WO2019137542A1 - 一种高钛渣选择性浸出提质的方法 - Google Patents

一种高钛渣选择性浸出提质的方法 Download PDF

Info

Publication number
WO2019137542A1
WO2019137542A1 PCT/CN2019/071692 CN2019071692W WO2019137542A1 WO 2019137542 A1 WO2019137542 A1 WO 2019137542A1 CN 2019071692 W CN2019071692 W CN 2019071692W WO 2019137542 A1 WO2019137542 A1 WO 2019137542A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaching
acid
slag
alkali
titanium
Prior art date
Application number
PCT/CN2019/071692
Other languages
English (en)
French (fr)
Inventor
张廷安
豆志河
刘燕
张子木
王艳秀
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2019137542A1 publication Critical patent/WO2019137542A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1236Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
    • C22B34/1254Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using basic solutions or liquors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1236Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
    • C22B34/124Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors
    • C22B34/1245Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors containing a halogen ion as active agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of metallurgy, in particular to a method for selectively leaching and upgrading of high titanium slag.
  • the method for improving the taste of titanium slag to obtain high-quality titanium slag includes electrothermal method, roasting pretreatment two-step leaching method (UGS slag), hydrochloric acid leaching method, sulfuric acid leaching method and alkali leaching method; electrothermal method is a mature method.
  • the process is relatively simple, does not produce solid and liquid waste, but the electrothermal method belongs to high temperature smelting, which mainly removes sulfur, phosphorus and carbon, has high energy consumption and has a large amount of low-cost titanium formation; roasting pretreatment two-step leaching method, first Sodium roasting changes the phase composition of titanium slag, and then selectively removes impurities by hydrochloric acid pressure leaching, but the effect of removing silicon is not obvious; sulfuric acid method and hydrochloric acid leaching method are mainly for acid-soluble titanium slag, and the desiliconization ability is not Strong, long reaction time, large investment in pressure leaching equipment; alkali leaching method mainly includes “new process of sub-dissolved titanium clean metallurgy proposed by the Institute of Process Engineering of Chinese Academy of Sciences”, which proposes to use high-titanium slag as raw material and sodium alkali
  • the titanium alloy is prepared by the molten salt method; the process step is to mix the titanium slag with the sodium alkali,
  • the titanate is hydrolyzed and precipitated.
  • the impurity components such as iron, calcium and magnesium do not react with the sodium base and remain in the non-titanium slag phase to achieve effective separation of Ti and other impurities, but there is an alkali consumption.
  • the problem is too large, the equipment is very demanding, and the separation is difficult in the later period; the patent No. 201510250414.4 proposes to use microwave as the heating method to modify the acid-soluble titanium slag, acid removal, and calcination to produce titanium white by chlorination method.
  • the method needs to be equipped with a microwave reactor, which has a large investment in equipment; in the process of modifying high titanium slag, one or more kinds of sodium carbonate, sodium hydroxide, phosphorus pentoxide, sodium phosphate are added. Or a modifier of dihydrogen phosphate hinge, introducing a variety of impurities, which brings difficulties for subsequent upgrading; the method uses sulfuric acid as the acid immersion liquid, which causes difficulty in recovering the subsequent waste acid and pollutes the environment; at the same time, the calcination process needs to be heated to 900 ⁇ 1000 °C has higher requirements on equipment and higher energy consumption; the application No.
  • 201510879416.X discloses a three-stage process for preparing high-quality titanium slag, which includes titanium slag modification, pressure acid leaching and Granulation After ball milling, roasting, filtration and washing, and then pressurizing acid leaching, mixing with the binder and microwave drying to obtain high quality high titanium slag; the process operation procedure is complicated, the equipment requirements are high, and the addition of modifier will introduce other Impurities, which have an effect on the upgrading process; the patent No.
