RU2027703C1 - Способ получения блеско-структурообразующей добавки для электролита сернокислого меднения - Google Patents

Способ получения блеско-структурообразующей добавки для электролита сернокислого меднения Download PDF

Info

Publication number
RU2027703C1
RU2027703C1 SU4934775A RU2027703C1 RU 2027703 C1 RU2027703 C1 RU 2027703C1 SU 4934775 A SU4934775 A SU 4934775A RU 2027703 C1 RU2027703 C1 RU 2027703C1
Authority
RU
Russia
Prior art keywords
sodium
condensation
nonionic surfactants
diazotization
solution
Prior art date
Application number
Other languages
English (en)
Inventor
А.П. Ушаков
А.В. Болдырев
В.В. Мамаев
Б.В. Сорокин
В.А. Терешкин
В.Ф. Маглич
Ж.Н. Файнтгоф
Е.Н. Дмитриева
Original Assignee
Научно-производственное объединение "Государственный институт прикладной химии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-производственное объединение "Государственный институт прикладной химии" filed Critical Научно-производственное объединение "Государственный институт прикладной химии"
Priority to SU4934775 priority Critical patent/RU2027703C1/ru
Application granted granted Critical
Publication of RU2027703C1 publication Critical patent/RU2027703C1/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Сущность изобретения: блеско-структуро-образующая добавка для электролита водная суспензия-сернокислотная соль сероводородной кислоты. Реагент 3: неионогенное поверхостно-активное вещество ф-лы R-X(CH2CH2O)mH , где R- CnH2n+1 , n=10-20; X=0, NH, COO-, -CONH, -CH4-O- ; m=5-20.

