RU2036153C1 - Способ получения оксида кобальта - Google Patents
Способ получения оксида кобальта Download PDFInfo
- Publication number
- RU2036153C1 RU2036153C1 SU5051434A RU2036153C1 RU 2036153 C1 RU2036153 C1 RU 2036153C1 SU 5051434 A SU5051434 A SU 5051434A RU 2036153 C1 RU2036153 C1 RU 2036153C1
- Authority
- RU
- Russia
- Prior art keywords
- cobalt
- cobalt oxide
- oxide
- sulfur
- ammonium chloride
- Prior art date
Links
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 229910000428 cobalt oxide Inorganic materials 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims abstract description 56
- 235000019270 ammonium chloride Nutrition 0.000 claims abstract description 28
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 claims abstract description 17
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 claims abstract description 15
- 239000007787 solid Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000047 product Substances 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 22
- 238000001354 calcination Methods 0.000 claims description 13
- 239000012467 final product Substances 0.000 claims description 7
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 36
- 239000011593 sulfur Substances 0.000 abstract description 36
- 229910052717 sulfur Inorganic materials 0.000 abstract description 36
- 238000001035 drying Methods 0.000 abstract description 4
- 238000001914 filtration Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract 1
- 239000002184 metal Substances 0.000 abstract 1
- 150000002739 metals Chemical class 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 37
- 239000010941 cobalt Substances 0.000 description 36
- 229910017052 cobalt Inorganic materials 0.000 description 36
- 229910052783 alkali metal Inorganic materials 0.000 description 30
- 150000001340 alkali metals Chemical class 0.000 description 29
- 238000000605 extraction Methods 0.000 description 19
- 239000007864 aqueous solution Substances 0.000 description 18
- 239000011734 sodium Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 14
- 229910052708 sodium Inorganic materials 0.000 description 14
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 13
- 229910052700 potassium Inorganic materials 0.000 description 13
- 239000011591 potassium Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 11
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 238000010907 mechanical stirring Methods 0.000 description 6
- 238000012797 qualification Methods 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 2
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 2
- MULYSYXKGICWJF-UHFFFAOYSA-L cobalt(2+);oxalate Chemical compound [Co+2].[O-]C(=O)C([O-])=O MULYSYXKGICWJF-UHFFFAOYSA-L 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- -1 alkali metal salts Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- UYJXRRSPUVSSMN-UHFFFAOYSA-P ammonium sulfide Chemical compound [NH4+].[NH4+].[S-2] UYJXRRSPUVSSMN-UHFFFAOYSA-P 0.000 description 1
- WRWZNPYXEXPBAY-UHFFFAOYSA-N azane cobalt Chemical class N.[Co] WRWZNPYXEXPBAY-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000009856 non-ferrous metallurgy Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Изобретение относится к технологии получения оксида кобальта. Способ включает прокаливание гидроксида кобальта при 800-1000°С, обработку полученного оксида при 75-85°С (1-4) мас.%-ным раствором хлорида аммония, взятым в объемном соотношении к твердому оксиду кобальта (4-8):1. Полученный продукт фильтруют, подвергают промывке водой и сушат. Причем обработку оксида раствором хлорида аммония осуществляют в течение 1-5 ч. Способ позволяет получить оксид кобальта с суммарным содержанием щелочных металлов 0,020-0,025 мас. %, содержание серы менее 0,030 мас.%. 1 з.п. ф-лы, 3 ил.
Description
Изобретене относится к цветной металлургии, в частности к способам получения оксида кобальта, и может быть использовано в твердосплавной промышленности, а также в отраслях, связанных с применением реактивного оксида кобальта квалификации "ч" по ГОСТ 4467-79 (химическая технология).
Известен способ получения оксида кобальта, соответствующего по содержанию основного металла и примесей требованиям ГОСТ 18671-73 [1] Способ включает насыщение содой гидроксида кобальта, прокалку, выщелачивание, фильтрацию и сушку полученного продукта.
Недостатком этого способа является повышенная доля щелочных металлов (К + Na > 0,9%) в конечном продукте.
