RU2091365C1 - Способ удаления примесей с*001-с*001*000-алкилйодидов из жидких карбоновых кислот с*002-с*006 и/или соответствующих ангидридов кислот, содержащих также примеси ионов металлов - Google Patents

Способ удаления примесей с*001-с*001*000-алкилйодидов из жидких карбоновых кислот с*002-с*006 и/или соответствующих ангидридов кислот, содержащих также примеси ионов металлов Download PDF

Info

Publication number
RU2091365C1
RU2091365C1 RU9292004360A RU92004360A RU2091365C1 RU 2091365 C1 RU2091365 C1 RU 2091365C1 RU 9292004360 A RU9292004360 A RU 9292004360A RU 92004360 A RU92004360 A RU 92004360A RU 2091365 C1 RU2091365 C1 RU 2091365C1
Authority
RU
Russia
Prior art keywords
resin
liquid
silver
cation exchange
impurities
Prior art date
Application number
RU9292004360A
Other languages
English (en)
Other versions
RU92004360A (ru
Inventor
Дэвид Джонес Михаел
Джон Ватсон Деррик
Лео Вильямс Брус
Original Assignee
БП Кемикэлс Лтд
Дзе Бритиш Петролеум Компани П.Л.С.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by БП Кемикэлс Лтд, Дзе Бритиш Петролеум Компани П.Л.С. filed Critical БП Кемикэлс Лтд
Publication of RU92004360A publication Critical patent/RU92004360A/ru
Application granted granted Critical
Publication of RU2091365C1 publication Critical patent/RU2091365C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/54Preparation of carboxylic acid anhydrides
    • C07C51/573Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Eye Examination Apparatus (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Dairy Products (AREA)
  • Glass Compositions (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Сущность: из жидкого состава, включающего карбоновые кислоты, имеющие 2-6 атомов углерода, или их ангидридов удаляют примеси алкилйодидов пропусканием жидкого состава через слой серебро-, ртуть-, палладий-, и/или родийзамещенной катионообменной смолы сильной кислоты. Причем перед взаимодействием с металлозамещенной смолой состав приводится во взаимодействие с катионообменником в кислотной форме для удаления по меньшей мере части примесных металлических ионов, появляющихся, в частности за счет коррозии аппаратуры, и способных к вытеснению серебра, ртути, палладия и/или родия из металлозамещенной смолы. 6 з.п. ф-лы, 3 табл.

