторе 850 мл. Исходные компоненты подают в мольном отношении этилен : хлористый водород : воздух = 1,07 : 2 : 0,7; время контакта 24 с. Анализ газовых смесей до и после реакции, а также конденсата проводят хроматографически.
В таблице представлены данные по конверсии этилена в 1,2-дихлорэтан в реакции оксихлорирования в зависимости от состава катализатора и условий его приготовления.
Пример 2. Технический гидрат глинозема, активированный путем быстрой термообработки при 800oС в течение 1 с, подвергают гидратации водным раствором хлорида меди при температуре 60oС в течение 3 ч. При этом к 1 кг активированного технического гидрата глинозема (содержание оксида алюминия около 85 мас. %) добавляют 2,5 л водного раствора хлорида меди концентрации 22,5 г/л. Осадок отфильтровывают, сушат при 110oС и прокаливают при 800oС в течение 0,5 ч. Затем к 1 кг полученного носителя, представляющего собой твердый раствор ионов меди в оксиде алюминия с соотношением Аl3+ :Сu2+ = 40: 1, напылением добавляют 0,3 л раствора хлорида меди концентрации 300 г/л. После пропитки катализатор сушат 5 мин при 80oС и перемешивании, а затем поднимают температуру до 150oС за 20 мин.
Состав полученного катализатора, мас. %: хлорид меди (в пересчете на медь) 3,9, твердый раствор ионов Сu2+ в оксиде алюминия (соотношение Аl3+ : Сu2+ = 40:1) - остальное.
Каталитические свойства образца приведены в таблице.
Пример 3. Технический гидрат глинозема, активированный путем быстрой термообработки при 300oС в течение 9 с, подвергают гидратации водным раствором нитрата магния при температуре 95oС в течение 0,5 ч. При этом к 1 кг активированного технического гидрата глинозема (содержание оксида алюминия около 85 мас.%) добавляют 2,5 л водного раствора нитрата магния концентрации 5 г/л. Осадок отфильтровывают, сушат при 110oС и прокаливают при 700oС в течение 3 ч. Затем к 1 кг полученного носителя, представляющего собой твердый раствор ионов магния в оксиде алюминия с соотношением Аl3+ : Мg2+ = 200: 1, напылением добавляют 0,3 л раствора хлорида меди концентрации 320 г/л. После пропитки катализатор сушат 7 мин при 70oС и перемешивании, а затем поднимают температуру до 130oС за 15 мин. При этом происходит полная кристаллизация активного компонента. Далее катализатор выдерживают при указанной температуре 20 ч.
Состав полученного катализатора, мас. %: хлорид меди (в пересчете на медь) 4,2; твердый раствор ионов Мg2+ в оксиде алюминия (соотношение Аl3+ : Мg2+ = 200:1) - остальное.
Каталитические свойства образца приведены в таблице.
Пример 4. Технический гидрат глинозема, активированный (см. пример 1), подвергают гидратации водным раствором хлорида марганца при температуре 80oС в течение 2 ч. При этом к 1 кг активированного технического гидрата глинозема (содержание оксида алюминия около 85 мас.%) добавляют 2,5 л водного раствора хлорида марганца концентрации 9,3 г/л. Осадок отфильтровывают, сушат при 110oС и прокаливают при 750oС в течение 2 ч. Затем к 1 кг полученного носителя, представляющего собой твердый раствор ионов марганца в оксиде алюминия с соотношением Аl3+ : Мn2+ = 90 : 1, напылением добавляют 0,3 л раствора хлорида меди концентрации 350 г/л. После пропитки катализатор сушат (см. пример 1).
Состав полученного катализатора, мас. %: хлорид меди (в пересчете на медь) 4,5; твердый раствор ионов Мn2+ в оксиде алюминия (соотношение Аl3+ : Мn2+ = 90:1) - остальное.
Каталитические свойства образца приведены в таблице.
Пример 5. Технический гидрат глинозема, активированный (см. п. 1), подвергают гидратации водным раствором нитрата галлия при температуре 70oС в течение 2,5 ч. При этом к 1 кг активированного технического гидрата глинозема (содержание оксида алюминия около 85 мас.%) добавляют 2,5 л водного раствора нитрата галлия концентрации 11,5 г/л. Осадок отфильтровывают, сушат при 110oС и прокаливают при 700oС в течение 3 ч. Затем к 1 кг полученного носителя, представляющего собой твердый раствор ионов галлия в оксиде алюминия с соотношением Аl3+ : Ga3+ = 150 : 1, напылением добавляют 0,3 л раствора хлорида меди концентрации 430 г/л. После пропитки катализатор сушат 7 мин при 70oС и перемешивании, а затем поднимают температуру до 130oС за 15 мин. При этом происходит полная кристаллизация активного компонента. Далее катализатор выдерживают при указанной температуре 2 ч.
Состав полученного катализатора, мас.%: хлорид меди (в пересчете на медь) 5,5; твердый раствор ионов Gа3+ в оксиде алюминия (соотношение Аl3+ : Ga3+ = 150 : 1) - остальное.
Каталитические свойства образца приведены в таблице.
Пример 6. Технический гидрат глинозема, активированный (см. п.1), подвергают гидратации смешанным водным раствором солей - нитрата магния и нитрата церия, при температуре 70oС в течение 2,5 ч. При этом к 1 кг активированного технического гидрата глинозема (содержание оксида алюминия около 85 мас. %) добавляют 2,5 л смешанного водного раствора нитрата магния (концентрация 25 г/л) и нитрата церия (концентрация 55 г/л). Осадок отфильтровывают, сушат при 110oС и прокаливают при 700oС в течение 3 ч. Затем к 1 кг полученного носителя, представляющего собой твердый раствор ионов магния и церия в оксиде алюминия с соотношением Аl3+ : (Мg2+ + Cе3+) = 20:1, напылением добавляют 0,3 л раствора хлорида меди концентрации 265 г/л. После пропитки катализатор сушат 5 мин при 80oС и перемешивании, а затем поднимают температуру до 150oС за 20 мин.
Состав полученного катализатора, мас.%: хлорид меди (в пересчете на медь) 3,5; твердый раствор ионов (Мg2+ + Cе3+) в оксиде алюминия (соотношение Аl3+ : (Мg2+ + Ce3+) = 20:1) остальное.
Каталитические свойства образца приведены в таблице.
Как следует из приведенных примеров, состав предлагаемого катализатора и способ приготовления обеспечивают его высокую активность в процессе оксихлорирования этилена в 1,2-дихлорэтан и повышенную механическую прочность, что важно для работы катализатора в псевдоожиженном слое. Изобретение может найти широкое применение в химической промышленности, особенно в производстве поливинилхлорида и виниловых сополимеров.

