RU2068000C1 - Способ выплавки стали - Google Patents

Способ выплавки стали Download PDF

Info

Publication number
RU2068000C1
RU2068000C1 RU94002578A RU94002578A RU2068000C1 RU 2068000 C1 RU2068000 C1 RU 2068000C1 RU 94002578 A RU94002578 A RU 94002578A RU 94002578 A RU94002578 A RU 94002578A RU 2068000 C1 RU2068000 C1 RU 2068000C1
Authority
RU
Russia
Prior art keywords
dust
carbon
carburetor
heat process
total amount
Prior art date
Application number
RU94002578A
Other languages
English (en)
Other versions
RU94002578A (ru
Inventor
О.В. Танцырев
А.М. Меньщиков
Б.С. Глазырин
В.В. Попов
Р.П. Бобова
Г.А. Обласов
В.Н. Козлов
А.Л. Засухин
В.С. Постригайло
Ю.В. Загудайлов
В.И. Жучков
Original Assignee
Институт металлургии Уральского отделения РАН
Акционерное общество "Северский трубный завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт металлургии Уральского отделения РАН, Акционерное общество "Северский трубный завод" filed Critical Институт металлургии Уральского отделения РАН
Priority to RU94002578A priority Critical patent/RU2068000C1/ru
Publication of RU94002578A publication Critical patent/RU94002578A/ru
Application granted granted Critical
Publication of RU2068000C1 publication Critical patent/RU2068000C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Использование: в области черной металлургии при выплавке стали в мартеновских печах. Задача, решаемая изобретением, повышение технологических показателей плавки за счет исключения использования чугуна, сокращения продолжительности процесса, повышение усвоения углерода. Сущность изобретения: способ включает послойную завалку металлошихты, шлакообразующих материалов, порционную загрузку карбюратора, нагрев и расплавление шихты. В качестве карбюратора - смеси энергоактивных и инертных углеродсодержащих материалов: кусковых крупностью 150 мм и пылевидных. Расход пылевидной фракции составляет 30-50% от общего количества карбюратора. Расход энергоактивной угольной пыли составляет в первой порции 30-50% от общего количества пылевидного карбюратора в порции с уменьшением в каждой последующей до 50-70% от предыдущей. 2 табл.