  • 201410387332.X discloses a method for preparing anatase type titanium dioxide by acid-cleaning titanium slag; the method uses common titanium slag as raw material and mixed with sodium hydroxide for roasting After acid hydrolysis with sulfuric acid, and hydrolysis to obtain metatitanic acid precipitation, roasting to obtain high quality anatase type titanium dioxide, the process requires repeated roasting treatment consumes a lot of energy, acid hydrolysis with 15 ⁇ 55% sulfuric acid on the equipment is more serious, and Subsequent waste acid is not handled well and is harmful to the environment.
  • the present invention provides a method for selectively leaching and upgrading high-titanium slag, first adopting oxygen-rich high-pressure alkali leaching, and then mild acid leaching to remove impurities.
  • the new green technology reduces energy consumption, effectively reduces the acid-base concentration of the leaching process, and recycles it to realize the recycling of resources. At the same time, it improves the working conditions of the equipment and prolongs the service life, and produces high-quality high-purity high in accordance with the production of titanium sponge and titanium dioxide. Titanium slag raw material.
  • the high titanium slag is crushed to a particle size of ⁇ 0.074 mm, and the activation treatment is completed to prepare a high titanium slag powder; the high titanium slag powder and the sodium hydroxide solution are placed in an autoclave for caustic soaking, wherein the sodium hydroxide solution
  • the mass concentration is 20-40%, the ratio of sodium hydroxide solution to high titanium slag powder is (5-15):1;
  • the oxygen is introduced into the autoclave for alkali leaching, and then the temperature is raised to 180-300 ° C, and the mixture is kept under stirring for 1 to 3 hours to complete the alkali leaching; 3.
  • the alkali immersed material is separated by filtration to obtain an alkali leaching product and Alkali immersion liquid; the alkali leaching product is washed with water until the filtrate is neutral to form an alkali leaching slag;
  • the alkali leaching slag and hydrochloric acid in the acid leaching autoclave wherein the concentration of hydrochloric acid is 14 to 20%, the ratio of hydrochloric acid to alkali leaching slag according to liquid to solid ratio (5 ⁇ 15): 1;
  • the seed crystal is added to the autoclave for acid leaching to facilitate the growth of the titanium oxide nucleation formed by the alkali leaching slag during the hydrolysis of hydrochloric acid, and then the temperature is raised to 100-180 ° C, and the mixture is kept under stirring for 1 to 3 hours to complete the acid.
  • the acid leached material is separated by filtration to obtain an acid leaching product and an acid immersion liquid; the acid leaching product is washed with water until the filtrate is neutral, and then dried to remove water to obtain high purity titanium dioxide.
  • the alkali immersion liquid obtained by the above method uses CaO as a precipitating agent to remove SiO 2 to obtain a CaSiO 3 by-product.
  • the mass percentage of SiO 2 in the alkali immersion liquid is ⁇ 0.05%, it is returned to the step 1 as a sodium hydroxide solution.
  • the acid immersion liquid obtained by the above method is heated and pyrolyzed, and the pyrolysis tail gas is absorbed, and the prepared hydrochloric acid is concentrated to a weight concentration of 14 to 20%, and is returned to the step 4 for use.
  • the above-mentioned high-purity high-titanium slag has a grade of ⁇ 98% of titanium dioxide, Fe 2 O 3 ⁇ 0.34% by weight, SiO 2 ⁇ 0.35%, CaO ⁇ 0.15%, Mn ⁇ 0.22%, MgO ⁇ 0.82%, Al 2 O 3 ⁇ 0.23%.
  • the above seed crystals are analytically pure titanium dioxide and/or metatitanic acid in an amount of from 0.2 to 0.5% by weight based on the total weight of the alkali-decomposed slag.
  • Oxygen is introduced during the leaching process, which oxidizes the low-priced titanium oxide in the high-titanium slag, destroys the stable hematite ore phase, and combines the impurity elements dispersed in the solid solution to be soluble in acid. a base compound which is removed and removed in a subsequent wash filtration stage;
  • the alkali used is sodium hydroxide, and the waste alkali immersion liquid generated in the alkali leaching process can add a small amount of CaO, and the Si impurities therein can be effectively removed, and can be further used for alkali leaching of high titanium slag after concentration; Hydrochloric acid, the waste acid produced is heated, and the HCl gas volatilized by heating is absorbed by water atomization, and the formed hydrochloric acid solution is concentrated and returned to the leaching process to realize recycling of resources, and almost no industrial waste water or waste residue is produced, thereby realizing green production. .
  • the high-purity titanium slag prepared by the invention provides a high-quality titanium slag raw material for the titanium alloy and titanium white industry, and has broad application prospects.
