RU2031121C1 - СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНЫХ ПЛАЗМИДНЫХ pC(Sp)n , КОДИРУЮЩИХ ХИМЕРНЫЙ БЕЛОК С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pC(Sp)4 , КОДИРУЮЩАЯ ЧАСТЬ ГЕНА ХЛОРАМФЕНИКОЛАЦЕТИЛТРАНСФЕРАЗЫ, ТЕТРАМЕРНЫЙ СПЕЙСЕР И СОМАТОСТАТИН-14;ШТАММ БАКТЕРИЙ ESCHERICHIA COLI - ПРОДУЦЕНТ ХИМЕРНОГО БЕЛКА С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;ПОЛИПЕПТИД - Google Patents

СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНЫХ ПЛАЗМИДНЫХ pC(Sp)n , КОДИРУЮЩИХ ХИМЕРНЫЙ БЕЛОК С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pC(Sp)4 , КОДИРУЮЩАЯ ЧАСТЬ ГЕНА ХЛОРАМФЕНИКОЛАЦЕТИЛТРАНСФЕРАЗЫ, ТЕТРАМЕРНЫЙ СПЕЙСЕР И СОМАТОСТАТИН-14;ШТАММ БАКТЕРИЙ ESCHERICHIA COLI - ПРОДУЦЕНТ ХИМЕРНОГО БЕЛКА С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;ПОЛИПЕПТИД Download PDF

Info

Publication number
RU2031121C1
RU2031121C1 RU93031156/13A RU93031156A RU2031121C1 RU 2031121 C1 RU2031121 C1 RU 2031121C1 RU 93031156/13 A RU93031156/13 A RU 93031156/13A RU 93031156 A RU93031156 A RU 93031156A RU 2031121 C1 RU2031121 C1 RU 2031121C1
Authority
RU
Russia
Prior art keywords
somatostatin
sequence
spacer
bamh1
restriction enzyme
Prior art date
Application number
RU93031156/13A
Other languages
English (en)
Other versions
RU93031156A (ru
Inventor
В.Г. Лунин
О.В. Сергиенко
М.-В.Л. Ходун
Л.Б. Бадер
В.А. Карпов
Т.И. Тихоненко
Original Assignee
Товарищество с ограниченной ответственностью "Ветек"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Товарищество с ограниченной ответственностью "Ветек" filed Critical Товарищество с ограниченной ответственностью "Ветек"
Priority to RU93031156/13A priority Critical patent/RU2031121C1/ru
Priority to US08/264,042 priority patent/US6316004B1/en
Priority to EP94109638A priority patent/EP0645454A3/en
Application granted granted Critical
Publication of RU2031121C1 publication Critical patent/RU2031121C1/ru
Publication of RU93031156A publication Critical patent/RU93031156A/ru

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Использование: генная инженерия, получение химерных белков, один из компонентов которых по тем или иным причинам не может быть получен в свободной форме микробного синтеза, а также в силу своих небольших размеров обладает лишь свойствами гаптена, т.е. способен индуцировать образование антител только после присоединения к высокомолекулярным носителям. Сущность изобретения: сконструирована рекомбинантная плазмидная ДНК pC(Sp)nS , детерминирующая синтез химерного белка, содержащего с часть хлорамфениколацетилтрансферазы, спейсер (Sp)n типа и соматостатин-14. Спейсер с величинами от 1 до 8 обеспечивает экспонирование соматостатина-14. Функции носителя для соматостатина выполняет ферментативно неактивная водонерастворимая хлорамфениколацетилтрансфераза без 10 концевых аминокислот, очищенный и ренатурированный химерный белок, синтезированный в протеазодефектном штамме бактерий Escherichia coli, реагирует с антителами к соматостатину и при иммунизации животных индуцирует синтез антисоматостатиновых антител. 4 с.п ф-лы, 2 табл.

