RU2054494C1 - Способ переработки марганцевого сырья - Google Patents

Способ переработки марганцевого сырья Download PDF

Info

Publication number
RU2054494C1
RU2054494C1 RU92008187A RU92008187A RU2054494C1 RU 2054494 C1 RU2054494 C1 RU 2054494C1 RU 92008187 A RU92008187 A RU 92008187A RU 92008187 A RU92008187 A RU 92008187A RU 2054494 C1 RU2054494 C1 RU 2054494C1
Authority
RU
Russia
Prior art keywords
leaching
manganese
electrolyte
pulp
solution
Prior art date
Application number
RU92008187A
Other languages
English (en)
Other versions
RU92008187A (ru
Inventor
Аркадий Николаевич Птицын
Ангелина Николаевна Герасименко
Людмила Ивановна Галкова
Original Assignee
Аркадий Николаевич Птицын
Ангелина Николаевна Герасименко
Людмила Ивановна Галкова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Аркадий Николаевич Птицын, Ангелина Николаевна Герасименко, Людмила Ивановна Галкова filed Critical Аркадий Николаевич Птицын
Priority to RU92008187A priority Critical patent/RU2054494C1/ru
Publication of RU92008187A publication Critical patent/RU92008187A/ru
Application granted granted Critical
Publication of RU2054494C1 publication Critical patent/RU2054494C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к переработке марганцевого сырья выщелачиванием. Сущность: способ включает выщелачивание сырья отработанным сернокислым электролитом в присутствии железной стружки, классификацию пульпы после выщелачивания, фильтрацию песков классификации, обработку слива классификации исходным сырьем, классификацию полученной пульпы, направление песков классификации на выщелачивание, а слива - на очистку от примесей путем осаждения их известковым молоком при pH 6,4 - 7,0 и температуре 95 - 98oС, отделение осажденных примесей от раствора, электролиз очищенного раствора с получением диоксида марганца (ЭДМ) и регенерацией кислоты в отработанном электролите и возвращение последнего на выщелачивание. 2 табл.