Для получения оксида кобальта с низким содержанием щелочных металлов на всех предприятиях твердосплавной промышленности ведут разложение предварительно восстановленного оксида кобальта (ГОСТ 18671-73) в соляной или азотной кислотах, гидролитическую очистку от трехвалентного железа, выделение кобальта в виде оксалата (CoC2O4) и прокалку промытого осадка до оксида. После осаждения оксалата кобальта получают маточные растворы, содержащие 0,2-0,5 г/л Сo, которые направляют на доизвлечение кобальта осаждением в виде карбоната, сульфида или оксалата кобальта. При осаждении карбоната кобальта, осуществляемом нейтрализацией маточного раствора содой, конечное содержание кобальта составляет 0,07 г/л и более, что связано с образованием прочных аммиачных комплексов кобальта, удерживающих его в растворе. Осаждение кобальта сульфидом аммония позволяет получать растворы с содержанием 0,01-0,03 г/л кобальта [2]
Недостатками этого способа являются сложность технологической схемы из-за наличия большого количества операций: отстаивания, фильтрации, сушки, переработки вторичных продуктов и др. удорожающих процесс, а также высокий расход реагентов, в частности использование дорогостоящей и дефицитной щавелевой кислоты, необходимой для осаждения оксалата кобальта. Только затраты на щавелевую кислоту составляет 7% что соответствует 50% себестоимости за вычетом затрат на исходное сырье. Кроме того, известный способ не является экологически чистым, это объясняется тем, что в процессе растворения восстановленного оксида кобальта в азотной кислоте образуются токсичные газовые выделения, содержащие NO. Извлечение кобальта в оксид кобальта согласно известной технологии не превышает 90%
Наиболее близким к предлагаемому изобретению является способ получения оксида из гидроксида кобальта [3] включающий прокаливание исходного гидроксида Сo(OH)2 при 300-350оС в течение 20-40 мин в псевдоожиженном слое при скорости подачи воздуха 0,04-0,045 м/с. Для осуществления этого способа в электропечь на газораспределительную решетку загружают гидроксид кобальта, в печь подают воздух и проводят прокалку. После прокалки нагреватели отключают, печь охлаждают и выгружают конечный продукт.
Недостатками этого способа являются сложность технологической схемы из-за наличия большого количества операций: отстаивания, фильтрации, сушки, переработки вторичных продуктов и др. удорожающих процесс, а также высокий расход реагентов, в частности использование дорогостоящей и дефицитной щавелевой кислоты, необходимой для осаждения оксалата кобальта. Только затраты на щавелевую кислоту составляет 7% что соответствует 50% себестоимости за вычетом затрат на исходное сырье. Кроме того, известный способ не является экологически чистым, это объясняется тем, что в процессе растворения восстановленного оксида кобальта в азотной кислоте образуются токсичные газовые выделения, содержащие NO. Извлечение кобальта в оксид кобальта согласно известной технологии не превышает 90%
Наиболее близким к предлагаемому изобретению является способ получения оксида из гидроксида кобальта [3] включающий прокаливание исходного гидроксида Сo(OH)2 при 300-350оС в течение 20-40 мин в псевдоожиженном слое при скорости подачи воздуха 0,04-0,045 м/с. Для осуществления этого способа в электропечь на газораспределительную решетку загружают гидроксид кобальта, в печь подают воздух и проводят прокалку. После прокалки нагреватели отключают, печь охлаждают и выгружают конечный продукт.
Однако при реализации этого способа не происходит удаления (рафинирования) из исходного сырья щелочных металлов и серы. В результате чего полученный оксид кобальта не соответствует требованиям, предъявляемым в производстве твердых сплавов, а также к реактивному оксиду кобальта квалификации "ч" по ГОСТ 4467-79.
Целью предлагаемого изобретения является увеличение производительности процесса, удешевление себестоимости полученной продукции и повышение ее качества за счет снижения массовых долей щелочных металлов и серы до норм, удовлетворяющих требованиям, предъявляемым к конечному продукту (оксиду кобальта) как предприятиями твердосплавной промышленности (сумма К + Na < 0,02% SO4 --< 0,1%), так и к реактивному кобальту квалификации "ч" по ГОСТ 4467-79.