Description

Изобретение относится к области генной инженерии, конкретно к получению химерных белков, один из компонентов которых по тем или иным причинам не может быть получен в свободной форме путем микробного синтеза, а также в силу своих небольших размеров обладает лишь свойствами гаптена, т.е. способен индуцировать образование антител лишь после присоединения к высокомолекулярным носителям. В частности, к такого рода олигопептидам относится тетрадекапептид соматостатин-14, имеющий аминокислотную последовательность AGCKNFFWKTFTSC, имеющий хорошие перспективы использования в сельском хозяйстве и медицине [1,2].
Однако широкое применение соматостатина-14, в частности для стимуляции роста животных путем иммунокоррекции с помощью антисоматостатиновых антител [1,2] , невозможно из-за его высокой стоимости, поскольку основными путями получения соматостатина является химический синтез, что экономически не позволяет реализовать данный подход на практике. Появление методов генной инженерии открыло возможности для производства ряда белково-пептидных гормонов путем синтеза в клетках микроорганизмов. Однако прямой микробный синтез рекомбинантного соматостатина, представляющего собой полипептид, состоящий из 14 аминокислотных остатков, осуществить не удается [3]. Описано несколько способов его получения путем специфической деградации химерных соматостатин-содержащих белков [3], которые не дают существенных коммерческих преимуществ по сравнению с химическим синтезом этого полипептида.
Первое исследование по получению соматостатина-14 с использованием генно-инженерной технологии выполнено в 1977 г. [3]. Авторы сконструировали гибридный ген на основе β-галактозидазы E.coli, в С' -концевую область которой встроена химически синтезированная последовательность соматостатина. На основе этой схемы позже были созданы эффективные продуценты химических белков с последовательностью соматостатина на основе генов trpE, trpD и recA E.coli. Уровень экспрессии химерных белков достигал 15-30% от общего количества белков, а выход соматостатина приближался к требованиям промышленного производства.
Известны рекомбинантная плазмидная ДНК, кодирующая соматостатин, и штамм Е. coli-продуцент соматостатина. Заявленная плазмида детерминирует конструктивный синтез гибридного белка хлорамфениколацетилтрансфераза-сомaтостатин-14 под контролем собственного промотора в клетках Е.coli MKD 3207 со сниженным уровнем деградации аномальных белков [4].
Основным недостатком описанных генно-инженерных конструкций и соответствующих им химерных белков является то, что иммуногенность таких белков в отношении соматостатина была крайне низкой, вследствие чего данные белки не нашли пока применения в сельскохозяйственной или медицинской практике.
Целью изобретения является получение иммунологически активного соматостатинсодержащего белка, легко поддающегося очистке и обладающего достаточной иммуногенностью в отношении соматостатина, чтобы его можно было применять для повышения продуктивности сельскохозяйственных животных.
Поставленная цель достигается путем создания рекомбинантной плазмидной ДНК pC(Sp)nS, кодирующей химерный белок с последовательностью соматостатина-14, и спейсера (Sp)n, обеспечивающего расположение соматостатина на поверхности химерного белка. Количество мономерных блоков спейсера (n) может изменяться от 1 до 8. Описание плазмидной конструкции проводится на примере pC(Sp)4S (n=4) размерам 4912 п.н., содержащей - Sсal - BamHI фрагмент плазмидного вектора pBR 325 размером 4828 п.н., включающей часть гена устойчивости к тетрациклину с сайтом рестриктазы BamHI на 5' -конце; ген устойчивости к ампициллину; часть гена хлорамфениколацетилтрансферазы с полусайтом рестрикции ScaI на 3' -конце и элиминированным сайтом рестриктазы EcoRI;
- SmaI - EcoRI фрагмент линкера, содержащий сайт рестрикции EcoRI и фланкированный с 5' -конца нуклеотидной последовательностью GGG-полусайт SmaI - для сочленения с 3' -концом гена хлорамфениколацетилтрансферазы по сайту ScaI;
EcoRI*-BglII фрагмент адаптора, содержащий сайты рестрикции EcoRI* и BglII для соединения с последовательностью спейсера размером 9 п.н.;
- BglII-EcoRI* спейсерную последовательность размером 36 п.н.;
- EcoRI - BamHI фрагмент синтетического гена соматостатина со "стоп"-кодоном размером 54 п.н.;
- генетические маркеры: ген устойчивости к ампициллину.
- один участок расщепления рестриктазы BamHI, принятый за 0 точку отсчета;
- один участок расщепления рестриктазы SalGI, расположенный на расстоянии 276 п.н. по часовой стрелке от BamHI сайта;
- один участок расщепления рестриктазы PstI, расположенный на расстоянии 3236 п.н. по часовой стрелке от BamHI сайта;