Claims (4)

1. Катализатор для оксихлорирования этилена в 1,2-дихлорэтан, включающий 3,5 - 5,5 мас.% соединения меди в пересчете на медь и алюмооксидный носитель, содержащий ион металла, отличающийся тем, что носитель представляет собой твердый раствор ионов металлов Me2+ и/или Me3+ в оксиде алюминия с соотношением Al3+ и Me2+ и/или Me3+ в пределах 200 - 20 : 1.
2. Катализатор по п.1, отличающийся тем, что в качестве Me2+ и/или Me3+ носитель содержит Ce3+, Ga3+, Mg2+, Mn2+, Cu2+.
3. Катализатор по п.1, отличающийся тем, что в качестве соединений меди используют водорастворимые соединения меди.
4. Способ приготовления катализатора для оксихлорирования этилена в 1,2-дихлорэтан, включающий нанесение активного компонента - соединения меди на алюмооксидный носитель, содержащий ион металла, с последующей сушкой, отличающийся тем, что в качестве носителя используют твердый раствор ионов металлов Me2+ и/или Me3+ в оксиде алюминия с соотношением Al3+ и Me2+ и/или Me3+ в пределах 200 - 20 : 1 и нанесение соединения меди на носитель ведут напылением раствора и термообработкой в условиях, обеспечивающих полную кристаллизацию активного компонента за время менее 30 мин, причем процесс ведут при соотношении компонентов, обеспечивающих следующее содержание в катализаторе, мас.%:
Соединение меди в пересчете на медь - 3,5 - 5,5
Носитель - Остальное
5. Способ по п.4, отличающийся тем, что в качестве Me2+ и/или Me3+ носитель содержит Ce3+, Ga3+, Mg2+, Mn2+, Cu2+.
RU97108303A 1997-05-21 1997-05-21 Катализатор для оксихлорирования этилена в 1,2-дихлорэтан и способ его приготовления RU2115472C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97108303A RU2115472C1 (ru) 1997-05-21 1997-05-21 Катализатор для оксихлорирования этилена в 1,2-дихлорэтан и способ его приготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97108303A RU2115472C1 (ru) 1997-05-21 1997-05-21 Катализатор для оксихлорирования этилена в 1,2-дихлорэтан и способ его приготовления