Description

Изобретение относится к способу удаления йодистых соединений, в частности C1-C10-алкилйодидов из карбоновых кислот и/или их ангидридов, содержащих также примеси ионов металлов. В частности, настоящее изобретение рекомендуется для очистки уксусной кислоты и/или уксусного ангидрида, полученных карбонилированием метанола и/или метилацетата, в присутствии родиевого катализатора, промотированного йодистым метилом.
Известно, что проблема, связанная с очисткой уксусной кислоты и/или уксусного ангидрида, полученных карбонилированием метанола и/или метилацетата, в присутствии каталитической системы родий/йодистый метил остается даже после дистилляции, причем уксусная кислота и/или уксусный ангидрид часто содержат небольшие количества йодистых примесей. Хотя точная природа этих примесей неизвестна, некоторые из них, вероятно, включают смесь йодистых соединений таких, как йодистый метил, и также высшие йодиды алкила, например, йодистый гексил, йодистый водород и йодистые соли. Подобные примеси особенно вредны, поскольку они отравляют многие катализаторы, которые применяются при последующих химических преобразованиях уксусной кислоты и/или уксусного ангидрида. В частности, это относится к катализаторам, применяемым при получении винилацетата из этилена и уксусной кислоты, чрезвычайно чувствительным к йодистым примесям.
Известны некоторые способы удаления йодистых примесей из уксусной кислоты и/или уксусного ангидрида. В патенте Великобритании А-2112394 для этого используются анионообменные смолы. В патенте ЕР-А-0196713 описывается удаление йодистых примесей из водных органических сред таких, как уксусная кислота, за счет использования серебра или ртути, содержащихся в макроретикулярных сильнокислотных катионообменных смолах таких, как Амберлист-15 (Амберлист
зарегистрированная торговая марка).
В патенте ЕР-А-2968584 также описывается применение серебросодержащих макроретикулярных смол для очистки уксусной кислоты, загрязненной йодистыми примесями.
Однако установлено, что при использовании серебросодержащих сильнокислотных смол таких, которые описаны в ЕР-А-0196173, возможно замещение серебра металлами, которые могут присутствовать в качестве примесей в карбоновой кислоте и/или ангидриде. Такое замещение серебра нежелательно, так как оно может привести к снижению производительности и/или эффективности действия смол и в результате привести к загрязнению продукта серебром.
Эта техническая проблема решается предлагаемым усовершенствованным способом удаления йодистых соединений (C1-C10-алкилйодидов) из карбоновых кислот C2-C6 и/или ангидридов карбоновых кислот, содержащих также примеси ионов металлов, выбранных из группы: калий, натрий, железо, марганец, включающий обработку жидкого потока кислоты сильнокислотной катионообменной смолой, в которой по меньшей мере 1% активных центров замещен на ионы металлов, выбранных из группы, серебро, ртуть, палладий, родий.
Отличием предлагаемого способа является то, что исходную жидкость предварительно обрабатывают сильнокислотной катионообменной смолой в кислотной форме для удаления по меньшей мере части примесей ионов металлов, а затем указанной смолой, включающей ионы металлов.
Преимущественно предлагается обрабатывать указанным способом уксусную кислоту и/или уксусный ангидрид для удаления из жидкого продукта йодистого алкила C1-C10.
В качестве катионообменной смолы желательно использовать макроретикулярную, мезопористую, хелатную или гелевую смолу с активными центрами в кислотной форме либо цеолит в кислотной форме.
В качестве смолы, содержащей активные центры, частично замещенные металлами, используют макроретикулярную, мезопористую или гелевую смолу, преимущественно катионит, в котором по меньшей мере 1% активных центров замещен серебром.
Предлагаемый способ особенно удобно использовать для удаления примесей C1-C10-алкилйодидов из уксусной кислоты и/или уксусного ангидрида, содержащих примеси ионов металлов, осуществляя способ следующим образом: сначала жидкость пропускают через слой сильнокислотной катионообменной смолы в кислой форме со скоростью от 1 до 40 объемов жидкости на 1 объем слоя смолы в час при температуре 20-120oC. При этом из жидкости удаляется по меньшей мере часть примесей ионов металлов. После этого жидкий поток пропускают через сильнокислотную катионообменную смолу, в которой по меньшей мере 1% активных центров замещен серебром, со скоростью 1-40 объемов жидкости на 1 объем смолы в час при температуре от 20 до 120oC.