Description

Изобретение относится к гидрометаллургии марганца и может быть использовано для получения активного диоксида марганца из любого марганецсодержащего сырья (руды окисные, карбонатные, смешанные окисно-карбонатные, окисленные железомарганцевые, марганцевые концентраты, шламы и т.д.).
Известен способ производства ЭДМ на Руставском ПО "Азот" [1] включающий восстановительный обжиг чиатурского окисного марганцевого концентрата в токе азото-водородной смеси (70% Н2 и 30% N2) при 950-990оС, выщелачивание при 85-90оС сернокислым отработанным электролитом, очистку полученного марганецсодержащего раствора от примесей обработкой известковым молоком и сульфидом натрия и электролиз раствора с получением электролитического диоксида марганца (ЭДМ).
Недостатками способа являются: высокая энергоемкость; аппаратурная сложность и экологическая опасность операции восстановительного обжига, требующая транспортировки без вторичного окисления восстановленного продукта, необходимость использования дефицитного высокосортного сырья, низкое сквозное извлечение марганца (< 50%).
Наиболее близким по совокупности признаков, принятым за прототип, является способ переработки марганцевого сырья [2] включающий выщелачивание сырья, содержащего диоксид марганца, оборотной серной кислотой с сульфатом аммония в присутствии металлического восстановителя, содержащего марганец и железо, до достижения рН 1,8-2,0, отделение фильтрацией нерастворимого остатка от раствора, очистку раствора от примесей путем осаждения аммиаком железа и фосфора при рН 4,5-5,0, отделение железофосфорного концентрата фильтрацией и электролиз очищенного аммонийно-сульфатного раствора марганца с получением электролитического марганца и оборотной серной кислоты с сульфатом аммония.
Недостатками прототипа являются: невозможность тщательной очистки раствора от тяжелых цветных и полуторных металлов, особенно от железа, что не позволяет использовать данный способ для получения ЭДМ, повышенный расход кислоты, и, следовательно, аммиака, плохая фильтруемость пульпы.
Целью изобретения является обеспечение глубокой очистки раствора и получение высококачественного диоксида марганца, а также снижение расхода кислоты и решает вопрос обезвоживания пульпы.
Это обеспечивается тем, что в известном способе, включающем выщелачивание отработанным сернокислым электролитом в присутствии восстановителя, содержащего металлическое железо, с получением пульпы, очистку от примесей их осаждением с получением очищенного раствора и извлечение из него марганца электролизом с регенерацией серной кислоты в отработанном электролите, пульпу после выщелачивания подвергают классификации с получением слива и песков, слив обрабатывают исходным сырьем, полученную после обработки пульпу подвергают дополнительной классификации с получением песков и слива, пески направляют на выщелачивание, а слив на очистку от примесей их осаждением известковым молоком при рН 6,4-7,0 и температуре 95-98оС.
При классификации пульпы после выщелачивания в слив выделяются в основном самые тонкие частицы гидроксида трехвалентного железа, что позволяет при дальнейшей обработке исходным сырьем и при осаждении примесей провести глубокую очистку раствора от тяжелых цветных и полуторных металлов за счет развитой поверхности гидроксида железа.
Обработка слива классификации исходным сырьем позволяет максимально полно использовать как свободную, так и связанную (FeSO4 и Fe2(SO4)3) кислоту, что позволяет снизить расход кислоты и извести.
Обработка слива классификатора исходным сырьем, содержащим MnO2 (окислитель), позволяет полностью окислить двухвалентное железо до трехвалентного, которое при рН 4-4,5 (а при рН 7 тем более) осаждается в виде гидроксида. Если в пульпе не будет окислителя (более сильного, чем кислород воздуха), то незначительные количества Fe'' (буквально мг/дм3) будут присутствовать в растворе, что не позволит при дальнейшей очистке от него освободиться, т.к. двухвалентное железо осаждается в виде гидроксида при рН≥8.
Дополнительная классификация и направление слива на очистку от примесей позволяет гидроксид Fe''' оставить в операции осаждения примесей известковым молоком при рН 6,4-7,0. Данный интервал рН обеспечивает максимальное осаждение всех вредных для электролиза примесей: Cu, Ni, Cr, V, Zn, Fe''', Al, кроме магния, а присутствие объемного осадка гидроксида железа обеспечивает окончательную доочистку от этих примесей до следов (десятые доли мг/дм3 единицы мг/дм3). Если рН пульпы будет < 6,4, то будет некоторое недоосаждение примесей, т. е. не достигается полная очистка раствора, если > 7,0, то возможно заметное соосаждение и, следовательно, возрастание потерь марганца.
Поддержание температуры при очистке от примесей в интервале 95-98оС позволяет не только достичь полной очистки раствора, но и улучшить фильтрование осадка гидроксида железа и примесей за счет коагуляции и частичной кристаллизации осадка гидрооксидов. При температуре < 95оС коагуляции осадка не происходит и осадки фильтруются очень плохо. Повышение температуры > 98оС технологически и экономически нецелесообразно.
Способ осуществляют следующим образом.
