RU2054752C1 - Комплементарный ключ - Google Patents

Комплементарный ключ Download PDF

Info

Publication number
RU2054752C1
RU2054752C1 RU93009911A RU93009911A RU2054752C1 RU 2054752 C1 RU2054752 C1 RU 2054752C1 RU 93009911 A RU93009911 A RU 93009911A RU 93009911 A RU93009911 A RU 93009911A RU 2054752 C1 RU2054752 C1 RU 2054752C1
Authority
RU
Russia
Prior art keywords
mos
key
transistors
pocket
component
Prior art date
Application number
RU93009911A
Other languages
English (en)
Other versions
RU93009911A (ru
Inventor
Александр Алексеевич Красин
Original Assignee
Александр Алексеевич Красин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Алексеевич Красин filed Critical Александр Алексеевич Красин
Priority to RU93009911A priority Critical patent/RU2054752C1/ru
Publication of RU93009911A publication Critical patent/RU93009911A/ru
Application granted granted Critical
Publication of RU2054752C1 publication Critical patent/RU2054752C1/ru

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

Использование: в электронной технике при создании аналоговых интегральных схем с КМОП-структурами. Сущность изобретения: комплементарный ключ содержит внешние выводы, nМОП- и pМОП-компоненты, содержащие n- и p-канальные МОП-транзисторы, включенные параллельно между его внешними выводами. Одна из МОП-компонент расположена в отдельном кармане с типом проводимости, противоположном типу проводимости подложки, в котором расположена другая МОП-компонента. МОП-компонента, которая расположена в отдельном кармане, имеет два последовательно соединенных МОП-транзистора, включенных между внешними выводами ключа, а общий исток-стоковый узел этой пары подключен к отдельному карману, в котором расположена эта МОП-компонента. 4 ил.