Для этого в предлагаемом способе получения оксида кобальта при переработке кобальтсодержащего сырья пульпу, содержащую гидроксид кобальта, отфильтровывают, осадок прокаливают при 800-1000оС и обрабатывают в течение 1-5 ч при механическом перемешивании в 1-4 мас. водном растворе хлористого аммония, взятом в объемном соотношении к оксиду кобальта, равном (4-8):1, при 75-85оС, затем пульпу вновь отфильтровывают и осадок повторно обрабатывают водой для удаления механически увлеченных растворимых солей щелочных металлов и серы и сушат.
Отклонения условий от указанных значений влияют на массовые доли щелочных металлов и серы в готовом продукте и на структуре образующегося оксида.
Рассмотрим влияние основных факторов, влияющих на процесс.
Верхний предел температуры прокалки гидроксида равен 1000оС. Остальные параметры процесса взяты в оптимальных значениях.
В ходе исследований получен оксид кобальта хорошего качества: сумма щелочных металлов не превышает 0,015-0,02 мас. содержание серы менее 0,01% Извлечение кобальта в оксид (в готовый продукт) составляет 97,7%
Нижний предел температуры прокалки гидроксида кобальта равен 800оС. Остальные параметры процесса взяты в оптимальных значениях.
Нижний предел температуры прокалки гидроксида кобальта равен 800оС. Остальные параметры процесса взяты в оптимальных значениях.
В ходе испытаний получен оксид кобальта хорошего качества: массовая доля суммы щелочных металлов (натрия и калия) составляла 0,020-0,025% серы меньше 0,020% Извлечение кобальта в оксид (в готовый продукт) находилась на уровне 97,9%
При температуре прокалки гидроксида кобальта, равной 1050оС (остальные параметры процесса взяты в оптимальных значениях), получен оксид кобальта с увеличенной массовой долей суммы щелочных металлов (натрия и калия) 0,04% содержание серы в нем превышало 0,04%
Извлечение кобальта в оксид кобальта 97,6-97,8%
При температуре прокалки гидроксида кобальта, равной 790оС (остальные параметры процесса взяты в оптимальных значениях), получен оксид кобальта худшего качества. Сумма массовых долей натрия и калия находится на уровне 0,05% содержание серы выше 0,04%
Извлечение кобальта в оксид кобальта 97,3-97,5%
Использование в предлагаемом способе обработки прокаленного гидроксида кобальта (1-4) мас.-ного водного раствора хлористого аммония в агрегате с механическим перемешиванием обеспечивает совместное удаление из оксида кобальта натрия, калия, серы (сульфат-иона) и других примесей, и тем самым отпадает необходимость в использовании соды для перевода серы в форму легко растворимого в воде сульфата натрия при прокалке гидроксида кобальта.
При температуре прокалки гидроксида кобальта, равной 1050оС (остальные параметры процесса взяты в оптимальных значениях), получен оксид кобальта с увеличенной массовой долей суммы щелочных металлов (натрия и калия) 0,04% содержание серы в нем превышало 0,04%
Извлечение кобальта в оксид кобальта 97,6-97,8%
При температуре прокалки гидроксида кобальта, равной 790оС (остальные параметры процесса взяты в оптимальных значениях), получен оксид кобальта худшего качества. Сумма массовых долей натрия и калия находится на уровне 0,05% содержание серы выше 0,04%
Извлечение кобальта в оксид кобальта 97,3-97,5%
Использование в предлагаемом способе обработки прокаленного гидроксида кобальта (1-4) мас.-ного водного раствора хлористого аммония в агрегате с механическим перемешиванием обеспечивает совместное удаление из оксида кобальта натрия, калия, серы (сульфат-иона) и других примесей, и тем самым отпадает необходимость в использовании соды для перевода серы в форму легко растворимого в воде сульфата натрия при прокалке гидроксида кобальта.