Description

Изобретение относится к способу получения натриевых солей сульфоарилсульфидных или сульфоарилполисульфидных соединений, которые могут использоваться в качестве блескоструктурообразователей в процессах электролиза.
Блескообразующая добавка представляет собой смесь сульфоарилсульфидных и сульфоарилполисульфидных соединений и применяется в составе электролитов сернокислого меднения на предприятиях радиотехнической, электротехнической промышленности, в судостроении, приборостроении, и т.д. в производстве печатных плат. Электролит с такой добавкой обладает высокой рассеивающей способностью, позволяет покрывать изделия сложной конфигурации, с большим количеством отверстий. Медные покрытия печатных плат, получаемые в электролите с этими добавками, обладают высокой пластичностью, термической и механической прочностью.
Прототипом данного изобретения является процесс получения блескоструктурообразующей добавки (БЭСМ), который включает следующие технологические операции:
приготовление исходных водных растворов сульфанилата, нитрита, сульфида и дисульфида натрия;
диазотирование сульфанилата натрия в кислой среде;
конденсацию соли 4-сульфофенилдиазония с дисульфидом натрия и выделение целевого продукта из реакционных водных растворов.
Диазотирование сульфанилата натрия проводится при температуре 0 до +5оС, смешением водных растворов сульфанилата натрия и нитрита натрия с последующим добавлением неорганической кислоты в количестве, обеспечивающем эквимолекулярное соотношение реагирующих веществ и величину рН 1-3. Получаемый в результате диазотирования суспензированный раствор 4-сульфофенилдиазония выдерживается при температуре от 0 до +10оС в течение 1,5-2 ч и далее используется на стадии конденсации с раствором дисульфида натрия. Конденсацию 4-сульфофенилдиазония с дисульфидом натрия проводят в емкостном аппарате вместимостью 160 л. В этот препарат (реактор), охлаждаемый рассолом, загружают рассчитанное на операцию количество раствора дисульфида натрия, и к нему постепенно при перемешивании добавляют суспензию 4-сульфофенилдиазония из реактора диазотирования. Диазораствор дозируют таким образом, чтобы температура реакционной смеси в реакторе не превышала 20оС. Дозировку диазораствора прекращают при достижении величины рН реакционной массы, равной 7-8.
Реакционную смесь, представляющую собой раствор с хлопьеобразными включениями элементарной серы, отфильтровывают и используют далее на стадии выделения.
Как показали исследования, конверсия исходных реагентов в целевой продукт, а также количество отходов производства в виде элементарной серы других твердых веществ зависит от многих факторов, в частности от чистоты исходного сырья, условий проведения реакции и т.д. Так, например, технологический процесс предполагает использование эквимолекулярных количеств сульфанилата натрия, нитрита натрия и неорганической кислоты на стадии получения 4-сульфофенилдиазония, а также в реакции его конденсации с дисульфидом натрия. Практически из-за частичного разложения дисульфида натрия при его взаимодействии с 4-сульфофенилдиазонием, который участвует в реакции в виде суспендированного раствора, необходим избыток дисульфида натрия сверх стехиометрического количества. При этом часть дисульфида натрия, подвергаясь разложению, образует серу и другие примеси (сероводород, диоксид серы). Кроме того, неравномерное распределение суспензии 4-сульфофенилдиазония в реакционном объеме при его дозировке в раствор дисульфида натрия приводит к неравномерному, пульсирующему характеру протекания реакции конденсации. Это выражается в том, что на начальном этапе подачи суспензии в реактор конденсации температура реакционной массы быстро повышается до 20-25оС, реакция сопровождается интенсивным газовыделением, вспениванием раствора и частичным его выбросом в буферную емкость или линию сдува. Для устранения интенсивного характера протекания реакции на первом этапе конденсации дозировку диазораствора прекращают и возобновляют только после самопроизвольного снижения температуры в реакторе до 8-10оС. Далее, при последующем добавлении суспензии 4-сульфофенилдиазония в раствор дисульфида натрия, когда концентрация твердой фазы в суспендированном растворе уменьшается, из реактора диазотирования в реактор конденсации поступает все более и более разбавленная суспензия 4-сульфофенилдиазония, реакция не сопровождается всплесками температуры и газовыми выбросами. Такой характер протекания реакции в большинстве случаев вызывает необходимость использования дополнительных количеств дисульфида натрия, что в свою очередь приводит к увеличению вероятности его побочных превращений и, как следствие, к увеличению отходов производства.
Таким образом, основными недостатками существенного процесса получения БЭСМ являются:
недостаточно полная конверсия реагирующих веществ в целевой продукт, что обусловливает снижение выхода и производительности процесса;
образование больших количеств неутилизируемых отходов производства (около 0,3-0,4 кг/кг продукта) в виде сульфата натрия и элементарной серы;