Примеси ионов металла в кислоте и/или ангидриде могут появиться в результате коррозии или применения реагентов в процессе обработки. Любые ионы металлов, способные к вытеснению серебра, ртути, палладия и/или родия из металлообменной смолы следует удалять по меньшей мере частично с помощью сильнокислотного катионита. Такие ионы металлов могут содержать, например, по меньшей мере один из группы: железо, калий, кальций, марганец и натрий. Примеси ионов металла могут присутствовать, как правило, в количестве менее чем 1 часть на миллион, но возможны и более высокие концентрации.
Кислотный катионообменник снижает концентрацию примесных металлических ионов, присутствующих в карбоновой кислоте и/или ангидриде, обычно до менее чем 100 частей на миллион, предпочтительно менее чем 50 частей на миллион. Концентрация, до которой необходимо сокращать количество металлических примесей, зависит от способности металлообменного, удаляющего йодиды, слоя смолы для того, чтобы дать возможность оставшимся металлическим примесям принимать участие в удалении йодидов.
Соответствующие кислотные катионообменники для удаления примесных металлических ионов в изобретении могут включать катионообменные смолы сильных кислот, например, макроретикулярные смолы сильных кислот, например, Амберлист-15, изготавливаемый фирмой Rohm and Haas; мезопористые смолы сильных кислот, например, Пуролит С145 или СТ145, изготавливаемый фирмой Пуролит, и кислые гелевые смолы, например, IRI20A, изготавливаемые фирмой Rohm and Haas. Могут применяться также хелатные смолы и цеолиты.
Жидкое соединение, представляющее собой соответствующую карбоновую кислоту и/или ее ангидрид, соответственно пропускают через кислотный катионообменный слой со скоростью пропускания, достаточной для достижения заданного сокращения примесных металлических ионов. Эта скорость будет зависеть от таких факторов, как количество примесных металлических ионов, эффективность и производительность катионообменника и т.п. Соответственно скорость пропускания может составлять от 1 до 40 объемов слоя жидкости в час, предпочтительно от 5 до 15 объемов слоя жидкости в час, на 1 объем слоя смолы.
Температура катионообменника для удаления примесных металлических ионов должна поддерживаться соответствующей для поддержания сохранения кислоты и/или ангидрида в жидком состоянии. Соответствующей рабочей температурой является интервал от 20 до 120oC, предпочтительно от 30 до 80oC.
На стадии удаления примесных ионов металла можно применять любое соответствующее давление.
Соответствующими металлообменными смолами для удаления йодистых соединений в способе, согласно изобретению, являются металлообменные макроретикулярные сильнокислотные смолы, например, Амберлист-15; металлообменные мезопористые смолы сильных кислот, например, Пуролит С145, или СТ145 или Байер К2411; и металлообменные гелевые смолы, например, IRI20A, в который металлом является по меньшей мере один из металлов: серебро, ртуть, палладий и родий.
Металлом, замещающим по меньшей мере 1% активных центров в катионообменной сильнокислотной, удаляющей йодистые соединения смолы, согласно изобретению, является один из металлов, выбранный из группы, состоящей из серебра, ртути, палладия и родия. Предпочтительным металлом является серебро.
Рабочая температура металлсодержащей смолы будет в основном определяться рабочим интервалом смолы, но должна быть в диапазоне, поддерживающем кислоту и/или ангидрид в жидком состоянии, обычно от 20 до 120oC, предпочтительно от 30 до 80oC.
Для работы металлообменного слоя смолы можно применять любое соответствующее давление.
Жидкость, имеющая небольшое количество примесных металлических ионов, соответствующим образом пропускают сквозь катионообменный слой смолы со скоростью, достаточной для достижения заданного количества содержания йодистых соединений. Скорость пропускания кислоты и/или ангидрида сквозь металлообменный слой смолы будет зависеть от таких факторов, как количество примеси йодистых соединений, эффективность, производительность смолы и т.п. Соответствующими скоростями пропускания являются 1-40 объемов жидкости в час, предпочтительно от 5 до 20 объемов жидкости в час на 1 объем слоя смолы.
В качестве карбоновой кислоты, используемой в способе по изобретению, можно использовать одну или более из ряда: уксусная кислота, пропионовая кислота, масляная кислота, изомасляная кислота, пентановая кислота и гексановая кислота. Ангидрид карбоновой кислоты, используемый в способе изобретения, может включать один или более ангидридов уксусной кислоты, пропионовой кислоты, масляной кислоты, изомасляной кислоты, пентановой кислоты и гексановой кислоты. Могут применяться также смешанные ангидриды карбоновой кислоты, например, смешанный ангидрид уксусной и пропионовой кислот. Могут применяться смеси карбоновых кислот и ангидридов.
Предпочтительно использовать способ изобретения для очистки уксусной кислоты и/или уксусного ангидрида. Способ особенно рекомендуется для очистки уксусной кислоты и/или уксусного ангидрида, получаемых карбонилированием метанола и/или метилацетата, как описано, например, в опубликованной Европейской патентной заявке ЕР-А-0087870, рассмотренного выше.