Обязательным условием для получения требуемого качества готового продукта является выбор оптимального объемного соотношения водного раствора хлористого аммония к оксиду кобальта (Ж:Т), которое колеблется в пределах (4-8): 1 при обработке прокаленного гидроксида. В ходе лабораторных испытаний предлагаемого способа установлено, что при этом соотношении массовые доли щелочных металлов (суммы натрия и калия) снижаются до 0,010-0,02% В ходе исследований показано, что для достижения требуемой глубины удаления вышеуказанных примесей необходимо обработку оксида кобальта вести при механическом перемешивании и температуре 75-85оС. В этом интервале температур удаление примесей идет наиболее полно, а извлечение кобальта в товарный продукт достигает 97,0-98,5%
Было найдено оптимальное время обработки, равное 1-5 ч, при котором достигается одновременное увеличение как извлечения кобальта в товарный продукт, так и повышение его качества.
Было найдено оптимальное время обработки, равное 1-5 ч, при котором достигается одновременное увеличение как извлечения кобальта в товарный продукт, так и повышение его качества.
Снижение времени обработки меньше 1 ч не обеспечивает достаточного перевода примесей в раствор, что резко ухудшает качество готового продукта.
Увеличение продолжительности обработки больше 5 ч, например 6 ч, неэкономично, так как эффективность удаления примесей в фильтрат остается на прежнем уровне.
Рассмотрим остальные верхние и нижние оптимальные пределы параметров для реализации способа, а также их значения за этими пределами.
Верхний предел по концентрации водного раствора хлористого аммония равен 4 мас. Остальные параметры процесса взяты в оптимальных значениях.
В ходе испытаний получен оксид кобальта хорошего качества: сумма щелочных металлов составляет 0,015-0,02% содержание серы 0,010% извлечение кобальта в оксид (в готовый продукт) 98,6-98,7%
Нижний предел по концентрации водного раствора хлористого аммония равен 1% Остальные параметры процесса взяты в оптимальных значениях.
Нижний предел по концентрации водного раствора хлористого аммония равен 1% Остальные параметры процесса взяты в оптимальных значениях.
В ходе испытаний получен оксид кобальта хорошего качества: сумма контролируемых щелочных металлов составила 0,018-0,02% серы 0,015% извлечение кобальта в оксид находится в пределах 98,7-98,8%
Нижний предел объемного соотношения водного раствора хлористого аммония и твердого оксида кобальта принят 4:1. Остальные параметры процесса взяты в оптимальных значениях.
Нижний предел объемного соотношения водного раствора хлористого аммония и твердого оксида кобальта принят 4:1. Остальные параметры процесса взяты в оптимальных значениях.
В ходе испытаний получен оксид кобальта хорошего качества: сумма щелочных металлов составляет 0,02-0,025% серы 0,012% извлечение кобальта в оксид (в готовый продукт) 98,3%
Верхний предел объемного соотношения водного раствора хлористого аммония и твердого оксида кобальта равен 8:1.
Верхний предел объемного соотношения водного раствора хлористого аммония и твердого оксида кобальта равен 8:1.
Остальные параметры оптимальны. В ходе испытаний получен оксид кобальта хорошего качества: массовые доли суммы щелочных металлов составляют 0,008-0,02, серы 0,010% Извлечение кобальта в готовый продукт 98,0%
Верхний предел температуры обработки в водном растворе хлористого аммония составил 85оС. Остальные параметры способа выбраны аналогичными предыдущему примеру.
Верхний предел температуры обработки в водном растворе хлористого аммония составил 85оС. Остальные параметры способа выбраны аналогичными предыдущему примеру.
В ходе исcледований получен оксид кобальта хорошего качества: массовые доли суммы щелочных металлов составляли 0,009-0,01% серы 0,010% Извлечение кобальта в оксид в среднем равно 98,4%
Нижний предел температуры обработки оксида кобальта составил 75оС.
Нижний предел температуры обработки оксида кобальта составил 75оС.
Остальные параметры способа выбраны аналогичными предыдущему примеру. В ходе испытаний получен оксид кобальта хорошего качества: сумма концентраций щелочных металлов составила 0,009-0,015% серы 0,012% Среднее извлечение кобальта в оксид 98,5%
Нижний предел температуры обработки оксида кобальта в водном растворе хлористого аммония составил 75оС, концентрация водного раствора хлористого аммония выше верхнего предела (5 мас.). Остальные параметры способа выбраны аналогичными предыдущему примеру.