выделение на стадии конденсации совместно с инертным азотом вредных газовых выбросов (сероводород, диоксид серы), что приводит к необходимости создания специальных методов их утилизации и обезвреживания;
использование ручного труда при обслуживании технологического оборудования и низкая степень механизации и автоматизации.
Целью изобретения является: увеличение конверсии исходных реагентов и выхода целевого продукта; снижение расхода сырья; сокращение отходов производства и устранение образования вредных газовых выбросов; улучшение условий труда и экологии производства.
Для этого стадии диазотирования сульфанилата натрия и конденсации суспензированного раствора 4-сульфофенилдиазония с дисульфидом (сульфидом) натрия ведут с добавлением в водный раствор реагентов поверхностно-активного вещества (ПАВ). Процесс проводят непрерывно при перемешивании, поддерживая необходимую температуру и рН среды.
В качестве ПАВ используют неионогенные поверхностно-активные вещества (НПАВ) общей формулы
R - X(CH2CH2O)mH, где R - CnH2+1,
n = 10-20;
Х = 0; NН; -СОО-; -CONH-; -CH4O-;
m = 5-20 (число оксиэтилирования).
Указанные НПАВ получают в промышленности путем каталитического взаимодействия; оксида этилена с синтетическими высокомолекулярными алифатическими спиртами (1), аминами (2), кислотами или их эфирами (3), алкилфенолами (4), алкиламидами (5).
1. Оксид этилена с синтетическими высшими алифатическими спиртами:
С10Н21О (СН2СН2О)mH + C20H41O (CH2CH2O)mH, где m = 5-20.
2. Оксид этилена с аминами:
C10H21HN(CH2CH2O)mH +
+ C20H41NH (CH2CH2O)mH, где m = 5-20.
3. Оксид этилена с высшими кислотами или их эфирами:
C10H21COO(CH2CH2O)mH +
+ C20H41COO(CH2CH2O)mH, где m = 5-20
4. Оксид этилена с алкиламидами:
C10H21CONH(CH2CH2O)mH +
+ C20H41CONH(CH2CH2O)mH, где m = 5-20.
5. Оксид этилена с алкилфенолами:
C10H21C6H4O(CH2CH2O)mH +
+ C20H41C6H4O(CH2CH2O)mH, где m = 5-20 НПАВ представляет собой смеси олигомерных гомологов с распределением m относительно некоторого среднего значения, поэтому говорить о точном числе оксиэтилирования в НПАВ не представляется возможным.
Указанные НПАВ вводят в количестве 0,5-5,0% от массы исходного сульфанилата натрия. Введение осуществляют либо на стадии приготовления водных растворов сульфанилата и нитрита натрия, либо, в случае непрерывной организации процесса, в ходе смешения потоков реагирующих веществ на стадии диазотирования сульфанилата натрия.
Выбор НПАВ осуществлен на основе большого объема проведенных работ с различными типами ПАВ. Только указанные выше НПАВ способны обеспечить оптимальное проведение процесса получения блескоструктурообразующей добавки и получение продукта, соответствующего предъявляемым к нему требованиям.
Эти НПАВ доступны, хорошо растворимы в воде и обладают высокой эмульгирующей способностью.
Указанные НПАВ предварительно были растворены в водных растворах сульфанилата натрия в количестве ≈ 0,5-5% от массы твердой фазы. Их введение привело к образованию стойких во времени, нерасслаивающихся эмульсий 4-сульфофенилдиазония. Благодаря этому твердая фаза 4-сульфофенилдиазония равномерно распределяется по реакционному объему реактора диазотирования без расслаивания, вследствие чего на стадию диазотирования подается равномерная суспензия.
Неожиданным оказалось то, что присутствие НПАВ в растворе оказывает положительное влияние на протекание реакции конденсации. Реакция идет не только более устойчиво, без температурных всплесков и интенсивного газовыделения, но и обеспечивает полную конверсию дисульфида (сульфида) натрия в целевой продукт. Это подтверждается отсутствием серы и кислых газовых примесей в отходящих газах. Выход целевого продукта при этом увеличивается с 70-80 до 90-95% (от теоретического). Пределы концентрации добавляемого НПАВ были подобраны экспериментальным путем.
В ходе предварительных опытов авторами были испытаны различные типы НПАВ - такие, например, как оксиэтилированные спирты, кислоты, фенолы, амины, амиды, эфиры, имидазолины, с индивидуальными алкильными радикалами длиной 10-20 атомов углерода и их смеси. Со всеми перечисленными соединениями удавалось получать устойчивые во времени мелкодисперсные эмульсии диазосоединения в водной среде. Однако, основываясь на промышленной доступности НПАВ, выпускаемых в СССР, были выделены оксиэтилированные НПАВ, выпускаемых в СССР, были выделены оксиэтилированные жирные спирты (ОС) общей формулы RO(CH2CH2O)mH.
Выпускаемые отечественной промышленностью ОС представляют собой смесь гомологов С1016 со среднестатическим числом присоединенных молей оксида этилена от 5 до 20.
Положительным свойством таких ОС является тот факт, что их присутствие в конечном продукте не ухудшает свойств блескоструктурообразователя, а, напротив, улучшает его эксплуатационные свойства. Это проявляется в увеличении смачиваемости поверхности изделия при электролизе, что позволяет получать равномерное медное покрытие.