Description

Изобретение относится к электронной технике и может быть использовано при создании микромощных аналоговых интегральных схем (ИС) с КМОП-структурами.
Известно применение одиночного МОП-транзистора в качестве ключа для коммутации аналоговых сигналов. Его недостатком является невозможность коммутации сигналов во всем диапазоне от потенциала "земли" до потенциала положительного вывода источника питания +Е. Например nМОП-транзистор не в состоянии пропускать сигналы с уровнем выше, чем +Е Uтn, где Uтn пороговое напряжение nМОП-транзистора с учетом смешения подложки.
Наиболее близким по технической сущности к заявляемому является комплементарный ключ, который состоит из параллельно включенных nМОП- и pМОП-транзисторов с противофазным управлением. В открытом состоянии такого ключа сигналы низкого уровня (от потенциала "земли") проводят nМОП-транзистор, сигналы высокого уровня (до потенциала +Е) проводят pМОП-транзистор, за коммутацию сигналов среднего уровня отвечают оба транзистора.
Недостатками такого комплементарного ключа являются повышенное сопротивление и невозможность коммутации сигналов среднего уровня при низковольтном питании. Минимальное значение питающего напряжения, при котором возможна коммутация сигналов среднего уровня, существенно превышает сумму пороговых напряжений nМОП- и pМОП-транзисторов из-за эффекта влияния подложки. Например, при пороговых напряжениях (без смещения подложки) обоих транзисторов 0,6-0,7 В ключ не может пропустить сигналы среднего уровня при питании ниже 2,3 В (IEEE J. of Sol. St. Cir. 1985, v.20, N 3, pp. 657-665). При низкой температуре это ограничение еще сильнее из-за роста пороговых напряжений транзисторов. Использование транзисторов с очень низкими пороговыми напряжениями связано с риском плохого запирания ключа при повышенной температуре из-за снижения пороговых напряжений и конечного разброса их значений. Использование встроенного генератора повышенного напряжения для питания транзисторов ключей (IEEE J. of Sol. St. Cir. 1984, v. 19, pp. 343-348) приводит к увеличению площади кристалла ИС, а сам генератор может стать источником нежелательных помех.
Техническим результатом является снижение минимально допустимого питающего напряжения аналогового комплементарного ключа. Цель достигается тем, что в комплементарном ключе с двумя внешними выводами nМОП- и pМОП-компоненты которого, состоящие соответственно из n- и p-канальных МОП-транзисторов, включены параллельно между его внешними выводами, причем одна из МОП-компонент расположена в отдельном кармане с типом проводимости, противоположным типу проводимости подложки, в которой расположена другая МОП-компонента, МОП-компонента, которая расположена в отдельном кармане, имеет пару последовательно соединенных МОП-транзисторов, включенную между внешними выводами ключа, а общий исток-стоковый узел этой пары подключен к отдельному карману, в котором расположена эта МОП-компонента.
На фиг. 1 показан известный комлементарный ключ в открытом состоянии; на фиг. 2 показана зависимость проводимости компонент ключей от уровня коммутируемого сигнала; на фиг. 3 показан пример предлагаемого ключа; на фиг. 4 другой пример реализации предлагаемого ключа.
Известный ключ, изображенный на фиг. 1, имеет внешние выводы 1 и 2 и состоит из параллельно соединенных nМОП- и pМОП-компонент, представленных транзисторами VT1 (nМОП) и VT2 (pМОП). P-карман 3 транзистора VT1 заземлен, а n-подложка 4 pМОП-транзистора VT2 соединена с шиной +Е. Согласно соотношению для ВАХ МОП-транзистора в крутой области характеристик проводимость G такого ключа при малой разности потенциалов на его концах 1 и 2 складывается из проводимостей его компонент и определяется выражением
G Gn + Gp Kn (Ugsn Uтn) +
+ Kp(Ugsp Uтр), где Gn и Gp проводимость n- и p-компонент ключа;
Kn, Kp коэффициенты, зависящие от размеров транзисторов, емкости затворного окисла и подвижности носителей заряда;
Ugsn и Ugsp напряжения затвор-исток n- и p-МОП-транзисторов;
Uтn, Uтp пороговые напряжения транзисторов с учетом смешения подложки (кармана).
В открытом ключе у nМОП-транзистора Ugsn E Uвх, а смещение p-кармана по отношению к истоку равно Uвх, у pМОП-транзистора Ugsp Uвх, а смешение n-подложки равно E Uвх, т.е. как Ugs, так и Uт транзисторов зависят от уровня входного сигнала Uвх. На фиг. 2 показана зависимость проводимостей компонент открытого ключа от входного сигнала при напряжении источника питания Е 3 В. Расчет сделан для пороговых напряжений n- и pМОП-транзисторов без смещения кармана (подложки) 1 В, толщины затворного окисла 0,088 мкм, концентрации примеси в p-кармане и подложке соответственно 3 х 1016 и 2 х 1015 см-3 и комнатной температуры. Штриховкой выделена область значений входных сигналов, которые ключ не проводит.
На фиг. 3 показан пример предлагаемого ключа с внешними выводами 1 и 2, nМОП-компонента которого состоит из пары последовательно соединенных транзисторов VT1 и VT2, которые находятся в отдельном p-кармане 3, подключенном к их общему исток-стоковому узлу 3а. РМОП-компонента в n-подложке 4 представлена pМОП-транзистором VT3. В таком ключе пороговое напряжение транзисторов nМОП-компоненты в открытом состоянии не зависит от уровня входного сигнала, поскольку потенциал p-кармана следует за входным сигналом и отсутствует смещение p-кармана по отношению к истокам nМОП-транзисторов. Зависимость проводимости nМОП-компоненты этого ключа также показана на фиг. 2, но помечена символом Gn, откуда видно, что предлагаемый комплементарный ключ может коммутировать любые сигналы в диапазоне от 0 до 3 В. В то же время в закрытом состоянии такой ключ обладает очень высоким сопротивлением для любых соотношений потенциалов из этого диапазона на его выводах.
На фиг. 4 показан еще один пример реализации предлагаемого ключа с внешними выводами 1 и 2, отличающийся тем, что его nМОП-компонента состоит из трех n-МОП-транзисторов VT1, VT2 и VT3 в отдельном p-кармане 3. VT1 и VT2 пара последовательно соединенных транзисторов, подключенных к внешним выводам ключа, P-карман 3, транзисторов VT1, VT2 и VT3 соединен с общим исток-стоковым узлом 3а транзисторов VT1 и VT2. Транзистор VT3 подключен к внешним выводам 1 и 2 ключа для снижения общего сопротивления nМОП-компоненты.