Нижний предел температуры обработки оксида кобальта в водном растворе хлористого аммония составил 75оС, концентрация водного раствора хлористого аммония выше верхнего предела (5 мас.). Остальные параметры способа выбраны аналогичными предыдущему примеру.
В ходе испытаний получен продукт хорошего качества: массовые доли суммы щелочных металлов составили 0,01-0,015% серы 0,012% Извлечение кобальта в оксид меняется в пределах 98,5-98,6%
Из примера видно, что повышение концентрации водного раствора хлористого аммония до 5 мас. не приводит к повышению сортности продукта по сравнению с качеством оксида кобальта, полученного при концентрации водного раствора хлористого аммония, равной 4 мас.
Из примера видно, что повышение концентрации водного раствора хлористого аммония до 5 мас. не приводит к повышению сортности продукта по сравнению с качеством оксида кобальта, полученного при концентрации водного раствора хлористого аммония, равной 4 мас.
Нижний предел времени обработки оксида кобальта в водном растворе хлористого аммония равен 1 ч. Остальные параметры способа выбраны в оптимальных значениях.
В ходе испытаний получен продукт хорошего качества: массовые доли суммы щелочных металлов составили 0,015-0,025% серы 0,018-0,02% Извлечение кобальта в оксид в среднем равно 98,7%
Верхний предел по времени проведения обработки составил 5 ч. Остальные параметры способа выбраны аналогичными предыдущему примеру.
Верхний предел по времени проведения обработки составил 5 ч. Остальные параметры способа выбраны аналогичными предыдущему примеру.
В ходе испытаний получен оксид кобальта хорошего качества: массовые доли суммы щелочных металлов составили 0,008-0,010% серы 0,010% Извлечение кобальта в оксид находится на уровне 98,70-89,75%
Нижний предел времени обработки оксида кобальта в водном растворе хлористого аммония принят за 1 ч, температура проведения процесса 86оС, т.е. выше верхнего уровня.
Нижний предел времени обработки оксида кобальта в водном растворе хлористого аммония принят за 1 ч, температура проведения процесса 86оС, т.е. выше верхнего уровня.
В ходе испытаний получен оксид кобальта хорошего качества: концентрация суммы щелочных металлов составила 0,009-0,01% серы 0,010%
Из примера видно, что повышение температуры обработки до 86оС не улучшило качество оксида кобальта по контролируемым компонентам по сравнению с его сортностью при температуре, равной 85оС.
Из примера видно, что повышение температуры обработки до 86оС не улучшило качество оксида кобальта по контролируемым компонентам по сравнению с его сортностью при температуре, равной 85оС.
При осуществлении способа при условиях: времени обработки выше верхнего уровня (5,5 ч) и температуре ниже предельного значения (74оС) получен оксид кобальта неудовлетворительного качества: массовые доли суммы щелочных металлов превысили 0,03% серы 0,033%
В ходе испытаний способа при условиях: концентрация водного раствора хлористого аммония при обработке оксида кобальта 4 мас. объемное соотношение данного раствора и оксида кобальта, равное 9, (остальные параметры оптимальные) получен продукт хорошего качества: концентрация суммы щелочных металлов составила 0,009-0,02% серы 0,012% Извлечение кобальта в оксид (в готовый продукт) 96,1%
Из примера видно, что повышение объемного соотношения водного раствора хлористого аммония и твердого оксида кобальта до 9:1 не улучшает качества конечного продукта по сравнению с качеством оксида кобальта, полученного обработкой раствором хлористого аммония, взятом в объемном соотношении к твердому оксиду кобальта, равном 8:1.
В ходе испытаний способа при условиях: концентрация водного раствора хлористого аммония при обработке оксида кобальта 4 мас. объемное соотношение данного раствора и оксида кобальта, равное 9, (остальные параметры оптимальные) получен продукт хорошего качества: концентрация суммы щелочных металлов составила 0,009-0,02% серы 0,012% Извлечение кобальта в оксид (в готовый продукт) 96,1%
Из примера видно, что повышение объемного соотношения водного раствора хлористого аммония и твердого оксида кобальта до 9:1 не улучшает качества конечного продукта по сравнению с качеством оксида кобальта, полученного обработкой раствором хлористого аммония, взятом в объемном соотношении к твердому оксиду кобальта, равном 8:1.