Йодистыми соединениями, присутствующими в жидкой карбоновой кислоте и/или ангидриде, могут быть C1-C10-алкилйодиды, йодистый водород и йодистые соли. Способ изобретения, в частности, рекомендуется для удаления C1-C10-алкилйодидов таких, как йодистый метил и йодистый гексил.
Пример 1 (сравнительный). Чтобы показать действие примесей ионов металла на свойства смолы, включающей ионы серебра для удаления йодидов, был проделан следующий эксперимент.
Серебросодержащий Пуролит С145 (в котором 35% активных центров замещено серебром) обрабатывали при 79oC подачей уксусной кислоты, в которую был добавлен йодистый гексил с концентрацией йодида 500 частей на миллион, и который также содержал около 30 частей на миллион йодида, соответствующего другим установленным йодистым соединениям. Скорость подачи уксусной кислоты сначала была равна 5 ч-1 и затем была увеличена до 10 ч-1. Допустив, что всю кислоту подавали со скоростью 10 ч-1, время потока до проскока йодида было рассчитано до 950 ч. Такая продолжительность меньше, чем можно было бы ожидать от количества серебра, присутствующего в смоле. Смолу исследовали и нашли в ней содержание примесей в количестве ионов кальция, равного в среднем 0,7 частей на миллион при подаче жидкости. Анализ серебра, кальция и йодида в разных частях слоя смолы приведен в табл.1. Данные показывают, что серебро сдвинуто вниз в слое смолы, тогда как кальций скопился вверху в слое смолы.
Пример 2. Серебросодержащая катионообменная смола Байер К2411 (около 35% катионообменных активных центров замещено серебром) обрабатывалась при 79oC с использованием того же самого состава, как в примере 1. Уксусную кислоту подавали со скоростью 10 ч-1. В течение первых 1200 ч работы концентрация серебра в уксусной кислоте, вытекающей из слоя, была <30 ррв. Затем концентрация серебра равномерно увеличивалась так, что спустя 1800 ч составила 350 ррв и после 2200 ч -была равна 700 ррв. Спустя 2200 ч смолу исследовали и было установлено, что в ней содержатся примеси ионов кальция, соответствующие средней концентрации при добавлении 0,6 ррв в течение эксперимента. Анализ серебра, кальция и йодида в разных положениях в слое смолы представлен в табл.2.
И в этом случае, как и в примере 1, серебро переместилось вниз слоя. В этом случае оно настолько было отделено, что неприемлемые уровни серебра оказались выщелаченными в жидкой уксусной кислоте в течение последней части эксперимента.
Пример 3. Чтобы показать преимущества удаления примесных металлических ионов из загрязненной йодидами уксусной кислоты перед удалением йодистых примесей с использованием серебросодержащей смолы был проведен следующий эксперимент.
Уксусную кислоту, в которую добавили йодистый гексил, в среднем соответствующий 1106 ррв йодида, 170 ррв железа, 75 ррв калия и который содержал также в среднем 430 ррв кальция, (без добавок) пропустили сквозь два комплекта слоев смолы при 79oC со скоростью 10 ч-1.
В примере 3А использовали 30 мл только серебросодержащего Пуролита С145, аналогичного использованному в примере 1, пример является сравнительным.
В примере 3В использовали 30 мл серебросодержащего Пуролита С145, подобно примеру 1, и, кроме того, 30 мл Пуролита С 145 в кислотной форме, что соответствует изобретению.
Прорыв йодида произошел спустя 5190 ч для примера 3А и спустя 5000 ч для примера 3В.
Серебросодержащие смолы были проверены на серебро, калий и йодид, но другим методом, чем в примере 1, который не подходит для определения кальция. Результаты приведены в табл.3.
Результаты табл.3 показывают, что слой смолы в примере 3В содержал меньше металлов, чем в примере 3А, таких как калий и железо, причем они были удалены с помощью предварительной обработки смолой в кислотной форме. Продолжительность действия слоя серебросодержащей смолы без слоя смолы в кислотной форме сравнили с продолжительностью действия слоя смолы с предварительным слоем смолы в кислотной форме, поскольку концентрация примесных металлических ионов была ниже, за счет чего слой смолы смог сформироваться в течение срока действия, обусловленного загрузкой серебра. Подобным образом распределение серебра в обоих слоях смолы не имело заметного влияния. Таким образом, установив наличие высокой концентрации примесных металлических ионов, ожидали, что в отсутствие предварительного слоя смолы в кислотной форме они должны были бы оказывать вредное воздействие на продолжительность действия серебросодержащего слоя смолы при удалении йодистого соединения. Это продемонстрировано более коротким сроком действия сереброзамещенных слоев смолы в примере 1 по сравнению с примером 3 (низкий уровень примесных металлических ионов).