Claims (1)

  1. КОМПЛЕМЕНТАРНЫЙ КЛЮЧ, содержащий два внешних вывода, nМОП- и pМОП-компоненты, состоящие соответственно из n- и p-канальных МОП-транзисторов, включенные параллельно между его внешними выводами, причем одна из МОП-компонент расположена в отдельном кармане с типом проводимости, противоположным типу проводимости подложки, в которой расположена другая МОП-компонента, отличающийся тем, что МОП-компонента, которая расположена в отдельном кармане, имеет пару последовательно соединенных МОП-транзисторов, включенную между внешними выводами ключа, а общий исток - стоковый узел этой пары подключен к отдельному карману, в котором расположена эта МОП-компонента.
RU93009911A 1993-02-25 1993-02-25 Комплементарный ключ RU2054752C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93009911A RU2054752C1 (ru) 1993-02-25 1993-02-25 Комплементарный ключ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93009911A RU2054752C1 (ru) 1993-02-25 1993-02-25 Комплементарный ключ

Publications (2)

Publication Number Publication Date
RU93009911A RU93009911A (ru) 1995-02-27
RU2054752C1 true RU2054752C1 (ru) 1996-02-20

Family

ID=20137715

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93009911A RU2054752C1 (ru) 1993-02-25 1993-02-25 Комплементарный ключ

Country Status (1)

Country Link
RU (1) RU2054752C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740124C1 (ru) * 2017-07-24 2021-01-11 Чайна Электроникс Текнолоджи Груп Корпорейшн N 55 Резерч Институт Карбидокремниевое переключающее устройство и способ его производства

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Мулявки Я. Схемы на операционных усилителях с переключаемыми конденсаторами. М.: Мир, 1992, с.376-378. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740124C1 (ru) * 2017-07-24 2021-01-11 Чайна Электроникс Текнолоджи Груп Корпорейшн N 55 Резерч Институт Карбидокремниевое переключающее устройство и способ его производства

Similar Documents

Publication Publication Date Title
KR100271633B1 (ko) 지연회로
US20060226893A1 (en) Bias circuit for high-swing cascode current mirrors
US5434534A (en) CMOS voltage reference circuit
JPH08335122A (ja) 基準電圧用半導体装置
KR930020835A (ko) 증가-공핍 모드 캐스코드(cascode) 전류 미러
US6040735A (en) Reference voltage generators including first and second transistors of same conductivity type
KR940025179A (ko) 인터페이스 회로
KR970707637A (ko) 비휘발성 메모리 집적 회로의 고전압 스위칭용 고전압 레벨 시프터(high voltage level shifter for switching high voltage in non-volatile memory integrated circuits)
US7573325B2 (en) CMOS reference current source
EP0317222B1 (en) Voltage divider circuits
US6370066B1 (en) Differential output circuit
US7944274B2 (en) Semiconductor switch
KR950035088A (ko) 시모스 회로용 입력 버퍼
RU2054752C1 (ru) Комплементарный ключ
EP1100200A2 (en) Analog switch including two complementary MOS field-effect transistors
US6275100B1 (en) Reference voltage generators including first and second transistors of same conductivity type and at least one switch
KR970067337A (ko) 게이트 절연 박막을 가진 cmos 트랜지스터를 포함하는 고전압 레벨 시프트 회로
KR940025175A (ko) 반도체 집적회로의 중간전위 발생회로
KR940020669A (ko) 바이어스 회로(bias circuit)
KR960702698A (ko) 전자 회로(CMOS input with Vcc compensated dynamic threshold)
US6815997B2 (en) Field effect transistor square multiplier
Karel et al. Influence of body-biasing, supply voltage, and temperature on the detection of resistive short defects in FDSOI Technology
KR960026787A (ko) 전류 모드 감지 증폭기를 구비하는 집적 회로
JP3424434B2 (ja) リーク電流補償回路
JP5428259B2 (ja) 基準電圧発生回路および電源クランプ回路