Более того, аналогичные ПАВ используются в качестве веществ, повышающих смачиваемость поверхности изделий (смачивателей), при проведении процесса электролиза. Их введение в состав электролита сернокислого меднения предусмотрено отраслевым стандартом "Платы печатные" - ОСТ 107.460.092.004.91-86. Использование блескоструктурообразователя, содержащего в своем составе НПАВ, существенно упрощает эксплуатацию и обслуживание гальванических ванн при производстве печатных плат. Не исключается возможность использования и других видов НПАВ, кроме перечисленных выше, в процессах гальванического меднения, однако, предпочтительнее на данном этапе использовать оксиэтилированные спирты, так как это не потребует дополнительных корректировок состава электролита и условий проведения процесса электролиза, что не предусматривается отраслевым стандартом.
Сущность изобретения иллюстрируется примерами приготовления БЭСМ в лабораторных условиях (примеры 1-13) и на опытно-промышленной установке (примеры 14-19).
П р и м е р 1 - проведение процесса по изобретению.
Реакционные водные растворы сульфанилата натрия (концентрацией 12 мас.% ), нитрида натрия (концентрация 28 мас.%) и НПАВ типа ОС (концентрация ≈ 0,5%) с объемным расходом 100 см3/ч непрерывно смешиваются в стеклянном реакторе емкостью 250 см3, снабженном водяной охлаждающей рубашкой, турбинной мешалкой и датчиками рН-метра, а также переливной подвижной уткой для поддержания необходимого уровня жидкости в аппарате. Одновременно с помощью насоса-дозатора в реактор диазотирования подается концентрированная серная кислота с объемным расходом 10 см3/ч. Температура реакционной смеси в реакторе поддерживается в пределах 5±2оС. В результате реакционная смесь, перемешиваемая в реакторе, приобретает рН, равное 1. Суспензированный раствор диазосоединения, содержащий НПАВ, выводится через переливную утку в реактор конденсации, устройство которого аналогично реактору диазотирования. Одновременно с поступлением диазораствора в реактор конденсации подается 20%-ный водный раствор дисульфида натрия (концентрация 38 мас.%) с объемным расходом 16-17 см3/ч.
Температура в реакторе поддерживается в пределах 10±2оС, рН реакционной массы - около 7. Выделяющийся в результате конденсации отходящий газ анализируется на содержание сероводорода и диоксида серы. Целевой продукт в виде водного раствора выводится через подвижную утку в сборник-накопитель. После завершения 7-часового цикла синтеза накапливается 5-6 л раствора, который подвергается фильтрации, охлаждению до температуры от 10 до (+2оС). При этой температуре его выдерживают в течение 2 ч с перемешиванием, а затем фильтруют от избыточного сульфата натрия. Отделенные от раствора твердые отходы высушивают до постоянной массы, а собранный раствор направляют на конвективную сушку. После высушивания получено 650 г мелкокристаллического продукта, что составляет 95% от теоретического выхода. Качество продукта соответствует действующим техническим условиям. В качестве побочных продуктов выделено 85,0 г безводного сульфата натрия и следовые количества серы, в отходящих газах не обнаружено наличия сероводорода и диоксида серы.
П р и м е р 2 (сравнительный). Синтез БЭСМ ведут так, как описано в примере 1, но без добавления НПАВ. Условия проведения опыта, все технологические стадии, порядок проведения стадии выделения аналогичны примеру 1. В результате получен продукт удовлетворительного качества с выходом 74% от теоретического. В сдувках азота обнаружено 3 об.% кислых газовых примесей, представляющих собой сероводород и диоксид серы. Суммарное количество отходов с учетом выделившейся элементарной серы составило 0,23 г на 1 г блескоструктурообразователя.
П р и м е р 3. Синтез БЭСМ проводится с добавлением в раствор сулфанилата натрия 3 мас.% НПАВ, представляющего собой смесь оксиэтилированых спиртов С1020 общей формулы
RO(CH2CH2O)mH, где m = 10.
Диазотирование сульфанилата натрия проводят при 10-12оС и рН 2. Конденсацию суспензированного раствора 4-сульфофенилдиазония с раствором сульфида натрия осуществляют при 5±2оС и величине рН 7,5.
В результате выделен образец БЭСМ требуемого качества с выходом 90% от теоретического. Анализ не показал наличия серы в твердых отходах; отходы в виде кислых газов также не обнаружены.
П р и м е р 4. Синтез БЭСМ проводят без введения НПАВ, но при параметрах, аналогичных использованным в примере 3.
В результате получено 430 г образца, что составляет ≈ 70% от теоретического. При этом выделено из реакционного раствора 0,022 г/г продукта элементной серы, а в отходящих газах на стадии конденсации показано наличие кислых газов.
П р и м е р 5. Синтез БЭСМ проводят аналогично примерам 1 и 3 с изменением только количества добавляемого НПАВ типа ОС (оксиэтилированные спирты по примеру 3), которые вводят в количестве 1,0 мас.% от массы сульфанилата, взятого на опыт.
Диазотирование ведут при температуре в пределах 0оС и рН 1 конденсацию суспензии 4-сульфофенилдиазония с дисульфидом натрия - при 5оС и рН 8.
В результате получено 560 г БЭСМ удовлетворительного качества, выход 93% от теоретического. Дисульфид натрия подвергается фактически полной конверсии в целевой продукт, что подтверждается полным отсутствием серы в реакционном растворе, сероводорода и диоксида серы в газовых выбросах.