  • the autoclave for caustic soak used in the embodiment of the present invention is a ZRYK 1L stainless steel nickel-plated autoclave of Weihai Zhengwei Machinery Equipment Co., Ltd.
  • the autoclave for acid leaching used in the examples of the present invention is a KCFD1-10 type zirconium autoclave of Yantai Keli Chemical Equipment Co., Ltd.
  • the titanium concentrate crushing device in the embodiment of the present invention is a pulverisette 5/4 classic line planetary high energy ball mill of FRITSCH.
  • the high titanium slag used in the embodiment of the present invention contains TiO 2 92.16%, SiO 2 1.5%, CaO 0.2%, MgO 1.4%, Fe 2 O 3 2.45%, Mn 0.73%, and Al 2 O 3 2.4% by mass percentage. .
  • the liquid-solid ratio in the embodiment of the present invention is the mass ratio of the volume of the liquid material (sodium hydroxide solution or hydrochloric acid) to the solid material (high titanium slag powder or alkali leaching slag), and the unit is L/kg.
  • the stirring speed in the alkali immersion is 300 to 600 r/min.
  • the stirring speed in the acid immersion is 200 to 500 r/min.
  • the analytically pure titanium dioxide and metatitanic acid used in the examples of the present invention are commercially available products.
  • the high titanium slag is crushed to a particle size of ⁇ 0.074 mm, and the activation treatment is completed to prepare a high titanium slag powder; the high titanium slag powder and the sodium hydroxide solution are placed in an autoclave for caustic soaking, wherein the mass concentration of the sodium hydroxide solution 20%, the ratio of sodium hydroxide solution to high titanium slag powder is 15:1 liquid to solid ratio;
  • the oxygen is introduced into the autoclave for alkali leaching, and then the temperature is raised to 180 ° C, and the mixture is kept under stirring for 3 hours to complete the alkali leaching; the alkali immersed material is separated by filtration to obtain an alkali leaching product and an alkali immersion liquid; Washed until the filtrate is neutral, and then dried to remove water, to prepare alkali leaching slag; alkali leaching liquid uses CaO as a precipitant to remove SiO 2 to obtain CaSiO 3 by-product recovery, when the mass percentage of SiO 2 in the alkali immersion liquid is ⁇ 0.05 When used as a sodium hydroxide solution, it is recycled;
  • the alkali leaching slag and hydrochloric acid are placed in an autoclave for acid leaching, wherein the concentration of hydrochloric acid is 14%, the ratio of hydrochloric acid to alkali leaching slag is 15:1, and the ratio of liquid to solid is 15:1; Seed crystal, which facilitates the growth of the titanium oxide nucleation formed by the alkali leaching slag during the hydrolysis of hydrochloric acid, and the seed crystal is analytically pure titanium dioxide, the amount of which is 0.5% of the total mass of the alkali decomposition slag; then the temperature is raised to 100 ° C, The mixture was kept under stirring for 3 hours to complete acid leaching;
  • the acid leached material is separated by filtration to obtain an acid leaching product and an acid immersion liquid; the acid immersion liquid is heated and pyrolyzed, and the hydrochloric acid produced by the absorption of the tail gas is concentrated to a mass concentration of 20%, and recycled; the acid leaching product is washed.
  • the filtrate is neutral, and then dried to remove water to obtain high-purity titanium dioxide, containing TiO 2 98.81%, SiO 2 0.35%, CaO 0.11%, MgO 0.82%, Fe 2 O 3 0.34%, Mn 0.22%, Al by mass percentage. 2 O 3 0.23%.
  • the mass concentration of sodium hydroxide solution is 30%, the ratio of sodium hydroxide solution to high titanium slag powder according to liquid to solid ratio of 10:1;
  • the prepared hydrochloric acid is concentrated to a mass concentration of 18%; the high-purity titanium dioxide contains TiO 2 99.34% by mass, 0.13% of SiO 2 , CaO ⁇ 0.05%, MgO 0.17%, Fe 2 O 3 0.14%, Mn ⁇ 0.05%, Al 2 O 3 ⁇ 0.05%.
  • the mass concentration of sodium hydroxide solution is 40%, the ratio of sodium hydroxide solution to high titanium slag powder is 5:1 according to the liquid-solid ratio;
  • alkali immersion temperature 300 ° C, time 1 h (2) alkali immersion temperature 300 ° C, time 1 h; (3) hydrochloric acid mass concentration is 20%, hydrochloric acid and alkali leaching slag ratio is liquid to solid ratio of 5:1; seed crystal is analytical pure titanium dioxide and metatitanic acid An equal mass mixture, the amount of addition is 0.2% of the total weight of the alkali decomposition slag; acid immersion temperature of 180 ° C, time 1h;
  • the prepared hydrochloric acid is concentrated to a mass concentration of 20%; the high-purity titanium dioxide contains TiO 2 99.61% by mass percentage, SiO 2 0.05%, CaO ⁇ 0.05%, MgO ⁇ 0.05%, Fe 2 O 3 0.01%, Mn ⁇ 0.05%, Al 2 O 3 ⁇ 0.05%.