Claims (7)

1. Способ удаления примесей C1 C10-алкилйодидов из жидких карбоновых кислот C2 C6 и/или соответствующих ангидридов кислот, содержащих также примеси ионов металлов, выбранных из группы: калий, натрий, железо, марганец, путем обработки жидкого потока сильнокислой катионообменной смолой, в которой по меньшей мере 1% активных центров замещен на ионы металла, выбранного из группы: серебро, ртуть, палладий, родий, отличающийся тем, что из исходной жидкости предварительно удаляют по меньшей мере часть примесей ионов металлов, для чего жидкость сначала обрабатывают сильнокислой катионообменной смолой, а затем указанной смолой, включающей ионы металла.
2. Способ по п.1, отличающийся тем, что обрабатывают уксусную кислоту и/или уксусный ангидрид.
3. Способ по п.1 или 2, отличающийся тем, что из исходного продукта удаляют йодистый C1 C10-алкил.
4. Способ по любому из пп.1 3, отличающийся тем, что в качестве катионообменной смолы используют сильнокислую макроретикулярную, мезопористую, хелатную или гелевую смолу с активными центрами в кислотной форме, либо цеолит в кислотной форме.
5. Способ по любому из пп.1 4, отличающийся тем, что в качестве катионообменной смолы, содержащей часть замещенных на металл активных центров, используют макроретикулярную, мезопористую или гелевую смолу.
6. Способ по любому из пп.1 5, отличающийся тем, что используют сильнокислый катионит, в котором по меньшей мере 1% активных центров замещен серебром.
7. Способ удаления примесей C1 C10 алкилйодидов по пп.1 3 из жидкой уксусной кислоты и/или уксусного ангидрида, содержащих примеси ионов металлов, отличающийся тем, что сначала жидкость пропускают через слой сильнокислой катионообменной смолы со скоростью от 1 до 40 объемов жидкости на 1 объем смолы в 1 ч при 20 120oС и при этом удаляют из жидкости по меньшей мере часть примесей ионов металлов, после чего полученный жидкий поток пропускают через слой указанной сильнокислой катионообменной смолы, которая включает по меньшей мере 1% активных центров, замещенных серебром, со скоростью 1 40 объемов жидкости на 1 объем смолы в 1 ч при 20 - 120oС.
RU9292004360A 1991-10-18 1992-10-19 Способ удаления примесей с*001-с*001*000-алкилйодидов из жидких карбоновых кислот с*002-с*006 и/или соответствующих ангидридов кислот, содержащих также примеси ионов металлов RU2091365C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9122168.9 1991-10-18
GB919122168A GB9122168D0 (en) 1991-10-18 1991-10-18 Process

Publications (2)

Publication Number Publication Date
RU92004360A RU92004360A (ru) 1996-03-10
RU2091365C1 true RU2091365C1 (ru) 1997-09-27

Family

ID=10703173

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9292004360A RU2091365C1 (ru) 1991-10-18 1992-10-19 Способ удаления примесей с*001-с*001*000-алкилйодидов из жидких карбоновых кислот с*002-с*006 и/или соответствующих ангидридов кислот, содержащих также примеси ионов металлов

Country Status (21)