Выщелачивание марганцевого сырья проводят отработанным сернокислым электролитом в присутствии железной стружки (восстановитель, содержащий металлическое железо) до рН ≈ 2,0, при этом происходит извлечение в раствор четырехвалентного марганца и гидролиз сульфата трехвалентного железа с получением гидроксида железа. Пульпу после выщелачивания классифицируют в гидроциклоне, пески, представляющие собой в основном кремнеземсодержащий продукт, направляют на фильтpацию. Слив классификации сернокислый раствор сульфата Mn, содержащий частицы гидроксида железа, объединяют с фильтратом и направляют на обработку исходным марганцевым сырьем, при этом происходит частичное выщелачивание марганца, окисление двухвалентного железа до трехвалентного состояния и его осаждение в виде гидроксида, кислотность снижается до рН 4-4,5. Полученную пульпу также подвергают дополнительной классификации в гидроциклоне, и пески классификации, представляющие собой невскрытую окисленную составляющую четырехвалентного марганца исходного сырья, направляют на выщелачивание оборотным сернокислым электролитом, куда добавляется серная кислота для восполнения потерь. Слив дополнительной классификации направляют на очистку от примесей, которую ведут обработкой известковым молоком при рН 6,4-7 и температуре 95-98оС при перемешивании в течение 1 ч с получением марганецсодержащего раствора, практически не содержащего вредных примесей железа, тяжелых и цветных металлов. Осажденные примеси отфильтровывают и из раствора сульфата марганца электролизом получают ЭДМ γ-модификации, а отработанный электролит, представляющий собой раствор регенерированной в стехиометрическом количестве выделенному ЭДМ серной кислоты, возвращают на выщелачивание.
Способ проверен в лабораторных условиях.
П р и м е р 1. Способ проверен на окисной руде Аккермановского месторождения состава, Mn 26,6; MnO2 39,5; SiO2 40,3; Al2O3 2,57; Fe 6,68; CaO 0,7; MgO 0,34; K2O 0,27; Na2O 0,16; P2O5 0,21; V2O5 0,057; Cr2O3 0,25; BaO 0,80; Ni 0,29; Co 0,046; Zn 0,038; Pb 0,02; Cu 0,02; As 0,004. Навеску руды 50 г, измельченную до 95% класса 0,10 мм, в присутствии железной стружки в количестве 10 г выщелачивали отработанным электролитом объемом 650 см3 при температуре 90оС в течение 3 ч. Состав отработанного электролита, г/дм3: H2SO4 43,1; Mn 25,6; Fe 0,0087; Co 0,0013; Cu следы; Ni 0,0046; V 0,00056. Извлечение марганца в раствор составило 90%
Пульпу после выщелачивания подвергали классификации в лабораторном гидроциклоне. Песковая фракция имела состав, мас. SiO2 66,0; Fe 15,0; CaO 0,1; P2O5 0,15; Mn 0,5-7,0.
Слив классификации представляет из себя пульпу, содержащую тонкие частички твердой фазы состава, Fe2O3 47,0; SiO2 31,0; Mn 0,48; CaO 0,1 (выход 47% ), и жидкую фазу состава, г/дм3: Mn 43,4; Fe 4,29; Co 0,0263; Cu 0,000073; Ni 0,1463; V 0,00177; Zn 0,0163; Cr 0,0181; рН 2.
Сливом классификации была обработана свежая навеска руды 50 г при установившейся температуре 70оС в течение 1 ч при перемешивании. Жидкая составляющая пульпы имела рН 4 и состав, г/дм3: Mn 45,7; Fe 0,00337; Co 0,0236; Cu 0,0013; Ni 0,14; V 0,00005; Zn 0,0129; Cr 0,00027.
Пульпа была классифицирована как описано выше, при этом пески в количестве 41 г состава, Mn 22,0; SiO2 51,0; Fe 11,0; CaO 0,2; MgO 0,23; Ni 0,17, направлены на выщелачивание отработанным электролитом в присутствии металлического железа, а слив классификации поступил на стадию очистки от примесей. Очистку от примесей осуществили перемешиванием в течение 1,5 ч, нагретой до 95оС и нейтрализованной известковым молоком до рН 7,0 пульпы, расход извести составил 2 г. Пульпу фильтровали на воронке Бюхнера. Раствор после очистки от примесей имел состав, г/дм3: Mn 47,5; Fe 0,00396; Co 0,0013; Cu не обнаружено; Ni 0,00247; V 0,00005; Zn 0,00017; Cr 0,00027.
Из данного раствора в электролизере с анодом из титана марки ВТI-O при плотности тока 100 А/м2, температуре электролита 90оС получен ЭДМ γ-модификации, соответствующий ГОСТу 25823-83. Состав ЭДМ, Mn 60,1; MnO2 90,2; Fe 0,07; Pb < 0,02; Co < 0,005. В широком интервале кислотности электролита от 4 г/л до 41 г/л, напряжение на ванне было стабильным 1,9-2,7 В, выход по току составил 94-100% расход электроэнергии 1,5 кВт· ч/кг.
Оценку электрохимической активности полученного образца ЭДМ провели путем разряда электрохимической ячейки, имитирующей работу гальванического элемента марганцевоцинковой системы со щелочным электролитом по методике ВНИИТ. Продолжительность разряда ячейки в гальваностатическом режиме постоянным током 50 мА до конечного напряжения 0,9 В составила 150-170 мин (стандарт 150 мин), ЭДС ячейки составило 1,62 В, начальное напряжение 1,59 В.
Отработанный электролит направили на выщелачивание исходной руды в присутствии восстановителя. Состав электролита проведен выше.
В табл. 1 представлены результаты очистки слива классификации по предлагаемому способу в зависимости от рН.
При гидролитической очистке слива классификации такие примеси, как фосфор, ванадий, цинк, хром, алюминий, медь, не вызывают особых затруднений, они практически полностью осаждаются при нейтрализации раствора известковым молоком до рН 7, а такие примеси, как железо, кобальт и никель, в этих условиях осаждаются не полностью. Поэтому контроль за качеством очистки раствора ведется по содержанию этих примесей.
В табл. 2 представлены результаты по влиянию температуры на фильтрацию осадка при очистке от примесей слива классификации.
П р и м е р 2. Исходное сырье железомарганцевая окисная руда Ушкатынского месторождения состава, Mn 25,2; MnO 3,49; MnO2 35,6; Feобщ 23,5; FeO 0,86; Fe2O3 32,6; SiO2 14,5; Al2O3 4,55; CaO 0,91; MgO 0,24; K2O 0,64; Ma2O 0,24; П.Т.П.П. 4,66; TiO2 0,19; P2O5 0,05; S 0,029; BaO 1,51; Co < 0,002; Cu < 0,005; Zn 0,054; Pb 0,062; As 0,055; Ge 0,0005.
По условиям примера 1 получен очищенный от примесей раствор состава, г/дм3: Mn 57,24; Fe следы; V2O5 0,01; Cr2O3 не обнаружено; Cu не обнаружено; Ni 0,007; Co следы; Pb не обнаружено; из которого электролизом получен ЭДМ γ-модификации, по электрохимической активности соответствующий техническим условиям.
Состав ЭДМ, Mn 59,8; MnO2 91,0; Fe 0,05; Pb < 0,02; Co < 0,005.
Таким образом, предлагаемый способ позволяет получить высококачественный ЭДМ при расходе кислоты 88 кг на тонну перерабатываемого сырья, что на 100 кг меньше, чем по прототипу (для примера 1), а также решает вопрос обезвоживания полученных пульп.