Abstract

一种高钛渣选择性浸出提质的方法,按以下步骤进行:(1)将高钛渣破碎后与氢氧化钠溶液置于高压釜中;(2)向高压釜内通入氧气,升温搅拌保温完成碱浸;(3)碱浸后的物料过滤分离,碱浸产物水洗后制成碱浸渣料;(4)碱浸渣料与盐酸置于高压釜中,添加晶种,升温搅拌保温完成酸浸;(5)酸浸后的物料过滤分离,酸浸产物水洗烘干获得高纯二氧化钛。本发明的方法能够实现资源的循环利用,不产生工业废水、废渣,实现绿色生产。

Description

一种高钛渣选择性浸出提质的方法 技术领域
本发明涉及冶金技术领域,具体涉及一种高钛渣选择性浸出提质的方法。
背景技术
我国的钛铁矿多数都用于硫酸法生产钛白粉原料,只有很少一部分加工成富钛料;高钛渣作为氯化法生产钛白粉、四氯化钛和海绵钛的生产原料,随着海绵钛、钛基合金和氯化钛白的广泛应用,使得国内对于高品质钛渣即富钛料的需求越来越高;受制于我国钛矿品味普遍不高,且其中的杂质含量和种类较多,提纯比较困难,国内至今没有实现工业化生产;我国现生产的高钛渣品位过较低,最高仅能达到94%左右,尤其是其中的硅、铁、锰、钙、镁等杂质含量与发达国家所产钛渣存在明显差距;目前,还无法生产UGS品位的高品质钛渣,严重制约了我国钛白、海绵钛工业发展;而现有的高品质高钛渣生产方法存在工艺复杂、流程长、焙烧预处理能耗高以及污染大等缺陷,因此开发一种低能耗高品质高钛渣绿色清洁提质方法是十分必要的,也是关系到我国钛工业可持续发展的关键。
目前,提升钛渣品味获得高品质钛渣的方法有电热法、焙烧预处理两步浸出法(UGS渣)、盐酸浸出法、硫酸浸出法及碱浸出法;电热法是一种成熟的方法,工艺比较简单,不产生固体及液体废料,但电热法属于高温冶炼,其主要脱去硫、磷、碳,能耗较高并有大量低价钛生成;焙烧预处理两步浸出法,先进行钠化焙烧改变钛渣的物相组成,再通过盐酸加压浸出可以选择性的去除其中的杂质,但除硅效果不明显;硫酸法、盐酸浸出法主要针对酸溶性钛渣,脱硅能力不强,反应时间长,加压浸出设备投资大;碱浸出法主要包括中国科学院过程工程研究所提出的“亚溶盐钛清洁冶金新工艺”,该研究提出以高钛渣为原料,采用钠碱熔盐法制备富钛料;其工艺步骤是将钛渣与钠碱混合,在常压、低温下使钛渣与钠碱发生熔盐反应,高效选择性地将钛渣中的钛转化为钛酸盐,钛酸盐经过水解沉淀,铁、钙、镁等杂质组分不与钠碱发生反应留在非钛渣相中,实现Ti与其它杂质的有效分离,但存在耗碱量过大,对设备要求很高,及后期分离困难等问题;申请号201510250414.4的专利提出以微波作为加热方式,对酸溶性钛渣改性处理、酸性除杂、煅烧达到氯化法生产钛白的要求,但该方法需要配备微波反应器,对设备投资较大;在对高钛渣改性处理过程中需添加一种或多种选自碳酸钠、氢氧化钠、五氧化二磷、磷酸钠或磷酸二氢铰的改性剂,引入多种杂质,对后续提质带来困难;该方法使用硫酸作为酸浸液,会对后续废酸回收造成困难,污染环境;同时煅烧过程需加热到900~1000℃对设备的要求较高,能耗较大;申请号201510879416.X的专利公开了一种三段法制备高品质钛渣工艺,该工艺包括钛渣改性,加压酸浸并制粒,经球磨、 焙烧、过滤洗涤,再进行加压酸浸,与粘结剂混匀后微波干燥制得高品质高钛渣;该工艺操作程序复杂,设备要求较高,添加改性剂会引入其他杂质,对提质工艺制成影响;申请号201410387332.X的专利公开了一种清洁型钛渣酸解制备锐钛矿型二氧化钛的方法;该方法使用常用钛渣为原料与氢氧化钠混合焙烧后使用硫酸酸解,并经水解得到偏钛酸沉淀,焙烧后得到高品质锐钛矿型二氧化钛,过程需要反复焙烧处理消耗大量能源,酸解用15~55%硫酸对设备侵蚀较为严重,且后续废酸不好处理,对环境危害较大。