Country Link
US (2) US5344976A (ru)
EP (1) EP0538040B1 (ru)
JP (1) JP3266665B2 (ru)
KR (1) KR100231623B1 (ru)
CN (1) CN1035251C (ru)
AT (1) ATE141252T1 (ru)
AU (1) AU652286B2 (ru)
BR (1) BR9204035A (ru)
CA (1) CA2080744A1 (ru)
DE (1) DE69212763T2 (ru)
FI (1) FI924695A (ru)
GB (1) GB9122168D0 (ru)
MX (1) MX9205977A (ru)
MY (1) MY108811A (ru)
NO (1) NO924022L (ru)
NZ (1) NZ244765A (ru)
RU (1) RU2091365C1 (ru)
SG (1) SG49572A1 (ru)
TW (1) TW239120B (ru)
UA (1) UA29387C2 (ru)
ZA (1) ZA927839B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242040B2 (en) 2004-05-07 2012-08-14 Bp Chemicals Limited Process for the removal of corrosion metals from carbonylation catalyst solutions
RU2599660C2 (ru) * 2012-04-02 2016-10-10 Клариант Интернэшнл Лтд. Адсорбент метилйодида, его применение и способ адсорбции метилйодида

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9211671D0 (en) * 1992-06-02 1992-07-15 Bp Chem Int Ltd Process
GB9305902D0 (en) * 1993-03-22 1993-05-12 Bp Chem Int Ltd Process
US5962735A (en) 1998-03-06 1999-10-05 Uop Llc Method for treating an organic liquid contaminated with an iodide compound
US6506935B1 (en) * 1998-03-06 2003-01-14 Uop Llc Combination pretreatment/adsorption for treating a liquid stream contaminated with an iodine-containing compound
US6007724A (en) * 1998-12-21 1999-12-28 Uop Llc Method for treating a liquid stream contaminated with an iodine-containing compound using a solid absorbent comprising a metal phthalocyanine
US6190562B1 (en) 1999-03-24 2001-02-20 Uop Llc Method for treating a liquid stream contaminated with an iodine-containing compound using a cation-exchanged crystalline manganese phosphate
KR20000074883A (ko) * 1999-05-27 2000-12-15 토마스 케이. 맥브라이드 요오다이드 화합물로 오염된 유기 액체를 처리하는 방법
US6225498B1 (en) * 2000-03-24 2001-05-01 Celanese International Corporation Method of removing organic iodides from organic media
US6657078B2 (en) * 2001-02-07 2003-12-02 Celanese International Corporation Low energy carbonylation process
US7013802B2 (en) 2004-02-19 2006-03-21 Speedline Technologies, Inc. Method and apparatus for simultaneous inspection and cleaning of a stencil
US20080156207A1 (en) * 2006-12-28 2008-07-03 Dan Ellenbogen Stencil printers and the like, optical systems therefor, and methods of printing and inspection
CN101209428B (zh) * 2006-12-28 2010-05-19 江苏索普(集团)有限公司 一种用于除去有机介质中碘化物的吸附剂及制法和应用
US20090187043A1 (en) * 2007-05-21 2009-07-23 Scates Mark O Control of impurities in product glacial acetic acid of rhodium-catalyzed methanol carbonylation
EP2746247A1 (en) 2007-11-14 2014-06-25 BP p.l.c. An improved process for the production of alcohol from a carbonaceous feedstock
US20100113827A1 (en) * 2008-11-03 2010-05-06 Wei Wang Removing iodobenzene compounds from acetic acid
EP2186787A1 (en) 2008-11-13 2010-05-19 BP p.l.c. Hydrogenation of ethanoic acid to produce ethanol
US7588690B1 (en) * 2009-02-10 2009-09-15 The Purolite Company Method of iodide removal
CN101927201B (zh) * 2009-06-26 2012-12-12 上海焦化有限公司 一种脱除乙酸和/或乙酸酐羰基化催化剂溶液中杂质的方法
US20110086929A1 (en) * 2009-10-13 2011-04-14 Brotech Corporation, doing business as The Purolite Company Method of iodide removal
US8704010B2 (en) * 2010-05-07 2014-04-22 Celanese International Corporation Alcohol production process with impurity removal
MX2013007647A (es) * 2010-12-30 2013-08-01 Celanese Int Corp Purificacion de torrentes de productos de acido acetico.
WO2016122728A1 (en) * 2015-01-30 2016-08-04 Celanese International Corporation Processes for producing acetic acid
WO2016122727A1 (en) * 2015-01-30 2016-08-04 Celanese International Corporation Processes for producing acetic acid
US9561994B2 (en) * 2015-01-30 2017-02-07 Celanese International Corporation Processes for producing acetic acid
US9540302B2 (en) * 2015-04-01 2017-01-10 Celanese International Corporation Processes for producing acetic acid
US9540303B2 (en) 2015-04-01 2017-01-10 Celanese International Corporation Processes for producing acetic acid
WO2016209927A1 (en) * 2015-06-23 2016-12-29 Lyondellbasell Acetyls, Llc Silver loaded halide removal resins for treating halide containing solutions
US9908835B2 (en) 2015-11-13 2018-03-06 Celanese International Corporation Processes for purifying acetic and hydrating anhydride
US9957216B2 (en) 2015-11-13 2018-05-01 Celanese International Corporation Processes for producing acetic acid
CN106914036A (zh) * 2015-12-25 2017-07-04 安集微电子(上海)有限公司 一种有机酸的提纯方法
CN110114331A (zh) * 2017-03-08 2019-08-09 株式会社大赛璐 乙酸的制备方法
CN110743493A (zh) * 2019-11-07 2020-02-04 江苏索普化工股份有限公司 一种分子筛脱碘剂的制备方法及分子筛脱碘剂