Description

Изобретение относится к черной металлургии, в частности, к технологии выплавки стали в мартеновских печах.
При производстве стали в мартеновских печах скрап-рудным процессом в отсутствии и/или малом расходе чугуна первостепенным становится период получения жидкой ванны.
Для расплавления лома требуется температура более 1500oC, в то время как чугуна 1130oC. Поэтому необходимо обеспечить значительно большую температуру и длительность нагрева лома, что приводит к повышению теплоэнергозатрат. Другой путь реализации и ускорения расплавления - науглероживание шихты и тем самым снижение температуры расплавления. Для этого вводят карбюраторы материалы, способствующие науглероживанию металлолома.
Известен способ выплавки стали, включающий завалку металлолома, твердого чугуна и шлакообразующих материалов, присадку карбюратора на металлолом двумя горизонтами при восстановительной атмосфере печи, при этом крупность материала карбюратора составляет 2,5-7,0 см (Морозов А.Н. "Современный мартеновский процесс", Металлургиздат, 1961, с.422).
Недостатком способа является большой расход чугуна и низкое усвоение углерода карбюратора из-за длительности процесса плавки. Следствием этого является снижение стойкости огнеупорной футеровки печи.
По технической сущности и достигаемому результату наиболее близким к предлагаемому способу является карбюраторный способ выплавки стали в мартеновской печи (а.с. СССР N 994564, C 21 C 5/04, 1980). Способ включает завалку металлолома твердого чугуна, шлакообразующих материалов и присадку карбюратора фракцией 0,1-1 см, который загружают в печь ниже и выше шлакообразующих с расходом его в первой порции 60-70% от общего веса, нагрев и расплавление шихты. Кроме того, карбюратор загружают после завалки 10-15% и 35-40% от общего веса металлолома.
Однако способ недостаточно эффективен. Использование в качестве карбюратора материала только мелкой фракции из-за уплотнения при загрузке не обеспечивает в шихте необходимой пористости и газопроницаемости, что приводит к снижению степени усвоения углерода и повышенному расходу передельного чугуна.
Техническая задача, решаемая предлагаемым изобретением повышение технологических показателей плавки за счет сокращения продолжительности нагрева и расплавления лома, повышения усвоения углерода.
Поставленная задача достигается тем, что в способе выплавки стали в мартеновской печи, включающем послойную завалку металлошихты, шлакообразующих материалов, порционную загрузку карбюратора, нагрев и расплавление шихты, согласно изобретению, в качестве карбюратора используют смесь энергоактивных и инертных углеродсодержащих кусковых, крупностью не более 150 мм, и пылевидных материалов с расходом пылевидной фракции 30-50% от общего количества, причем в первой порции загружают 30-50% энергоактивной угольной пыли от общего количества пылевидной фракции в порции, с последующим уменьшением до 50-70% от предыдущей порции.
Наличие в карбюраторе энергоактивной углеродсодержащей составляющей обеспечивает энергетический (тепловой) баланс процесса, а присутствие инертного углеродсодержащего материала обеспечивает оптимальные условия протекания химических реакций в расплаве. Энергоактивные углеродсодержащие материалы обладают высокой теплотворной способностью, являются топливом, способствуют образованию очагов горения. Энергоактивность материала зависит от размера и структурного несовершенства либо кристаллов графита, либо соединений углерода, определяется активностью углерода в реакции с кислородом, являющейся основой процесса горения. В качестве энергоактивных углеродсодержащих материалов применяют промышленные угли (антрацит, каменный уголь, бурый уголь, их пылевидные фракции, торф и продукты их переработки, например, кокс). К инертным углеродсодержащим относятся материалы, имеющие низкую температуру воспламенения и теплотворность по отношению к металлургическим процессам. Ими являются остатки переработки углей и углеродсодержащих материалов (золы ТЭЦ, отходы производства графитизации электродов ПГЭ, сажа и т.д.). Смесь энергоактивных и инертных углеродсодержащих материалов используют в качестве карбюратора как в виде кусковой (не более 150 мм), так и пылевидной фракций.
Использование кусковой фракции карбюратора диктуется необходимостью обеспечения газопроницаемости и гидравлических характеристик мартеновской печи. При использовании карбюратора более 150 мм не обеспечивается достаточная поверхность контакта с расплавленным металлом, что снижает усвоение углерода.
Пылевидная фракция карбюратора обеспечивает необходимую поверхность контакта с расплавленным металлом, что повышает степень усвоения углерода, благодаря чему происходит снижение температуры и продолжительности плавки.
Предлагаемая смесь из энергоактивного и инертного углеродсодержащего пылевидного материала позволяет интенсифицировать как процесс нагрева, так и науглероживания металлолома.
При расходе пылевидной фракции менее 30% от общего количества карбюратора не обеспечивается необходимый объем зоны горения и насыщения тонкоизмельченным углеродсодержащим материалом расплава, при большем 50% ухудшаются газопроницаемость и гидравлические характеристики мартеновской ванны. Горение энергоактивной пылеугольной составляющей, входящей в состав карбюратора, и обеспечение температуры нагрева шихты интенсифицирует процесс расплавления стального лома. В первой порции энергоактивной пылеугольной пыли требуется не менее 30% т.к. меньшее количество не обеспечивает необходимый объем ванны первичного жидкого расплава. Более 50% может привести к интенсивному вспениванию шлака.
После образования жидкой ванны роль пылеугольного материала, как топлива, становится второстепенной. Поэтому в последующих порциях его содержание составляет 50-70% от предыдущей. Меньшее количество не обеспечивает необходимое количество тепла, большее нецелесообразно из-за перегрева и потери материала как карбюратора.
После образования расплава определяющую роль в мартеновской плавке играет процесс растворения металлолома в жидкой ванне. Благодаря наличию пылеугольной фракции ускоряется науглероживание металлической части шихты. Для этого увеличивают количество инертного углеродсодержащего материала, что и достигается уменьшением содержания энергоактивного материала. Вследствие получения насыщенного углеродом расплава происходит собственно не плавление при 1500oС, а растворение металлолома при 1100oC, таким образом сокращается период расплавления.
Пример. Предлагаемый способ выплавки стали осуществили в 250-тонной мартеновской печи. Завалку печи производили следующим образом: загружали 15-30 т металлолома, 6 мульд карбюратора, затем второй слой металлолома и карбюратора, известняка 12 мульд, металлолома 180-250 т. Затем шихту нагревали и расплавляли при температуре 1100oС. В качестве карбюратора использовали материал, состоящий из смеси энергоактивных и инертных углеродсодержащих материалов крупностью от 150 мм до пылевидных уголь, кокс, коксик, отходы ПГЭ, золу, сажу. Расход пылевидной фракции в смеси принимали 20, 30, 40, 50, 60% от общего количества карбюратора.
Пылевидная фракция карбюратора состояла из энергоактивной составляющей, в качестве которой брали угольную пыль, и инертной составляющей, в качестве которой использовали золу ТЭЦ, отходы ПГЭ, сажу, при этом расход угольной пыли составлял в I порции 30, 40, 50% от пылевидной фракции карбюратора и во II порции 50, 60, 70% от количества I порции.
Наиболее высокие результаты получены при расходе пылевидного углеродсодержащего материала с расходом 30-50% от общего количества карбюратора.
Выявлено, что наибольший эффект дает использование пылеугольной пыли в первой порции 30-50% от углеродсодержащего материала, в последующем - уменьшенное до 50-70% от предыдущей порции.
Технико-экономические показатели процесса для различных вариантов выплавки приведены в табл. 1 и 2. Использование предложенного способа выплавки стали по сравнению с прототипом позволило сократить расход чугуна и время периода плавления и доводки металла на 1,1 и 5,4% соответственно, повысить усвоение углерода, а также производительность печи на 1,8 т/час.
Благодаря отсутствию значительного теплового эффекта, который наблюдается при окислении кремния чугуна при использовании его в завалку, обеспечивается более равномерный прогрев свода печи и повышается его стойкость. Кроме того, предотвращается выброс металлошихты через пороги завалочных окон, повышается безопасность работы обслуживающего персонала. ТТТ1