- один участок расщепления рестриктазы NcoI, расположенный на расстоянии 4712 п.н. по часовой стрелке от BamHI сайта;
- один участок расщепления рестриктазы BglII, расположенный на расстоянии 4840 п.н. по часовой стрелке от BamHI сайта;
- один участок расщепления рестриктазы Bsp1201, расположенный на расстоянии 4846 п.н. по часовой стрелке от BamHI сайта;
- один участок расщепления рестриктазы EcoRI, расположенный на расстоянии 4876 п.н. по часовой стрелке от BamHI сайта.
Данный химерный белок экспрессируется штаммом E.coli, трансформированным указанной плазмидой pC(Sp)4S. Штамм депонирован в коллекции ВКПМ под номером В-6519.
Химерный белок с экспонированным соматостатином представляет собой водонерастворимую ферментативно неактивную хлорамфениколацетилтрансферазу без 10 концевых аминокислот остатков, к которой через спейсерную последовательность (RP)n, где n = 1-8, присоединена последовательность соматостатина-14.
Этот белок выделяют из смеси белков, продуцируемых штаммом E.coli В-6519, трансформированным рекомбинантной плазмидой рС(Sp)nS.
Химерный белок взаимодействует с антителами к соматостатину-14, а при иммунизации животных индуцирует синтез соматостатинспецифических антител.
Молекулярная масса химерного белка, определяемая методом электрофоретической подвижности в полиакриламидном геле в денатурирующих условиях, составляет 28 килодальтон.
П р и м е р 1. Сборка и молекулярное клонирование нуклеотидной последовательности спейсера (СП).
Олигонуклеотиды (2 девятичленника GATCTATGC и AATTGCATA, формирующие адаптер, и 2 восемнадцатичленника GATCTGGGCCCCGGCCGG и AATTCCGGCCGGGGCCCA, формирующих спейсер) синтезируют амидитным методом в растворе на синтезаторе PS 200 Cruachem (Англия). Каждую из цепей химически синтезированных нуклеотидов фосфорилируют отдельно. Реакцию проводят в 10 мМ буфере трис-HCl, рН 7,5, содержащем 10 мМ MgCl2, 50 мМ дитиотреитола, 1 мМ АТФ и 100 пМ олигонуклеотида, 1 ед. полинуклеотидкиназы фага Т4 в течение 1 ч при 37оС. После окончания реакции энзим инактивируют прогреванием при 65оС 10 мин.
Для клонирования СП применяют рекомбинантную плазмиду pCCS размером 4920 п.н. [4], которая содержит фрагмент вектора pBR325 размером 4860 п.н. с геном β-лактамазы и частью модифицированного гена хлорамфениколацетилтрансферазы (САТ), к 3' -концу которого через синтетический линкер, содержащий сайт рестриктазы EcoRI и фланкированный с 5' -конца нуклеотидной последовательностью GG, подстроен по EcoRI сайту синтетический ген соматостатина-14. Данная плазмида детерминирует конститутивный синтез гибридного белка САТ-соматостатин-14 под контролем собственного промотора САТ в клетках E. coli. Клонирование СП проводят в две стадии. Первоначально получают производную pCCS, в которой сайт рестриктазы EcoRI заменен на сайт BglII.
1а. Молекулярное клонирование BglII-EcoRI* адаптора.
1 мкг плазмиды pCCS инкубируют с эндонуклеазой рестрикции EcoRI в буфере 50 мМ трис-HCl, рН 7,5, 100 мМ NaCl, 7 мМ NaCl, 7 мМ MgCl2, 7 мМ β-меркаптоэтанола при 37оС в течение 1 ч. По 50 пМ каждого фосфорилированного олигонуклеотида адаптора прибавляют к 1 мкг линеаризованной плазмиды pCCS. Легирование смесей олигонуклеотидов и плазмидной ДНК проводят в буфере для кинирования, содержащем 1 ед. ДНК-лигазы фага Т4. Инкубацию проводят при 12оС в течение 16 ч. Полученную легированную смесь ДНК и олигонуклеотидов вводят трансформацией в клетки E.coli HB101. Трансформацию проводят с использованием замороженных клеток. 5 свежих колоний диспергируют на встряхивателе в 1 мл среды SOB (2% триптон, 0,5% дрожжевой экстракт, 10 мМ NaCl, 10 мМ MgCl2, 10 мМ MgSO4). 500 мкл суспензии клеток вносят в 10 мл жидкой питательной среды SOB и выращивают при 37оС до титра 7х107 клеток/мл. Клетки охлаждают во льду и центрифугируют при 800 g в течение 15 мин при 4оС, тщательно удаляют супернатант, а осадок суспендируют в 3,3 мл буфера с хлористым рубидием (100 мМ RbCl, 50 мМ MgCl2, 30 мМ КАс, 10 мМ CaCl2, 10 мМ глицерина, рН 6,8). Клетки выдерживают во льду 2 ч, центрифугируют и тщательно удаляют супернатант. Ресуспендируют в 800 мкл буфера, содержащего 10 мМ MOPS, 10 мМ RbCl, 75 мМ CaCl2, 15% глицерина, и инкубируют 15 мин во льду, после чего аликвоты конечной суспензии замораживают в жидком азоте и используют для трансформации.
200 мкл приготовленной суспензии клеток смешивают с 5 мкл раствора легированной смеси и инкубируют 30 мин во льду, затем 90 с при 42оС, опять во льду 2 мин. Добавляют 800 мкл среды SOB и инкубируют при умеренном встряхивании при 37оС в течение 60 мин. Небольшую часть суспензии клеток высевают на чашки с агаром, приготовленные на среде SOB, содержащей 1% бакто-агара и 50 мкг/мл ампициллина. Произвольно выбирают 12 клонов, выросших на чашке с ампициллином, выделяют плазмидную ДНК щелочным методом. После обработки этих плазмид рестриктирующими эндонуклеазами PstI и BglII и электрофореза в агарозном геле выбирают плазмиду искомой конструкции.