发明内容
针对现有高钛渣除杂提质工艺上存在的上述不足,本发明提供一种高钛渣选择性浸出提质的方法,先采用富氧高压碱浸,再温和酸浸除杂提质的绿色新工艺,减少能源消耗,有效的降低浸出过程的酸碱浓度,并加以回收实现资源的循环利用,同时改善设备工作条件延长使用寿命,制备出符合海绵钛、钛白粉生产的优质高纯高钛渣原料。
本发明的方法按以下步骤进行:
1、将高钛渣进行破碎至粒度≤0.074mm,完成活化处理,制成高钛渣粉;将高钛渣粉与氢氧化钠溶液置于碱浸用高压釜中,其中氢氧化钠溶液的质量浓度为20~40%,氢氧化钠溶液与高钛渣粉的比例按液固比为(5~15):1;
2、向碱浸用高压釜内通入氧气,然后升温至180~300℃,在搅拌条件下保温1~3h,完成碱浸;3、将碱浸后的物料过滤分离,获得碱浸产物和碱浸液;将碱浸产物水洗至滤液为中性制成碱浸渣料;
4、将碱浸渣料与盐酸置于酸浸用高压釜中,其中盐酸的质量浓度为14~20%,盐酸与碱浸渣料的比例按液固比为(5~15):1;向酸浸用高压釜中添加晶种,便于碱浸渣料在盐酸水解过程中形成的钛氧化物形核长大,然后升温至100~180℃,在搅拌条件下保温1~3h,完成酸浸;
5、将酸浸后的物料过滤分离,获得酸浸产物和酸浸液;将酸浸产物水洗至滤液为中性,再烘干去除水分获得高纯二氧化钛。
上述方法获得的碱浸液用CaO作为沉淀剂去除SiO 2,得到CaSiO 3副产品,当碱浸液中SiO 2的质量百分比≤0.05%时,作为氢氧化钠溶液返回步骤1使用。
上述方法获得的酸浸液加热热解,热解尾气经吸收,制成的盐酸浓缩至重量浓度为14~20%,返回步骤4使用。
上述的高纯高钛渣中二氧化钛的品位≥98%,按重量百分比含Fe 2O 3<0.34%,SiO 2<0.35%,CaO<0.15%,Mn<0.22%,MgO<0.82%,Al 2O 3<0.23%。
上述的晶种为分析纯二氧化钛和/或偏钛酸,加入量为碱分解渣料总重量的0.2~0.5%。
本发明的原理及有益效果是:
(1)在浸出过程中通入氧气,会对高钛渣中低价的钛氧化物进行氧化,破坏稳定的黑钛石矿相,使该固溶体中弥散分布的杂质元素结合成可溶于酸碱的化合物,在随后的洗涤过滤阶段分离除去;
(2)在浸出过程中保证体系的密闭性,随着氧气的通入及温度的持续升高,釜内产生较大的气压,很大程度的优化浸出过程的动力学条件,对钛渣氧化、杂质析出,矿相的破坏都有促进作用,将其作为强化浸出的一种手段在与其他浸出工艺参数共同作用的过程中,可以适当降低温度,酸碱度,浸出时间等工艺条件,达到环保节能目的;
(3)对高钛渣先进行碱浸,会对渣粒表面有一定破坏作用,有利于杂质相的析出,增强后续酸浸的效果,同时采用酸碱复合高压浸出较单一的酸浸,Si,Al等氧化物的杂质去除率会较大程度的增加,对后续的生产工艺的除杂压力大大减小,易于制备出高性能材料;
(4)采用的碱为氢氧化钠,碱浸过程中产生的废碱浸液可添加少量CaO,将其中的Si杂质有效除去,经浓缩可以继续用于高钛渣碱浸;酸浸过程用盐酸,产生的废酸经加热,同时利用水雾化吸收加热挥发出的HCl气体,形成的盐酸溶液经浓缩返回到浸出工艺,实现资源的循环利用,几乎不产生工业废水、废渣,实现绿色生产。
本发明制备的高纯度钛渣为钛合金、钛白工业提供一种高品质的钛渣原料,具有广阔的应用前景。
具体实施方式
本发明实施例中采用的碱浸用高压釜为威海市正威机械设备有限公司的ZRYK 1L型不锈钢镀镍高压釜。