П р и м е р 6 (сравнительный). Все стадии и параметры процесса аналогичны приведенным в примере 5, однако, никакого ПАВ не вводится. В результате получен продукт, соответствующий требованиям ТУ с выходом ≈ 77% от теоретического. Часть дисульфида натрия подвергается разложению (около 17%), о чем свидетельствует наличие серы в реакционном водном растворе (0,03 г/г БЭСМ), а также сероводорода и диоксида серы в отходящих газах.
П р и м е р ы 7-13 (см. таблицу). Подтверждается наличие положительного эффекта от использования неионогенных ПАВ в процессе получения БЭСМ в соответствии с изобретением в указанных интервалах параметров на стадиях диазотирования и конденсации с использованием ПАВ следующего состава:
Пример 7 - R - C6H4O(CH2CH2O)20H, где R = C10-C16.
Пример 8 - R-O(CH2CH2O)10H, где R = С1620.
Пример 9 - R-NH(CH2CH2O)5H, где R = С1016.
Пример 10 - R-COO(CH2CH2O)5H, где R = C1620
Пример 11 - R-CONH(CH2CH2O)20H, где R = С1620
Пример 12 - R-C6H4O(CH2CH2O)10H, где R = C10-C16
Пример 13 - R-O(CH2CH2O)15H, где R = С1016.
Аналогичные результаты получены при проведении процесса в непрерывных условиях на опытно-промышленной установке (см. примеры 14-19).
Используемые в процессе получения (БЭСМ) НПАВ входят в состав готового продукта и ни в коей мере не ухудшают его эксплуатационных свойств, при этом присутствие этих ПАВ является необходимым и обязательным условием применения экстрагента в производстве печатных плат.
Приведенные ниже примеры осуществлены на опытно-промышленной установке непрерывного действия с использованием основного реакционного оборудования вместимостью в 100 л. Реакторы диазотирования и конденсации снабжены перемешивающими устройствами, рубашками с рассольным охлаждением, системой автоматического регулирования расходов жидкостей и температуры, измерителями рН.
П р и м е р 7. Технический водный раствор сульфанилата натрия концентрацией 12 мас. % с добавленным в него НПАВ типа ОС (пример 3) в количестве 1% к массе сульфанилата натрия, поступает в тангенциальный смеситель, где смешивается с потоком водного раствора нитрита натрия концентрации 28 мас.%. Суммарный поток реагентов с плотностью 1,052 г/см3 и объемным расходом 70 л/ч непрерывно подается в реактор диазотирования, охлажденный до 0оС. Одновременно в реактор дозируется концентрированная серная кислота с объемным расходом 6 л/ч. В реакторе диазотирования автоматически поддерживается рН среды в пределах 1-2.
Гомогенизированная суспензия 4-сульфофенилдиазония, образующаяся в реакторе диазотирования, непрерывно через переливную утку поступает в реактор конденсации, где смешивается с водным раствором дисульфида натрия концентрации 38 мас.%. Температура реакционной массы в реакторе 5оС, рН среды 7-8. Эти параметры автоматически регулируются объемным расходом раствора дисульфида натрия.
Реакционная смесь из реактора диазотирования самотеком поступает в реактор-дозреватель вместимостью 250 л и далее через барабанный вакуум-фильтр в кристаллизатор непрерывного действия. Осадок с фильтра собирается в бункере-накопителе и сушится. Избыточный сульфат натрия кристаллизуется в кристаллизаторе, отделяется от раствора на втором вакуум-фильтре, собирается в бункере и сушится. Фильтрат накапливается в сборнике и далее с объемным расходом 50 л/ч поступает в систему распылительной сушки. Здесь осуществляется выделение кондиционного продукта, соответствующего требованиям ТУ.
В результате после 8 ч работы установки получено ≈7,2 кг БЭСМ требуемого качества. На барабанном вакуум-фильтре обнаружены следовые количества серы; сероводорода или диоксида серы в отходящих газах не обнаружено.
П р и м е р 15. Получение БЭСМ ведут аналогично примеру 14, но без добавления НПАВ. После 8 ч работы получено 5,9 кг БЭСМ удовлетворительного качества. Выход целевого продукта при отсутствии НПАВ снизился на 17%, дисульфид натрия частично разлагался до элементарной серы, о чем свидетельствует ее появление на барабанном вакуум-фильтре. Кроме того, в отходящих газах появляется кислые примеси в количестве 2,5 об.%.
П р и м е р 16. Синтез БЭСМ ведут аналогично примеру 14 с одним отличием добавлением НПАВ формулы R-NH(CH2-CH2O)20, где R = C10-C16, которое добавляют в количестве 2 мас.% к сульфанилату натрия. Диазотирование последнего проводят при температуре в реакторе 5-10оС и рН 2-3. Конденсацию гомогенизированной суспензии 4-сульфофенилдиазония с раствором сульфида натрия ведут при температуре 5-10оС и величине рН 7-8.
Выход БЭСМ составил 93,1% от теоретического, в реакционных смесях обнаружены следовые количества элементарной серы; сероводорода и диоксида серы в отходящих газах не обнаружено.
Примеры NN 17-19 соответствуют примеру 14 с разницей в том, что НПАВ добавляется в количестве 3,0-5,0 мас.% соответственно.
П р и м е р 18. Аналогичен примеру 16, но без добавления НПАВ в раствор сульфанилата натрия.
Результаты экспериментов приведены в таблице.
Таким образом, использование неионогенных ПАВ в технологическом процессе получения БЭСМ позволяет увеличить конверсию реагентов и повысить выход целевого продукта примерно на 20%, по сравнению с существующим способом получения. Одновременно снижается количество отходов производства примерно в 2 раза. Кроме того, предлагаемый способ получения БЭСМ исключает образование вредных газовых выбросов, что позволяет улучшить условия труда и экологию среды.