Оксид кобальта, полученный при максимальном объемном соотношении водного раствора хлористого аммония и твердого оксида 8:1 с массовой концентрацией NH4Cl ниже минимального уровня (0,9 мас.), неудовлетворительного качества: массовая доля суммы щелочных металлов составила более 0,03% серы 0,038%
Повышение концентрации водного раствора хлористого аммония до 5 мас. и выше по существу не повышает качества продукта по сравнению с обработкой 4 мас.-ным раствором.
Повышение концентрации водного раствора хлористого аммония до 5 мас. и выше по существу не повышает качества продукта по сравнению с обработкой 4 мас.-ным раствором.
Снижение объемного соотношения раствора хлористого аммония и оксида кобальта до 3: 1 и меньше приводит к получению бракованного продукта: содержание в нем суммы щелочных металлов выше 0,3% серы 0,041%
Рост объемного соотношения раствора хлористого аммония и оксида кобальта до 9: 1 и выше не дает какого-либо снижения контролируемых элементов по сравнению с продуктом, полученным обработкой вышеуказанным раствором в объемном соотношении с оксидом кобальта, равном 8:1.
Рост объемного соотношения раствора хлористого аммония и оксида кобальта до 9: 1 и выше не дает какого-либо снижения контролируемых элементов по сравнению с продуктом, полученным обработкой вышеуказанным раствором в объемном соотношении с оксидом кобальта, равном 8:1.
Снижение температуры обработки до 74оС и ниже приводит к получению товарного продукта с повышенной концентрацией суммы щелочных металлов (больше 0,030%).
Увеличение температуры обработки выше 86оС несущественно улучшает качество оксида кобальта (среднее содержание суммы щелочных металлов 0,01% серы 0,010%) по сравнению с обработкой при 85оС. В этом случае требуется повышенный расход энергоресурсов, что вызывает удорожание способа.
Снижение продолжительности обработки ниже 55 мин не приводит к получению требуемого качества оксидов кобальта: содержание суммы щелочных металлов более 0,04% и серы более 0,041%
Увеличение продолжительности обработки более 5,0 ч незначительно повышает качество конечного продукта (массовые доли щелочных металлов в среднем составили 0,008%).
Увеличение продолжительности обработки более 5,0 ч незначительно повышает качество конечного продукта (массовые доли щелочных металлов в среднем составили 0,008%).
Способ прост в осуществлении, не требует специальной подготовки рабочих, сложного оборудования.
Предлагаемый способ получения оксида кобальта обладает новизной и изобретательским уровнем, так как при проведении поиска по источникам патентной и научно-технической документации не выявлены известные технические решения, в которых оксид кобальта был бы получен прокалкой гидроксида кобальта при 800-1000оС с последующей обработкой при механическом перемешивании в 1-4 мас.-ном растворе хлористого аммония, взятом в объемном соотношении к оксиду кобальта, равном (4-8): 1, при 75-85оС в течение 1-5 ч. После чего продукт фильтруют и подвергают повторной обработке водой.
Предлагаемый способ может быть широко применим в промышленности, возможно многократное его воспроизводство.
На фиг. 1 изображена существующая схема получения оксида кобальта в твердосплавной промышленности; на фиг. 2 схема осуществления известного способа получения реактивного оксида кобальта по ГОСТ 4467-79 квалификации "ч"; на фиг. 3 схема осуществления предлагаемого способа.
Предлагаемый способ получения оксида кобальта реализуется следующим образом.
Гидроксид кобальта, содержащий, кобальта 57,0-59,0; натрия 0,6-0,9; серы 0,8-1,5; калия 0,1-0,4 и др. без добавления кальцинированной соды прокаливают в печи при 800-1000оС в течение 6,0-10,0 ч.
Полученный оксид кобальта состава, кобальта 70,0-72,5; натрия 1,14-1,60; калия 0,2-0,6; серы 1,2-1,6 и др. обрабатывают в реакторе, оборудованном устройством для механического перемешивания, в 1-4 мас.-ном растворе хлористого аммония, взятом в объемном соотношении к оксиду кобальта, равном (4-8): 1, для совместного удаления солей щелочных металлов и серы при 75-85оС в течение 1-5 ч. По окончании обработки оксид отфильтровывают, осадок подвергают повторной обработке водой от остаточного содержания щелочных металлов и сульфат-ионов и прокаливают в печи для удаления влаги.