1б. Клонирование последовательности СП.
Для клонирования последовательности СП были использованы исходная плазмида pCCS и ее модифицированная производная - pCCS-BglII. 3 мкг плазмиды pCCS инкубируют с эндонуклеазами рестрикции PstI и EcoRI, а плазмиды pCCS-BglII - с эндонуклеазами рестрикции PstI и BglII в буфере и условиях примера 1а. Фрагменты разделяют с помощью электрофореза в 0,8% агарозном геле. В первом случае из геля вырезают больший фрагмент (3296 п.н.) и экстрагируют из геля пятью объемами 1,5 М NaCl. Супернатант, полученный после центрифугирования суспензии, обрабатывают хлороформом, ДНК осаждают тремя объемами этилового спирта. ДНК растворяют в 10 мкл воды. Во втором случае из геля вырезают фрагмент меньшей молекулярной массы (1175 п.н.) и обрабатывают аналогичным образом. По 50 пМ каждого фосфорилированного олигонуклеотида СП прибавляют к 5 мкл препарата ДНК каждого фрагмента. Легирование смеси олигонуклеотидов и фрагментов ДНК проводят как в примере 1а. Трансформацию лигазной смеси и отбор клонов проводят как в примере 1а. Анализ последовательности нуклеотидной вставки был проведен первоначально рестрикционным картированием на наличие сайтов рестрикции Bsp1201 и Eco521, а затем подтвержден анализом нуклеотидной последовательности методом Максама-Гилберта.
П р и м е р 2. Полимеризация СП.
Нуклеотидная последовательность СП включает в себя сайты рестриктаз Bsp1201 и Eco521, отличительной особенностью которых является наличие одинаковых "липких" концов при различных фланкирующих нуклеотидах в первом и шестом положениях. Такая организация сайтов позволяет производить полимеризацию СП, приводящую к увеличению его размера. Для этой цели 3 мкг плазмиды pCSpS в первом случае инкубируют с эндонуклеазами рестрикции PstI и Bsp1201, а во втором случае - с эндонуклеазами рестрикции PstI и Eco521. Из продуктов первого гидролиза был выделен больший фрагмент (3302 п.н.), а из продуктов второго гидролиза - фрагмент меньшей молекулярной массы (1616 п. н. ). Процедуру элюции, легирование, трансформацию, отбор клонов проводят как в примере 1а. ДНК из полученных клонов была первоначально проанализирована рестрикционным картированием эндонуклеазами NcoI-Bsp1201 и NcpI-Eco521. Клоны содержали димер СП и имели приращение 6 нуклеотидных пар относительно исходного. Плазмида получила обозначение рС(Sp)2S. Процедуру полимеризации проводят еще два раза, в результате чего получают клоны с тетра- и октамерами СП, обозначенные pC(Sp)4S и pC(Sp)8S. Эти конструкции обозначаются в общем виде (Sp)n. В описываемых ниже примерах преимущественно использовались плазмиды с числом n=4, т.е. pC(Sp)4S, хотя для оптимизации конечного эффекта применяли и pC(Sp)2 и pC(Sp)8.
П р и м е р 3. Использование рекомбинантных плазмид серии pC(Sp)nS для создания штаммов-продуцентов E.coli.
Плазмиды pC(Sp)nS вводят трансформацией в штамм E.coli MKD 3207 по методу, описанному в примере 1а, и получают штаммы-продуценты гибридных белков.
Штамм MKD 3207 характеризуется следующими признаками.
Культурально-морфологические.
Штамм MKD 3207 (производный от Escherichia coli К-12) - представляют собой грамотрицательные, малоподвижные палочки, при неблагоприятных условиях образующие филаменты. Штамм хорошо растет в температурном интервале 30-42оС на богатых средах типа LB, а также на синтетических средах с добавками, компенсирующими ауксотрофные мутации. На богатых средах штамм образует гладкие, с ровными краями колонии, которые со временем ослизняются, что объясняется lon-мутацией. При температуре инкубации 40-42оС ослизнения колоний не происходит. При росте на синтетической среде с добавками колонии всегда слизистые.
Генетические и физиолого-биохимические признаки.
Штамм MKD 3207 имеет следующие генетические маркеры: F-, lacY, supE, ga16, xy14, mal A1, arcH, his' , lon-, apr24, rpl. Устойчив к стрептомицину, не сбраживает лактозу, галактозу, ксилозу и мальтозу. Штамм растет на синтетической среде с добавками глюкозы, аргинина и гистидина. Штамм MKD 3207, содержащий плазмиды pC(Sp)nS, приобретает устойчивость к ампициллину.