Claims (1)

  1. СПОСОБ ПЕРЕРАБОТКИ МАРГАНЦЕВОГО СЫРЬЯ, включающий выщелачивание отработанным сернокислым электролитом в присутствии восстановителя, содержащего металлическое железо с получением пульпы, очистку от примесей их осаждением с получением очищенного раствора и извлечение из него марганца электролизом с регенерацией серной кислоты в отработанном электролите и возвращением последнего на выщелачивание, отличающийся тем, что пульпу после выщелачивания подвергают классификации с получением слива и песков, слив обрабатывают исходным сырьем, полученную после обработки пульпу подвергают дополнительной классификации с получением песков и слива, пески направляют на выщелачивание, а слив на очистку от примесей их осаждением известковым молоком при pH 6,4 - 7,0 и температуре 95 - 98oС.
RU92008187A 1992-11-25 1992-11-25 Способ переработки марганцевого сырья RU2054494C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU92008187A RU2054494C1 (ru) 1992-11-25 1992-11-25 Способ переработки марганцевого сырья

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU92008187A RU2054494C1 (ru) 1992-11-25 1992-11-25 Способ переработки марганцевого сырья

Publications (2)

Publication Number Publication Date
RU92008187A RU92008187A (ru) 1995-10-27
RU2054494C1 true RU2054494C1 (ru) 1996-02-20

Family

ID=20132588

Family Applications (1)

Application Number Title Priority Date Filing Date
RU92008187A RU2054494C1 (ru) 1992-11-25 1992-11-25 Способ переработки марганцевого сырья

Country Status (1)

Country Link
RU (1) RU2054494C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115704062A (zh) * 2022-01-27 2023-02-17 江苏载驰科技股份有限公司 一种回收电解锰渣中有价金属并再生高纯度锰盐的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Временный технологический регламент производства электролитической двуокиси марганца. Руставский химический завод г. Северодонецк, 1979. 2. Авторское свидетельство СССР N 1518400, кл. C 22B 47/00, 1989. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115704062A (zh) * 2022-01-27 2023-02-17 江苏载驰科技股份有限公司 一种回收电解锰渣中有价金属并再生高纯度锰盐的方法

Similar Documents

Publication Publication Date Title
CN101328536B (zh) 从矿石中综合回收镍、铜、钴、硫和镁的工艺
CN104099474B (zh) 一种电镀污泥回收利用工艺
CN102851707B (zh) 一种碱浸法从冶炼烟灰中回收生产电解锌粉和铅粉的工艺
FI80076C (fi) Hydrometallurgiskt foerfarande foer extrahering av zink och aotminstone en del av kopparn och utvinning av bly och silver ur zinkinnehaollande svavelhaltiga material.
CN108899601A (zh) 一种从磷酸铁锂中回收锂的方法
US4162294A (en) Process for working up nonferrous metal hydroxide sludge waste
CN101328537B (zh) 从高镁镍精矿中综合回收镍、铜、钴、硫和镁的工艺
CN112159897B (zh) 一种镍钴锰浸出液净化的方法
CN109112301A (zh) 一种在硫酸介质中电解分离铁和锌的方法
CN113088710A (zh) 一种铜锗置换渣中铜锗分离的方法
CN107673400A (zh) 一种铜镉渣生产七水硫酸锌的方法
US4030990A (en) Process for recovering electrolytic copper of high purity by means of reduction electrolysis
CN102191378B (zh) 一种电解锰的制液工艺
CA1324977C (en) Process of treating residues from the hydrometallurgical production of zinc
JPH10509212A (ja) 金属及び化学的価値の回収方法
RU2054494C1 (ru) Способ переработки марганцевого сырья
JP4215547B2 (ja) コバルトの回収方法
CN103131867A (zh) 一种含钒钢渣提钒的方法
CN102899491A (zh) 一种浮选分离硫酸锌浸出液中高浓度铁离子的方法
CN1034517C (zh) 高收率制取高纯硫酸锰溶液
JPH04311541A (ja) 亜鉛精鉱と亜鉛浸出残渣との同時湿式処理法
JPH0952716A (ja) めっき廃液からのソフトフェライト用複合酸化物粉末の製造方法
CN105018726A (zh) 一种铅锌共生矿处理方法
RU2164955C1 (ru) Способ утилизации отработанных химических источников тока
CN114214524A (zh) 一种电制锌水解后液的脱氟综合处理方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20061126