本发明实施例中采用的酸浸用高压釜为烟台科立化工设备有限公司的KCFD1-10型锆质高压釜。
本发明实施例中钛精矿破碎设备为FRITSCH的pulverisette 5/4 classic line型行星式高能球磨机。
本发明实施例中采用的高钛渣按质量百分比含TiO 2 92.16%,SiO 2 1.5%,CaO 0.2%,MgO1.4%,Fe 2O 3 2.45%,Mn 0.73%,Al 2O 3 2.4%。
本发明实施例中的液固比是液体物料(氢氧化钠溶液或盐酸)的体积与固体物料(高钛渣粉或碱浸渣料)的质量比,单位为L/kg。
本发明实施例中碱浸时的搅拌速度为300~600r/min。
本发明实施例中酸浸时的搅拌速度为200~500r/min。
本发明实施例中采用的分析纯二氧化钛和偏钛酸为市购产品。
下面结合实施例对本发明作进一步的详细说明。
实施例1
将高钛渣进行破碎至粒度≤0.074mm,完成活化处理,制成高钛渣粉;将高钛渣粉与氢氧化钠溶液置于碱浸用高压釜中,其中氢氧化钠溶液的质量浓度为20%,氢氧化钠溶液与高钛渣粉的比例按液固比为15:1;
向碱浸用高压釜内通入氧气,然后升温至180℃,在搅拌条件下保温3h,完成碱浸;将碱浸后的物料过滤分离,获得碱浸产物和碱浸液;将碱浸产物水洗至滤液为中性,再烘干去除水分,制成碱浸渣料;碱浸液用CaO作为沉淀剂去除SiO 2,得到CaSiO 3副产品回收,当碱浸液中SiO 2的质量百分比≤0.05%时,作为氢氧化钠溶液循环使用;
将碱浸渣料与盐酸置于酸浸用高压釜中,其中盐酸的质量浓度为14%,盐酸与碱浸渣料的比例按液固比为15:1;向酸浸用高压釜中添加晶种,便于碱浸渣料在盐酸水解过程中形成的钛氧化物形核长大,晶种为分析纯二氧化钛,加入量为碱分解渣料总质量的0.5%;然后升温至100℃,在搅拌条件下保温3h,完成酸浸;
将酸浸后的物料过滤分离,获得酸浸产物和酸浸液;酸浸液加热热解,热解尾气经吸收制成的盐酸浓缩至质量浓度为20%,循环使用;将酸浸产物水洗至滤液为中性,再烘干去除水分获得高纯二氧化钛,按质量百分比含TiO 2 98.81%,SiO 2 0.35%,CaO 0.11%,MgO 0.82%,Fe 2O 3 0.34%,Mn 0.22%,Al 2O 3 0.23%。
实施例2
方法同实施例1,不同点在于:
(1)氢氧化钠溶液的质量浓度为30%,氢氧化钠溶液与高钛渣粉的比例按液固比为10:1;
(2)碱浸温度200℃,时间2h;(3)盐酸的质量浓度为18%,盐酸与碱浸渣料的比例按液固比为10:1;晶种为偏钛酸,加入量为碱分解渣料总质量的0.3%;酸浸温度150℃,时间2h;
(4)制成的盐酸浓缩至质量浓度为18%;高纯二氧化钛按质量百分比含TiO 2 99.34%,SiO 2 0.13%,CaO<0.05%,MgO 0.17%,Fe 2O 3 0.14%,Mn<0.05%,Al 2O 3<0.05%。
实施例3
方法同实施例1,不同点在于:
(1)氢氧化钠溶液的质量浓度为40%,氢氧化钠溶液与高钛渣粉的比例按液固比为5:1;
(2)碱浸温度300℃,时间1h;(3)盐酸的质量浓度为20%,盐酸与碱浸渣料的比例按液固比为5:1;晶种为分析纯二氧化钛和偏钛酸的等质量混合物,加入量为碱分解渣料总重量的0.2%;酸浸温度180℃,时间1h;
(4)制成的盐酸浓缩至质量浓度为20%;高纯二氧化钛按质量百分比含TiO 2 99.61%,SiO 2 0.05%,CaO<0.05%,MgO<0.05%,Fe 2O 3 0.01%,Mn<0.05%,Al 2O 3<0.05%。