Анализ экспрессии генов, кодирующих соматостатин в составе гибридных белков, проводят в клетках E.coli MKD 3207. Гибридные гены в составе экспрессирующих векторов pC(Sp)nS в клетках E.coli MKD 3207 детерминируют конститутивный синтез под контролем собственного промотора САТ. Клетки E.coli MKD 3207, трансформированные плазмидами pC(Sp)1S, pC(Sp)2S, pC(Sp)4S и pC(Sp)8S, выращивают в среде LB, содержащей ампициллин (50 мкг/мл), до плотности ОД550 2,0-2,5 при 37оС в течение 18 ч. В качестве контроля используют исходную плазмиду pCCS, кодирующую химерный белок САТ-соматостатин под контролем собственного Pcat. Из 1,5 мл клеточной культуры центрифугированием получают осадок клеток, который суспендируют в 200 мкл буферного раствора, содержащего 50 мМ трис-НCl, рН 6,8, 10% глицерин, 2% SDS и 2% β-меркаптоэтанол. Суспензию кипятят 5 мин и анализируют с помощью электрофореза в 15% SDS-ПААГ. Результаты показывают наличие доминирующей полосы молекулярной массы 26,5 кД для химерного белка с мономерной и димерной копиями спейсера, 28 кД для тетрамерного спейсера и 30 кД для октамерной последовательности спейсера. Уровень экспрессии гибридных белков с мономерной, димерной и тетрамерной спейсерными последовательностями примерно одинаков и составляет 30% от суммарных бактериальных белков, а с последовательностью октамера - 5% . Штамм Escherichia coli MKD 3207, трансформированный плазмидой pC(Sp)4S, был депонирован в ВКПМ под номером В-6519.
П р и м е р 4. Выделение гибридного белка с последовательностью соматостатина.
Клетки E. coli MKD 3207, трансформированные плазмидой pC(Sp)4S, культивируют в среде LB как описано в примере 3 в ферментере до плотности ОД550 4,0-5,0. Клетки осаждают центрифугированием при 5 тыс. g 10 мин. Осадок клеток суспендируют в 50 мМ трис-HCl, рН 8,0, содержащем 50 мМ NaCl, 10 мМ EDTA из расчета 38 мл буфера на биомассу из одного литра клеточной культуры. После суспендирования добавляют лизоцим до конечной концентрации 100 мкг/мл, Тритон-Х100 до концентрации 0,1% и инкубируют суспензию во льду. Клетки разрушают ультразвуком. Осадок, включающий водонерастворимый гибридный белок, получают центрифугированием при 12 тыс. g 10 мин при 4оС, промывают двукратно буфером с Тритоном, центрифугируют и ресуспендируют в первоначальном буфере без Тритона. Отбирают аликвоты и анализируют в 15% SDS-ПААГ электрофорезе. В результате данной процедуры очистки получают препарат гибридного белка, имеющий чистоту 90% от суммарных белков осадка.
Данная методика выделения и очистки гибридного белка адаптирована для последующего применения выделяемого белка как препарата-стимулятора в животноводстве.
Для иммунологического анализа препарат белка, полученного по методике, описанной в примере 4, растворяют в 6М гуанидин-хлориде, а затем диализуют против 8М раствора мочевины в 10 мМ карбонатном буфере рН 11 два часа, и разбавляя диализующий раствор 10 мМ карбонатным буфером рН 11 двукратно каждые два часа, доводят концентрацию мочевины до 1М. Затем диализ проводят против 10 мМ фосфатного буфера рН 7,6 в течении 12 ч. Полученный диализат используют как антиген (добавляя в реакцию в заведомо избыточном количестве) в конкурентном РИА, проводимом с помощью набора фирмы "Incstar" (США) (см. табл. 2). Препарат ингибирует связывание меченного 125I соматостатина со специфическими антисоматостатиновыми антителами (пункт 4 табл.1).
П р и м е р 5. Получение препарата для иммунизации.
Очищенный по примеру 4 гибридный белок растворяют в буфере 0,2 М трис-HCl, рН 8,0, содержащем 6М гуанидин-хлорид и 2 мМ EDTA, добавляют 50-кратный молярный избыток β-меркаптоэтанола в расчете на S-S группы гибридного белка, и раствор быстро разбавляют 10-кратным объемом буфера без гуанидин-хлорида. Образовавшийся преципитат гибридного белка отделяют центрифугированием при 12000g 15 мин при 4оС.
Полученный преципитат лиофильно высушивают и расфасовывают по 0,5 г. Препарат для иммунизации готовят следующим образом: лиофильно высушенный препарат ресуспендируют в 10 мМ фосфатном буфере рН 7,0 в минимальном объеме, затем готовят водно-масляную суспензию с неполным адъювантом Фрейнда при соотношении белок:адъювант = 1:1, гомогенизируя непродолжительным озвучиванием.
П р и м е р 6. Применения препарата для иммунизации.
6а. Применение для крупного рогатого скота.
Препарат вводят стельным нетелям черно-пестрой породы в возрасте 24-25 месяцев приблизительно за 50 дней до отела. Срок стельности определяют ректальным исследованием. Препарат вводят в дозе 50 мкг на 1 кг массы животного внутримышечно в область шеи или лопатки. Иммунизацию проводят с интервалом две недели трижды.
У иммунизированных животных не наблюдается проявлений, указывающих на токсичность препарата, в том числе нет нарушений воспроизводительных функций (абортов, мертворожденности, уродств и т.д.).
Для анализа индукции специфических антител к соматостатину, вызываемых иммунизацией препаратом, у стельных нетелей проводят забор крови через 7 дней после последней инъекции, получают плазму и исследуют ее в РИА с помощью компонентов и протокола набора фирмы "Incstar" (США) (см. табл.1). В препаратах плазмы животных исследуемой группы наблюдается специфическое связывание соматостатина (пункт 4, табл.2).