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2409441A (en) * 1943-05-07 1946-10-15 Us Ind Chemicals Inc Production of glycols
US2692855A (en) * 1951-04-05 1954-10-26 Ionics Method of and apparatus for sterilizing liquids
DE1808156A1 (de) * 1968-11-09 1970-06-11 Hoechst Ag Verfahren zur Entfernung von Schwermetallionen aus wasserfreien,starken organischen Saeuren
US3732320A (en) * 1969-11-18 1973-05-08 Cities Service Co Process for purifying ethylene glycol
DE2012784C3 (de) * 1970-03-18 1974-03-14 Kraftwerk Union Ag, 4330 Muelheim Regenerierfahige Schichtbett-Ionenaustau sch-Fi ltereinrichtung
CA952132A (en) * 1970-11-12 1974-07-30 Jacob Gorla Minore Ackermann Method of purifying polymerizable organic substances
US3799977A (en) * 1972-01-28 1974-03-26 Ici America Inc Oxidation of glycols
US4007130A (en) * 1975-12-29 1977-02-08 Monsanto Company Catalyst regeneration method
JPS53101310A (en) * 1977-02-16 1978-09-04 Asahi Chem Ind Co Ltd Removal of meral and halogen dissolved in carboxylic acid
JPS54133495A (en) * 1978-04-10 1979-10-17 Asahi Chem Ind Co Ltd Recovering method for liquid phase oxidation catalyst
US4269705A (en) * 1979-04-18 1981-05-26 Mitsubishi Rayon Co., Ltd. Method for removing chromium ions from aqueous solutions of organic acids
US4487959A (en) * 1980-10-27 1984-12-11 Ecolochem, Inc. Vinyl acetate purification process
NL8204901A (nl) * 1981-12-30 1983-07-18 Halcon Sd Group Inc Zuivering van carbonyleringsprodukten.
NZ203226A (en) * 1982-02-13 1985-08-30 Bp Chemical Ltd Production of acetic anhydride from methanol and carbon monoxide
US4615806B1 (en) * 1985-03-07 1994-05-03 Hoechst Co American Removal of iodide compounds from non-aqueous organic media
US4894477A (en) * 1986-10-14 1990-01-16 Hoechst Celanese Corporation Process for regenerating a carbonylation catalyst solution to remove corrosion metals and carbonylation of methanol to acetic acid
DE3869488D1 (de) * 1987-06-24 1992-04-30 Union Carbide Corp Entfernung von halogeniden von karbonsaeuren.
JP2611774B2 (ja) * 1987-07-01 1997-05-21 和光純薬工業 株式会社 酢酸の精製方法
JPH01228560A (ja) * 1988-03-08 1989-09-12 Hitachi Chem Co Ltd 不純金属成分の低減された溶液の製造法
GB9022787D0 (en) * 1990-10-19 1990-12-05 British Petroleum Co Plc Process
DE4034501A1 (de) * 1990-10-30 1992-05-07 Hoechst Ag Verfahren zur entfernung metallischer korrosionsprodukte aus wasserfrei betriebenen carbonylierungsreaktionen
GB9023634D0 (en) * 1990-10-31 1990-12-12 British Petroleum Co Plc Process for purifying acetic acid and/or acetic anhydride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242040B2 (en) 2004-05-07 2012-08-14 Bp Chemicals Limited Process for the removal of corrosion metals from carbonylation catalyst solutions
RU2599660C2 (ru) * 2012-04-02 2016-10-10 Клариант Интернэшнл Лтд. Адсорбент метилйодида, его применение и способ адсорбции метилйодида