Claims (5)

  1. 一种高钛渣选择性浸出提质的方法,其特征在于按以下步骤进行:
    (1)将高钛渣进行破碎至粒度≤0.074mm,完成活化处理,制成高钛渣粉;将高钛渣粉与氢氧化钠溶液置于碱浸用高压釜中,其中氢氧化钠溶液的质量浓度为20~40%,氢氧化钠溶液与高钛渣粉的比例按液固比为(5~15):1;
    (2)向碱浸用高压釜内通入氧气,然后升温至180~300℃,在搅拌条件下保温1~3h,完成碱浸;
    (3)将碱浸后的物料过滤分离,获得碱浸产物和碱浸液;将碱浸产物水洗至滤液为中性制成碱浸渣料;
    (4)将碱浸渣料与盐酸置于酸浸用高压釜中,其中盐酸的质量浓度为14~20%,盐酸与碱浸渣料的比例按液固比为(5~15):1;向酸浸用高压釜中添加晶种,便于碱分解渣料在盐酸水解过程中形成的钛氧化物形核长大,然后升温至100~180℃,在搅拌条件下保温1~3h,完成酸浸;
    (5)将酸浸后的物料过滤分离,获得酸浸产物和酸浸液;将酸浸产物水洗至滤液为中性,再烘干去除水分获得高纯二氧化钛。
  2. 根据权利要求1所述的一种高钛渣选择性浸出提质的方法,其特征在于步骤(3)获得的碱浸液用CaO作为沉淀剂去除SiO 2,得到CaSiO 3副产品,当SiO 2的质量百分比≤0.05%时,作为氢氧化钠溶液返回步骤(1)使用。
  3. 根据权利要求1所述的一种高钛渣选择性浸出提质的方法,其特征在于步骤(5)获得的酸浸液直接热解,热解尾气经吸收,制成的盐酸浓缩至重量浓度为14~20%,返回步骤(4)使用。
  4. 根据权利要求1所述的一种高钛渣选择性浸出提质的方法,其特征在于所述的高纯二氧化钛的品位≥98%,按质量百分比含Fe 2O 3<0.34%,SiO 2<0.35%,CaO<0.15%,Mn<0.22%,MgO<0.82%,Al 2O 3<0.23%。
  5. 根据权利要求1所述的一种高钛渣选择性浸出提质的方法,其特征在于所述的晶种为分析纯二氧化钛和/或偏钛酸,加入量为碱分解渣料总质量的0.2~0.5%。
PCT/CN2019/071692 2018-01-15 2019-01-15 一种高钛渣选择性浸出提质的方法 WO2019137542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810036072.XA CN108300874B (zh) 2018-01-15 2018-01-15 一种高钛渣选择性浸出提质的方法
CN201810036072.X 2018-01-15

Publications (1)

Publication Number Publication Date
WO2019137542A1 true WO2019137542A1 (zh) 2019-07-18

Family

ID=62868751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071692 WO2019137542A1 (zh) 2018-01-15 2019-01-15 一种高钛渣选择性浸出提质的方法

Country Status (2)