Claims (5)

  1. СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНЫХ ПЛАЗМИД pC(SP)nS, КОДИРУЮЩИХ ХИМЕРНЫЙ БЕЛОК С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14; РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pC(Sp)4S, КОДИРУЮЩАЯ ЧАСТЬ ГЕНА ХЛОРАМФЕНИКОЛАЦЕТИЛТРАНСФЕРАЗЫ, ТЕТРАМЕРНЫЙ СПЕЙСЕР И СОМАТОСТАТИН-14; ШТАММ БАКТЕРИЙ ESCHERICHIA COLI - ПРОДУЦЕНТ ХИМЕРНОГО БЕЛКА С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14; ПОЛИПЕПТИД.
  2. 1. Способ получения рекомбинантных плазмидных ДНК pC(Sp)nS, кодирующих химерный белок с последовательностью соматостатина-14, заключающийся в том, что осуществляют клонирование гена белка-носителя, к 3'-концу которого через адаптор присоединен спейсер (Sp)n, соединенный с последовательностью ДНК, кодирующей соматостатин-14 и стоп-кодон.
  3. 2. Рекомбинатная плазмидная ДНК pC(Sp)4S, кодирующая часть гена хлорамфениколацетилтрансферазы, тетрамерный спейсер и соматостатин-14 размером 4912 п.н., содержащая Pst 1 - BamH1/Bgl11 - фрагмент плазмиды pCCS размером 4860 п.н. с частью гена хлорамфениколацетилтрансферазы и полусайтом рестрикции Scal на 3'-конце; Smal - Ecok1 - фрагмент линкера с полусайтом Smal для сочленения 3'-концом гена хромфениколацетилтрансферазы; EcoR1 - Bgl11 - фрагмент адаптера для соединения с последовательностью спейсера (Sp) размером 9 п.н.:
    GATCTATGC
    ATACGTTAA;
    Bgl11 - EcoR1 - спейсерная последовательность размером 36 п.н.:
    GATCTGGGCCCCGGCCCCGGCCCCGGCCCCGGCCGG ACCCGGGGCCGGGGCCGGGGCCGGGGCCGGCCTTAA
    EcoR1 - BamH1 - фрагмент синтетического гена соматостатина-14 со стопкодоном размером 54 н.п.;
    AATTCATGGCTGGTTGCAAAAACTTCTTCTGGAAAACCTTCACGTCTTGCTAGG GATCCGACCAACGTTTTTGAAGAAGACCTTTTGGAAGTGAGAACGATCCCTAG
    генетические маркеры: ген устойчивости к ампициллину; сайты рестрикции: один участок расщепления рестриктазы BamH1, принятый за нулевую точку отсчета, один участок расщепления рестриктазы SalG1, расположенный на расстоянии 276 п.н. по часовой стрелке от BamH1 сайта; один участок расщепления рестриктазы Pst1, расположенный на расстоянии 3236 п.н. по часовой стрелке от BamH1; один участок расщепления рестриктазы Nco1, расположенный на расстоянии 4712 п.н. по часовой стрелке от Bam1; один участок расщепления рестриктазы Bgl11, расположенный на расстоянии 4840 п.н. по часовой стрелке от BamH1 сайта; один участок расщепления рестриктазы Bsp 1201, расположенный на расстоянии 4846 п. н. по часовой стрелке BamH1; один участок расщепления рестриктазы EcoR1, расположенный на расстоянии 4875 п.н. по часовой стрелке от BamH1.
  4. 3. Штамм бактерий Escherichia coli ВКПМ В-6519 - продуцент химерного белка с последовательностью соматостатина-14.
  5. 4. Полипептид, полученный в штамме бактерий Escherichia coli ВКПМ В-6519, трансформированном плазмидной ДНК, содержащей фрагмент ДНК, кодирующей часть хлорамфениколацетилтрансферазы без десяти C терминальных аминокислот, к которой через спейсерный олигонуклеотид (Sp)4 присоединена последовательность, кодирующая соматостатин-14 с аминокислотной последовательностью AGGKNFFWKTFTSC со стоп-кодоном, индуцирующий синтез соматостатинспецифических антител и имеющий мол.м. 28 килодальтон при определении с помощью электорофореза а акриламидном геле.
RU93031156/13A 1993-06-22 1993-06-22 СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНЫХ ПЛАЗМИДНЫХ pC(Sp)n , КОДИРУЮЩИХ ХИМЕРНЫЙ БЕЛОК С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pC(Sp)4 , КОДИРУЮЩАЯ ЧАСТЬ ГЕНА ХЛОРАМФЕНИКОЛАЦЕТИЛТРАНСФЕРАЗЫ, ТЕТРАМЕРНЫЙ СПЕЙСЕР И СОМАТОСТАТИН-14;ШТАММ БАКТЕРИЙ ESCHERICHIA COLI - ПРОДУЦЕНТ ХИМЕРНОГО БЕЛКА С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;ПОЛИПЕПТИД RU2031121C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU93031156/13A RU2031121C1 (ru) 1993-06-22 1993-06-22 СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНЫХ ПЛАЗМИДНЫХ pC(Sp)n , КОДИРУЮЩИХ ХИМЕРНЫЙ БЕЛОК С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pC(Sp)4 , КОДИРУЮЩАЯ ЧАСТЬ ГЕНА ХЛОРАМФЕНИКОЛАЦЕТИЛТРАНСФЕРАЗЫ, ТЕТРАМЕРНЫЙ СПЕЙСЕР И СОМАТОСТАТИН-14;ШТАММ БАКТЕРИЙ ESCHERICHIA COLI - ПРОДУЦЕНТ ХИМЕРНОГО БЕЛКА С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;ПОЛИПЕПТИД
US08/264,042 US6316004B1 (en) 1993-06-22 1994-06-22 Chimeric somatostatin containing protein and encoding DNA, plasmids of expression, method for preparing chimeric protein, strain-producers, immunogenic composition, method for increasing the productivity of farm animals
EP94109638A EP0645454A3 (en) 1993-06-22 1994-06-22 Protein containing a chimeric somatostatin, coding DNA, immunogenic compositions, and method for improving the productivity of farmes animals.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93031156/13A RU2031121C1 (ru) 1993-06-22 1993-06-22 СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНЫХ ПЛАЗМИДНЫХ pC(Sp)n , КОДИРУЮЩИХ ХИМЕРНЫЙ БЕЛОК С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pC(Sp)4 , КОДИРУЮЩАЯ ЧАСТЬ ГЕНА ХЛОРАМФЕНИКОЛАЦЕТИЛТРАНСФЕРАЗЫ, ТЕТРАМЕРНЫЙ СПЕЙСЕР И СОМАТОСТАТИН-14;ШТАММ БАКТЕРИЙ ESCHERICHIA COLI - ПРОДУЦЕНТ ХИМЕРНОГО БЕЛКА С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;ПОЛИПЕПТИД