Получаемый оксид кобальта имеет следующий состав, кобальта 73,4-73,6; никеля 0,10-0,15; железа 0,02-0,03, меди 0,005-0,007; серы 0,010-0,02; натрия 0,008-0,015; калия 0,001-0,003; марганца 0,001-0,008; кальция 0,02-0,03; азота следы, магния 0,007-0,009; цинка 0,010-0,020.
Извлечение кобальта в оксид (в готовый продукт) составляет 98,6-98,8%
П р и м е р 1. Гидроксид кобальта, содержащий: 57,82% кобальта; 0,56% натрия; 1,12% серы; 0,35% калия, без добавления кальцинированной соды прокаливали на поду муфельной печи при 950оС в течение 5 ч.
П р и м е р 1. Гидроксид кобальта, содержащий: 57,82% кобальта; 0,56% натрия; 1,12% серы; 0,35% калия, без добавления кальцинированной соды прокаливали на поду муфельной печи при 950оС в течение 5 ч.
Получили оксид кобальта, содержащий, кобальта 72,10; натрия 1,15; калия 0,55; серы 1,25 и др. Его обрабатывали в реакторе, оборудованном механическим перемешиванием, объемом 6 м3 в 4 мас.-ном растворе хлористого аммония. Объемное соотношение раствора к оксиду кобальта было равным 5:1. Температура обработки равна 80оС, время 5 ч. Оксид кобальта отфильтровывали, обрабатывали умягченной водой и просушивали.
Полученный продукт содержал, мас. кобальта 73,55; никеля 0,15; железа 0,03; меди 0,0058; серы 0,010; натрия 0,009; калия 0,0019; марганца 0,001; кальция 0,03; азота следы; магния 0,0088; цинка 0,015.
Извлечение кобальта в оксид (в готовый продукт) 98,6%
П р и м е р 2. Гидроксид кобальта, содержащий: 59,1% кобальта; 0,85% натрия; 0,28% калия и др. компоненты, прокаливали без соды на поду муфельной печи при 1000оС в течение 4 ч.
П р и м е р 2. Гидроксид кобальта, содержащий: 59,1% кобальта; 0,85% натрия; 0,28% калия и др. компоненты, прокаливали без соды на поду муфельной печи при 1000оС в течение 4 ч.
Получаемый оксид кобальта, содержащий, кобальта 73,1; натрия 1,14; серы 1,28 и др. элементы, обрабатывали в реакторе с механическим перемешиванием в 3 мас.-ном растворе хлористого аммония, взятом в объемном соотношении 6:1 к оксиду кобальта при 75оС в течение 2 ч. После фильтрации, повторной обработки и сушки конечный продукт содержал, мас. кобальта 73,6; никеля 0,15; железа 0,022; меди 0,006; серы 0,012; натрия 0,010; калия 0,004; марганца 0,007; кальция 0,025; азота следы; магния 0,0071; цинка 0,020.
Извлечение кобальта в оксид (в готовый продукт) 98,8%
Полученный оксид кобальта по качеству соответствует квалификации "ч" по ГОСТ 4467-79, что позволяет его использовать одновременно как в твердосплавной промышленности, так и в качестве реактивного оксида квалификации "ч".
Полученный оксид кобальта по качеству соответствует квалификации "ч" по ГОСТ 4467-79, что позволяет его использовать одновременно как в твердосплавной промышленности, так и в качестве реактивного оксида квалификации "ч".
Claims (2)
1. СПОСОБ ПОЛУЧЕНИЯ ОКСИДА КОБАЛЬТА, включающий прокаливание гидроксида кобальта, вывод конечного продукта, отличающийся тем, что прокаливание осуществляют при 800 1000oС, после чего полученный оксид подвергают обработке при 75 85oС 1 4%-ным раствором хлорида аммония, взятым в объемном соотношении к твердому оксиду кобальта (4 8) 1, после чего продукт фильтруют, промывают водой и сушат.