Country Link
CN (1) CN108300874B (zh)
WO (1) WO2019137542A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108300874B (zh) * 2018-01-15 2020-09-29 东北大学 一种高钛渣选择性浸出提质的方法
CN111499365B (zh) * 2020-04-22 2022-05-20 宜宾学院 一种酸碱联合处理增白风化型砂岩的方法
CN111705226B (zh) * 2020-06-22 2022-05-31 四川顺应动力电池材料有限公司 一种高钛渣除杂的方法
CN114480881B (zh) * 2022-01-18 2023-12-12 龙佰集团股份有限公司 一种湿法-火法联合工艺提取铁精矿中有价元素的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911538B2 (ja) * 2000-06-07 2007-05-09 Dowaエコシステム株式会社 飛灰からの重金属回収方法
CN103834812A (zh) * 2012-11-26 2014-06-04 贵阳铝镁设计研究院有限公司 一种由低品位TiO2炉渣制备富钛料的方法
CN108149015A (zh) * 2018-01-15 2018-06-12 东北大学 一种富氧选择性浸出提取钒钛磁铁矿中有价组元的方法
CN108300874A (zh) * 2018-01-15 2018-07-20 东北大学 一种高钛渣选择性浸出提质的方法
CN108300875A (zh) * 2018-01-15 2018-07-20 东北大学 一种富氧选择性浸出钛精矿制备高纯度TiO2的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079374C (zh) * 1998-02-24 2002-02-20 广州市华昌科技开发有限公司 盐酸法制取金红石型钛白粉的方法
CN101845549A (zh) * 2010-06-18 2010-09-29 中南大学 一种石煤清洁转化方法
CN103966435B (zh) * 2014-04-23 2015-08-26 鞍钢集团矿业公司 利用碱浸、酸洗及磁选再选钒钛磁铁精矿的方法
CN104630483A (zh) * 2015-01-13 2015-05-20 漯河兴茂钛业股份有限公司 一种废弃脱硝催化剂综合利用的碱浸沉钒方法
CN104962735A (zh) * 2015-06-12 2015-10-07 鞍钢集团矿业公司 利用氧化碱浸、酸洗及磁选再选钒钛磁铁精矿的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911538B2 (ja) * 2000-06-07 2007-05-09 Dowaエコシステム株式会社 飛灰からの重金属回収方法
CN103834812A (zh) * 2012-11-26 2014-06-04 贵阳铝镁设计研究院有限公司 一种由低品位TiO2炉渣制备富钛料的方法
CN108149015A (zh) * 2018-01-15 2018-06-12 东北大学 一种富氧选择性浸出提取钒钛磁铁矿中有价组元的方法
CN108300874A (zh) * 2018-01-15 2018-07-20 东北大学 一种高钛渣选择性浸出提质的方法
CN108300875A (zh) * 2018-01-15 2018-07-20 东北大学 一种富氧选择性浸出钛精矿制备高纯度TiO2的方法

Also Published As

Publication number Publication date
CN108300874A (zh) 2018-07-20
CN108300874B (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2019137542A1 (zh) 一种高钛渣选择性浸出提质的方法
WO2017174012A1 (zh) 熔盐氯化渣资源化处理方法
CN102220478B (zh) 五氧化二钒的制备方法
CN111534706A (zh) 一种攀西钛精矿制备富钛料的方法
CN112111661B (zh) 钒渣钙锰复合焙烧提钒的方法
WO2019137544A1 (zh) 一种富氧选择性浸出提取钒钛磁铁矿中有价组元的方法
CN109957657B (zh) 一种从赤泥中同时资源化利用铁、钠、铝的方法
WO2019137543A1 (zh) 一种富氧选择性浸出钛精矿制备高纯度TiO2的方法
CN101555036A (zh) 从高炉渣中提取TiO2及SiO2的方法
CN1479795A (zh) 从含有二氧化钛的物料如炼钢炉渣中回收二氧化钛的方法
CN102139918A (zh) 一种制备高品位人造金红石的方法
CN107267766A (zh) 一种从改性钒渣中选择性分离钒、钛、铁的方法
CN107043128A (zh) 一种铁盐溶液浸出法制备人造金红石的方法
CN110468285B (zh) 一种含钛炉渣制取TiO2粉体的方法
CN104313338A (zh) 一种含钛冶金渣处理方法
CN102220499B (zh) 精细钒渣的焙烧浸出方法
CN111705226B (zh) 一种高钛渣除杂的方法
CN103359781B (zh) 富钛料的生产方法
CN110396610B (zh) 一种铵盐加压热解处理钛矿物和金属硅酸盐矿物的方法
CN107935033A (zh) 一种含钛高炉渣制备钛白原料的工艺
CN109179496B (zh) 高品位二氧化钛及其制备方法
CN104843777B (zh) 一种由钛渣制备金红石型二氧化钛的方法
CN116287737A (zh) 一种实现钛、钒、铁、钙、硅、硫和氮循环利用的方法
CN102887542B (zh) 利用盐酸浸取直接还原熔分渣制备酸溶性钛渣的方法
CN113862494A (zh) 富钛料的制备方法以及四氯化钛的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19739108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19739108

Country of ref document: EP

Kind code of ref document: A1