Publications (2)

Publication Number Publication Date
RU2031121C1 true RU2031121C1 (ru) 1995-03-20
RU93031156A RU93031156A (ru) 1996-07-27

Family

ID=20143183

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93031156/13A RU2031121C1 (ru) 1993-06-22 1993-06-22 СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНЫХ ПЛАЗМИДНЫХ pC(Sp)n , КОДИРУЮЩИХ ХИМЕРНЫЙ БЕЛОК С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pC(Sp)4 , КОДИРУЮЩАЯ ЧАСТЬ ГЕНА ХЛОРАМФЕНИКОЛАЦЕТИЛТРАНСФЕРАЗЫ, ТЕТРАМЕРНЫЙ СПЕЙСЕР И СОМАТОСТАТИН-14;ШТАММ БАКТЕРИЙ ESCHERICHIA COLI - ПРОДУЦЕНТ ХИМЕРНОГО БЕЛКА С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;ПОЛИПЕПТИД

Country Status (1)

Country Link
RU (1) RU2031121C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160450A2 (en) 2011-05-23 2012-11-29 Contango Partners Group, Inc. Modular transport platform for targeted delivery of therapeutic agents
RU2526571C1 (ru) * 2013-04-08 2014-08-27 Сергей Михайлович Юдин Инъекционный препарат для повышения спермопродукции человека и способ его применения
RU2561467C1 (ru) * 2014-04-24 2015-08-27 Сергей Михайлович Юдин Способ получения препарата для повышения мясной и молочной продуктивности сельскохозяйственных животных (варианты) и препарат, полученный на его основе
RU2614115C1 (ru) * 2016-08-01 2017-03-22 Сергей Михайлович Юдин Рекомбинантный соматостатинсодержащий белок, способ его получения, инъекционный препарат для повышения мясной и молочной продуктивности сельскохозяйственных животных, а также способ использования препарата
WO2021129915A1 (ru) 2019-12-25 2021-07-01 Владимир Глебович ЛУНИН Рекомбинантный белок gbd-sstad-sstad, способ его получения и применения