Claims (1)

  1. СПОСОБ ПОЛУЧЕНИЯ БЛЕСКО-СТРУКТУРООБРАЗУЮЩЕЙ ДОБАВКИ ДЛЯ ЭЛЕКТРОЛИТА СЕРНОКИСЛОГО МЕДНЕНИЯ диазотированием сульфанилата натрия, конденсацией полученной водной суспензии сернокислой соли 4-сульфофенилдиазония с водным раствором натриевой соли сероводородной кислоты и последующим выделением продукта, отличающийся тем, что, с целью увеличения выхода целевого продукта, повышения его эксплуатационных свойств, уменьшения отходов производства, стадии диазотирования и конденсации проводят в присутствии неионогенного поверхностно-активного вещества общей формулы
    R - X(CH2CH2O)mH,
    где R - CnH2 n + 1, где n = 10 oC 20;
    X - O, NH, COO-, -CONH, -CH4-O-, m = 5 - 20,
    взятого в количестве 0,5 oC 5,0% от массы сульфанилата натрия.
SU4934775 1991-05-08 1991-05-08 Способ получения блеско-структурообразующей добавки для электролита сернокислого меднения RU2027703C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4934775 RU2027703C1 (ru) 1991-05-08 1991-05-08 Способ получения блеско-структурообразующей добавки для электролита сернокислого меднения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4934775 RU2027703C1 (ru) 1991-05-08 1991-05-08 Способ получения блеско-структурообразующей добавки для электролита сернокислого меднения