2. Способ по п.1, отличающийся тем, что обработку оксида кобальта осуществляют в течение 1 5 ч.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU5051434 RU2036153C1 (ru) | 1992-07-07 | 1992-07-07 | Способ получения оксида кобальта |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU5051434 RU2036153C1 (ru) | 1992-07-07 | 1992-07-07 | Способ получения оксида кобальта |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2036153C1 true RU2036153C1 (ru) | 1995-05-27 |
Family
ID=21608859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU5051434 RU2036153C1 (ru) | 1992-07-07 | 1992-07-07 | Способ получения оксида кобальта |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2036153C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2551034C1 (ru) * | 2013-11-07 | 2015-05-20 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Способ получения оксида кобальта со3о4 для производства твердых сплавов |
-
1992
- 1992-07-07 RU SU5051434 patent/RU2036153C1/ru active
Non-Patent Citations (3)
Title |
---|
1. Пименов Л.И. и Михайлова В.И. Переработка окисленных никелевых руд. М., 1972. * |
2. Евстегнеева и др. Автоклавно-сорбционная технология получения оксида кобальта из промпродуктов. - Цветные металлы, 1991, N 11, с.23-26. * |
3. Авторское свидетельство СССР N 1623964, кл. C 01G 51/04, 1991. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2551034C1 (ru) * | 2013-11-07 | 2015-05-20 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Способ получения оксида кобальта со3о4 для производства твердых сплавов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11760655B2 (en) | Method for recycling iron and aluminum in nickel-cobalt-manganese solution | |
RU2454369C1 (ru) | Способ получения оксида ванадия | |
RU2456241C2 (ru) | Способ получения оксида ванадия с использованием экстракции | |
CN102002585B (zh) | 一种石煤酸浸液生产钒铁合金的方法 | |
CN110304646B (zh) | 一种从铝灰中高效分离氟、氯、氮成分联产氧化铝精矿的方法 | |
CN103991898A (zh) | 一种煤催化气化灰渣的利用方法 | |
CN108707748A (zh) | 一种净化石煤酸浸液并回收铝、钾和铁的方法 | |
CN108396158A (zh) | 一种电解锰过程的复盐结晶物的处理方法 | |
DE1202297B (de) | Verfahren zur Gewinnung von Eisen sowie von hochwertigen Titan- und Aluminium-verbindungen aus stark eisenhaltigen Bauxiten, Rotschlamm-Rueckstaenden, Jlmenit-Erzen u. dgl. | |
CN115583641A (zh) | 一种硫铁矿烧渣与废旧磷酸铁锂电芯协同制备电池级磷酸铁的方法 | |
CN111762804B (zh) | 一种酸法提铝中酸浸液的除铁方法 | |
CN115286164B (zh) | 一种含铊锌渣的综合资源化方法 | |
WO2019137542A1 (zh) | 一种高钛渣选择性浸出提质的方法 | |
CN110735032B (zh) | 一种钒钛铁共生矿处理工艺 | |
KR102228192B1 (ko) | 폐 전극재를 재생하여 니켈(Ni)-코발트(Co)-망간(Mn) 복합 황산염 용액을 제조하는 방법 | |
CN102849782B (zh) | 一种利用钢厂烟尘灰氨法脱碳生产高纯氧化锌的方法 | |
CN115198116A (zh) | 一种含钒石煤提钒的方法 | |
CN107099672A (zh) | 含锌炼钢烟尘的回收方法 | |
US4023959A (en) | Method for recovering vanadium from magnetite and forming a magnetite product low in sodium and silica | |
RU2036153C1 (ru) | Способ получения оксида кобальта | |
CN109182868B (zh) | 一种低杂质钒铝合金及其制备方法 | |
CN103667706B (zh) | 一种金铂合金废料中金的分离提纯方法 | |
CN105645475A (zh) | 一种应用于锂电正极材料的高纯锰源制备方法 | |
CN112011692B (zh) | 固废渣复合焙烧提钒的方法 | |
CN1674331A (zh) | 利用废干电池制备锰锌铁氧体颗粒料和混合碳酸盐的方法 |