Also Published As

Publication number Publication date
CN1071662A (zh) 1993-05-05
BR9204035A (pt) 1993-05-04
ZA927839B (en) 1994-04-12
ATE141252T1 (de) 1996-08-15
NZ244765A (en) 1993-12-23
CA2080744A1 (en) 1993-04-19
DE69212763T2 (de) 1997-01-02
USRE35615E (en) 1997-09-23
JPH05301839A (ja) 1993-11-16
UA29387C2 (ru) 2000-11-15
KR930007870A (ko) 1993-05-20
DE69212763D1 (de) 1996-09-19
FI924695A0 (fi) 1992-10-16
EP0538040A2 (en) 1993-04-21
KR100231623B1 (ko) 1999-11-15
GB9122168D0 (en) 1991-11-27
TW239120B (ru) 1995-01-21
EP0538040B1 (en) 1996-08-14
SG49572A1 (en) 1998-06-15
AU652286B2 (en) 1994-08-18
NO924022D0 (no) 1992-10-16
AU2700592A (en) 1993-04-22
EP0538040A3 (en) 1993-05-12
CN1035251C (zh) 1997-06-25
MX9205977A (es) 1993-06-01
NO924022L (no) 1993-04-19
FI924695A (fi) 1993-04-19
MY108811A (en) 1996-11-30
US5344976A (en) 1994-09-06
JP3266665B2 (ja) 2002-03-18

Similar Documents

Publication Publication Date Title
RU2091365C1 (ru) Способ удаления примесей с*001-с*001*000-алкилйодидов из жидких карбоновых кислот с*002-с*006 и/или соответствующих ангидридов кислот, содержащих также примеси ионов металлов
EP0196173B1 (en) Removal of iodide compounds from non-aqueous organic media
US6518442B1 (en) Process for the recovery of fluorinated alkandic acids from wastewater
EP1268388B1 (en) Method of removing organic iodides from organic media
CN1029841C (zh) 脱除腐蚀性金属的羰基化催化剂溶液再生方法
CN1187305C (zh) 甲醇羰基化反应生产乙酸工艺中脱除高锰酸盐降低化合物及烷基碘的方法
RU2118204C1 (ru) Способ удаления коррозионных металлических загрязнений из жидких композиций и способ получения карбоновой кислоты и/или ее ангидрида
AU2001245941A1 (en) Method of removing organic iodides from organic media
AU2001245941A2 (en) Method of removing organic iodides from organic media
GB2112394A (en) Purification of carbonylation products
JP2004181352A (ja) 非水液状物の精製方法
JP2004181351A (ja) 非水液状物の精製方法
CN1031507C (zh) 用于纯化羧酸的方法
JP2820977B2 (ja) ヨウ素またはヨウ化物不純物の除去
US4370240A (en) Removal of iron compounds from organic process streams
RU2226429C2 (ru) Селективное отделение железа обработкой ионообменной смолой, содержащей группы дифосфоновых кислот
WO1994020450A1 (en) Process for the recovery of cyclohexanedicarboxylic acids
JP5369440B2 (ja) 高純度アルカリ金属炭酸塩水溶液の製造方法及び高純度アルカリ金属炭酸塩水溶液の連続製造方法
JP2000202442A (ja) 硼素含有水中の硼素の分離回収方法
JP2004123599A (ja) 触媒反応生成物の精製方法及び精製装置
JPS5814820B2 (ja) クロムの除去方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20111020