Publications (2)

Publication Number Publication Date
RU2115472C1 true RU2115472C1 (ru) 1998-07-20
RU97108303A RU97108303A (ru) 1998-12-20

Family

ID=20193156

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97108303A RU2115472C1 (ru) 1997-05-21 1997-05-21 Катализатор для оксихлорирования этилена в 1,2-дихлорэтан и способ его приготовления

Country Status (1)

Country Link
RU (1) RU2115472C1 (ru)

Similar Documents

Publication Publication Date Title
RU2226127C2 (ru) Способ получения углеводородов из синтез-газа и катализаторы для него
JPS6233544A (ja) 排水中の酸化剤を分解する方法
KR100194483B1 (ko) NOx 흡착제
JPS58174237A (ja) メタノ−ル改質用触媒
CZ20001580A3 (cs) Katalyzátor a způsob výroby vinylacetátu
RU2149137C1 (ru) Способ непосредственного окисления соединений серы до серы с использованием катализатора на основе меди
JPH08231204A (ja) 二酸化炭素改質反応による水素及び一酸化炭素の製造法
RU2115472C1 (ru) Катализатор для оксихлорирования этилена в 1,2-дихлорэтан и способ его приготовления
EA003858B1 (ru) Катализаторы, содержащие металлы на материалах носителя на основе гидротальцита
JPH05245376A (ja) 一酸化炭素の変換のための酸化銅−酸化アルミニウム−酸化マグネシウム触媒
CA2025145A1 (en) Process for the preparation of 1,1,1,2-tetrafluoroethane
RU2184610C2 (ru) Дезалюминированный цеолит nu-86, способ его получения (варианты), катализатор на его основе и его использование при конверсии углеводородов
SU1389668A3 (ru) Катализатор дл конверсии метилового спирта и/или диметилового эфира в ненасыщенные углеводороды и способ его получени
JP4119980B2 (ja) プロパン脱水素反応用触媒
US3855154A (en) Catalyst for conversion of non-cyclic c{11 -c{11 {11 alkanes to aromatic hydrocarbons
JPH026414A (ja) イソブチレンの製造法
RU2627667C1 (ru) Катализатор с низким содержанием оксида хрома для дегидрирования изобутана и способ дегидрирования изобутана с его использованием
CA1050522A (en) Carrier-supported catalyst
RU2199386C1 (ru) Катализатор для очистки газов от оксидов азота и способ его получения
RU2017515C1 (ru) Катализатор для конверсии метана в высшие углеводороды
JPH02196733A (ja) エチルベンゼンとスチレンの製造方法
JPH01228923A (ja) パラフィンの異性化法
RU2163886C2 (ru) Микросферический оксид алюминия и способ его приготовления
JPS61197532A (ja) 塩化ビニリデンの製造法
RU2123974C1 (ru) Микросферический оксид алюминия и способ его приготовления

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090522