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
1. Муромцев Г.С. и др., Основы сельско-хозяйственной биотехнологии. М.: Агропромиздат, 1990. *
2. Keichlin, ed 1989, somatostatin. Basic and chinieal status Plenum P.ress. New Jork. *
3. Itakura R.et.al., 1977. Expression in E.col.ofa a chemically synthesired gene of the hormone somatostatin a chemically synthesired gene of the hormone somatostatin science 1976, 1056-1063. *
4. Шишкина А.А. и др. Синтез фрагментов гена соматостатина. - Химия природных соединений, 1988, N 6, с.614-616. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160450A2 (en) 2011-05-23 2012-11-29 Contango Partners Group, Inc. Modular transport platform for targeted delivery of therapeutic agents
RU2526571C1 (ru) * 2013-04-08 2014-08-27 Сергей Михайлович Юдин Инъекционный препарат для повышения спермопродукции человека и способ его применения
RU2561467C1 (ru) * 2014-04-24 2015-08-27 Сергей Михайлович Юдин Способ получения препарата для повышения мясной и молочной продуктивности сельскохозяйственных животных (варианты) и препарат, полученный на его основе
RU2614115C1 (ru) * 2016-08-01 2017-03-22 Сергей Михайлович Юдин Рекомбинантный соматостатинсодержащий белок, способ его получения, инъекционный препарат для повышения мясной и молочной продуктивности сельскохозяйственных животных, а также способ использования препарата
WO2021129915A1 (ru) 2019-12-25 2021-07-01 Владимир Глебович ЛУНИН Рекомбинантный белок gbd-sstad-sstad, способ его получения и применения

Similar Documents

Publication Publication Date Title
US5288852A (en) Human tumor necrosis factor polypeptides
US6027720A (en) G-CSF conjugate
US5214132A (en) Polypeptide derivatives of human granulocyte colony stimulating factor
US5231176A (en) Distinct family DNA encoding of human leukocyte interferons
US5714581A (en) Polypeptide derivatives of human granulocyte colony stimulating factor
EP0155549A2 (en) DNA encoding human tumor necrosis factor and human tumor necrosis factor polypeptide
JPH0797995B2 (ja) ペプチド類の製造法
JPS62207297A (ja) 超高度原核発現系
US5980911A (en) Adjuvant
RU2031121C1 (ru) СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНЫХ ПЛАЗМИДНЫХ pC(Sp)n , КОДИРУЮЩИХ ХИМЕРНЫЙ БЕЛОК С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pC(Sp)4 , КОДИРУЮЩАЯ ЧАСТЬ ГЕНА ХЛОРАМФЕНИКОЛАЦЕТИЛТРАНСФЕРАЗЫ, ТЕТРАМЕРНЫЙ СПЕЙСЕР И СОМАТОСТАТИН-14;ШТАММ БАКТЕРИЙ ESCHERICHIA COLI - ПРОДУЦЕНТ ХИМЕРНОГО БЕЛКА С ПОСЛЕДОВАТЕЛЬНОСТЬЮ СОМАТОСТАТИНА-14;ПОЛИПЕПТИД
JP2513909B2 (ja) ネコインタ―フェロンおよびその製造法
US6316004B1 (en) Chimeric somatostatin containing protein and encoding DNA, plasmids of expression, method for preparing chimeric protein, strain-producers, immunogenic composition, method for increasing the productivity of farm animals
JP2634132B2 (ja) 新規ペプチド
JP3310672B2 (ja) シグナルペプチドを有さないスタフィロキナーゼの発現
JPH02503144A (ja) ウシインタ‐ロイキン‐1β
RU2034457C1 (ru) Способ повышения продуктивности сельскохозяйственных животных и препарат для его осуществления
KR960016704B1 (ko) 소마토트로핀 암호화 cDNA, 발현 벡터 및 숙주
EP0423869A1 (en) Infectious bronchitis virus vaccine
US5017493A (en) DNA sequence
EP0230781B1 (en) Lymphotoxin gene, method for its production, and lymphotoxin
WO2002081519A9 (fr) Nouvelle proteine hybride ifn-thy, preparation et utilisation
CN114196691B (zh) 一种制备防治牛、羊棘球蚴病多表位重组疫苗的基因、蛋白质、疫苗和应用
CN114262719B (zh) 副鸡嗜血杆菌三价基因工程亚单位疫苗制备方法及运用
SU1730151A1 (ru) Рекомбинантна плазмидна ДНК р 9 F МД, кодирующа гибридный полипептид Р199 - ASp PRo CYS CYS - VP1 /200 - 213/ - PRo PRo SeR PRo - Vp1 /131 - 152/ PRo CYS GLY и штамм бактерий ЕSснеRIснIа coLI продуцент гибридного полипептида Р199 - ASp PRo CYS GLY - VP1 /200 - 213/ PRo PRo SeR PRo - VP1 /131 - 152/ - PRo CYS GLY
JP2666069B2 (ja) 組換え型鳥類プロラクチン又は組換え型鳥類プレプロラクチン,組換え型ニワトリプロラクチン,組換え型ニワトリプロラクチン構造遺伝子,組換え型ニワトリプレプロラクチン,組換え型ニワトリプレプロラクチン構造遺伝子,組換えプラスミド,組換えプラスミドを含む微生物

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040623

HK4A Changes in a published invention