Publications (1)

Publication Number Publication Date
RU2027703C1 true RU2027703C1 (ru) 1995-01-27

Family

ID=21573731

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4934775 RU2027703C1 (ru) 1991-05-08 1991-05-08 Способ получения блеско-структурообразующей добавки для электролита сернокислого меднения

Country Status (1)

Country Link
RU (1) RU2027703C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629556C2 (ru) * 2013-02-07 2017-08-30 Алево Интернешнл С.А. Электролит для электрохимического элемента аккумуляторной батареи и содержащий электролит элемент аккумуляторной батареи

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1378299, кл. C 07C 309/35, 1986, н/п. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629556C2 (ru) * 2013-02-07 2017-08-30 Алево Интернешнл С.А. Электролит для электрохимического элемента аккумуляторной батареи и содержащий электролит элемент аккумуляторной батареи

Similar Documents

Publication Publication Date Title
US4268437A (en) Continuous diazotization of amines
CN101880247A (zh) 一种萘系磺酸甲醛缩合物的生产方法
RU2027703C1 (ru) Способ получения блеско-структурообразующей добавки для электролита сернокислого меднения
US20240083862A1 (en) Method for preparing acesulfame potassium
CN102442925B (zh) 草酸酰胺酯及其盐的制备方法
US4808342A (en) Production of sulfonated amines
US4667049A (en) Method of making dialkylamino-thioxomethyl-thioalkanesulfonic acid compounds
SU1293174A1 (ru) Способ получени поверхностно-активного вещества на основе алкиларилсульфоната натри
CN1044604C (zh) 高纯度n-(2-硫酸根合乙基)哌嗪的制备方法
CA1277678C (en) Bechamp reduction of dns to das using h2so4 and trace of hoac
CN113479907B (zh) 一种氟化铵或氟化氢铵的结晶方法
CN112830892A (zh) 一种吡啶-3-磺酰氯的合成方法
RU2248968C1 (ru) Способ получения кристаллического диметилдитиокарбамата натрия
SU1036724A1 (ru) Способ получени поверхностно-активного вещества на основе алкиларилсульфоната натри
SU1742207A1 (ru) Способ получени гидрата фосфата меди-аммони
US4791211A (en) Process for the production of 2-stilbylnaphthotriazole optical bleaches
PL102554B1 (pl) Sposob wytwarzania 1,1-dwutlenkow 3-karboksyamido-2-metylo-4-hydroksy-2h-1,2 benzotiazyn
US4276273A (en) Production of sodium polyphosphates
CN112250607B (zh) 一种连续合成二氧化硫脲的方法
US4496728A (en) Method for the production of 2-isopropyl-4-methyl-6-hydroxypyrimidine
EP0057519B1 (en) A method for increasing the filtration rate of the calcium sulphate crystals in the production of wet process phosphoric acid
US4820452A (en) Bechamp reduction of DNS to DAS using H2 SO4 and trace of HOAc
SU1263694A1 (ru) Способ получени поверхностно-активных веществ
CN1348946A (zh) 以对氨基苯甲醚制备对羟基苯甲醚的方法
SU1038283A1 (ru) Способ получени тиоцианата одновалентной меди