Claims (1)

  1. Способ выплавки стали, включающий послойную завалку металлошихты и шлакообразующих материалов, порционную загрузку карбюратора, нагрев и расплавление шихты, отличающийся тем, что в качестве карбюратора используют смесь энергоактивных и инертных углеродсодержащих кусковых крупностью не более 150 мм и пылевидных материалов, с расходом пылевидной фракции 30 50% от общего количества, причем в первой порции загружают 30 50% энергоактивной угольной пыли от общего количества пылевидной фракции в порции, с последующим уменьшением до 50 70% от предыдущей порции.
RU94002578A 1994-01-26 1994-01-26 Способ выплавки стали RU2068000C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94002578A RU2068000C1 (ru) 1994-01-26 1994-01-26 Способ выплавки стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94002578A RU2068000C1 (ru) 1994-01-26 1994-01-26 Способ выплавки стали

Publications (2)

Publication Number Publication Date
RU94002578A RU94002578A (ru) 1995-09-20
RU2068000C1 true RU2068000C1 (ru) 1996-10-20

Family

ID=20151761

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94002578A RU2068000C1 (ru) 1994-01-26 1994-01-26 Способ выплавки стали

Country Status (1)

Country Link
RU (1) RU2068000C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Морозов А.Н. Современный мартеновский процесс. - М.: Металлургиздат, 1961, с. 422. Авторское свидетельство СССР N 994564, кл. С 21 С 5/04,1983. *

Similar Documents

Publication Publication Date Title
US4089677A (en) Metal refining method and apparatus
JP2004521188A (ja) 電気炉内溶融鉄生成方法
CA1213928A (en) Method of carrying out metallurgical or chemical processes in a shaft furnace, and a low shaft furnace therefor
RU2068000C1 (ru) Способ выплавки стали
ES459836A1 (es) Perfeccionamientos en los procedimientos para la obtencion de composiciones para el tratamiento de las escorias meta- lurgicas en estado fundido.
KR102517013B1 (ko) 가탄재 및 그것을 사용한 가탄 방법
US2762701A (en) Carburizing molten ferrous metal
KR100257213B1 (ko) 크롬 광석의 용융 환원 방법
RU2107738C1 (ru) Способ выплавки стали из металлолома в дуговой электропечи
SU1069632A3 (ru) Способ получени ферромарганца или ферросиликомарганца
RU2109836C1 (ru) Шихта для получения ферросилиция
US5725631A (en) Composite charge for metallurgical processing
US2861879A (en) Method for the production of iron from steel scrap
RU2213788C2 (ru) Способ выплавки стали в дуговой электропечи
RU2805114C1 (ru) Способ выплавки стали в электродуговой печи
RU2150514C1 (ru) Шихтовой брикет для производства высококачественной стали и способ его получения
RU2051975C1 (ru) Способ выплавки стали в дуговой электропечи
RU2186854C1 (ru) Способ доменной плавки
RU2697129C2 (ru) Способ загрузки шихты в дуговую электропечь для выплавки стали
SU870440A2 (ru) Способ выплавки стали
RU2108399C1 (ru) Способ выплавки стали в дуговых электропечах из металлолома
SU572504A1 (ru) Способ получени железа и его сплавов из железорудных материалов
RU2113498C1 (ru) Способ выплавки стали в конвертере
RU2135596C1 (ru) Способ выплавки чугуна
RU2031960C1 (ru) Способ выплавки стали