RU2016144026A - Всенаправленный колесный человекоподобный робот, основанный на контроллере положения и скорости с линейным прогнозированием - Google Patents

Всенаправленный колесный человекоподобный робот, основанный на контроллере положения и скорости с линейным прогнозированием Download PDF

Info

Publication number
RU2016144026A
RU2016144026A RU2016144026A RU2016144026A RU2016144026A RU 2016144026 A RU2016144026 A RU 2016144026A RU 2016144026 A RU2016144026 A RU 2016144026A RU 2016144026 A RU2016144026 A RU 2016144026A RU 2016144026 A RU2016144026 A RU 2016144026A
Authority
RU
Russia
Prior art keywords
base
robot
cop
objective
objective function
Prior art date
Application number
RU2016144026A
Other languages
English (en)
Other versions
RU2016144026A3 (ru
RU2680628C2 (ru
Inventor
Жори ЛАФЭ
Давид ГУАЙЕ
Пьер-Брис ВИБЕР
Original Assignee
Софтбэнк Роботикс Юроп
Энститю Насьональ Де Решерш Ан Энформатик Э Ан Отоматик
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Софтбэнк Роботикс Юроп, Энститю Насьональ Де Решерш Ан Энформатик Э Ан Отоматик filed Critical Софтбэнк Роботикс Юроп
Publication of RU2016144026A3 publication Critical patent/RU2016144026A3/ru
Publication of RU2016144026A publication Critical patent/RU2016144026A/ru
Application granted granted Critical
Publication of RU2680628C2 publication Critical patent/RU2680628C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1669Programme controls characterised by programming, planning systems for manipulators characterised by special application, e.g. multi-arm co-operation, assembly, grasping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0005Manipulators having means for high-level communication with users, e.g. speech generator, face recognition means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • User Interface Of Digital Computer (AREA)

Claims (31)

1. Человекоподобный робот (100) с телом (190), соединенным с всенаправленным мобильным наземным основанием (140), и снабженный:
- датчиком положения тела и датчиком положения основания для обеспечения замеров,
- исполнительными механизмами (212), содержащими двигатели сочленений и по меньшей мере 3 колеса (141), расположенные во всенаправленном мобильном основании, с по меньшей мере 1 всенаправленным колесом,
- средствами (211) извлечения для преобразования замеров в наблюдаемые данные,
- контроллером для вычисления команд положения, скорости и ускорения из наблюдаемых данных с использованием модели робота и предупорядоченных ориентиров положения и скорости,
- средством для преобразования команд в инструкции для исполнительных механизмов,
отличающийся тем, что модель робота является моделью с двумя сосредоточенными массами, и тем, что команды основаны на законе линейного моделируемого прогнозируемого управления с временем, дискретизируемым согласно периоду времени дискретизации и количеству прогнозируемых отсчетов, выраженного в виде квадратичного оптимизирующего выражения с:
- взвешенной суммой:
- целевой функции положения основания,
- целевой функции скорости основания,
- целевой функции, связанной с расстоянием между CoP и центром основания, причем CoP является барицентром контактных сил между роботом и землей,
с предварительно заданными весами и,
- множеством предварительно заданных линейных ограничений, которыми являются:
- максимальная скорость и ускорение мобильного основания,
- CoP-предел.
2. Человекоподобный робот по п. 1, отличающийся тем, что взвешенную численную целевую функцию устойчивости прибавляют к взвешенной сумме целевых функций.
3. Человекоподобный робот по любому из предшествующих пунктов, отличающийся тем, что множество предварительно заданных линейных ограничений содержит кинематические пределы тела.
4. Способ управления человекоподобным роботом с телом (190), соединенным с всенаправленным мобильным наземным основанием (140), и исполнительными механизмами (212), содержащими по меньшей мере 3 колеса (141), расположенные во всенаправленном мобильном основании, с по меньшей мере 1 всенаправленным колесом, содержащий следующие этапы, реализуемые согласно схеме с замкнутым контуром:
- извлечение замера положения тела и замера положения основания,
- преобразование этих замеров положений в наблюдаемые замеры положений,
- вычисление команд скорости тела и скорости основания с использованием закона управления, основанного на законе линейного моделируемого прогнозируемого управления с временем, дискретизируемым согласно периоду времени дискретизации и количеству прогнозируемых отсчетов, выраженного в виде квадратичного оптимизирующего выражения с взвешенной суммой:
- целевой функции положения основания,
- целевой функции скорости основания,
- целевой функции, связанной с расстоянием между CoP и центром мобильного основания, причем CoP является барицентром контактных сил между роботом и землей,
с предварительно заданными весами и множеством линейных ограничений, которыми являются:
- максимальная скорость и ускорение мобильного основания,
- CoP-предел,
- преобразование этих команд в инструкции для исполнительных механизмов робота.
5. Способ по предшествующему пункту, отличающийся тем, что множество предварительно заданных линейных ограничений содержит кинематические пределы тела.
6. Способ по любому из пп. 4 и 5, отличающийся тем, что взвешенную численную целевую функцию устойчивости прибавляют к взвешенной сумме целевых функций.
7. Компьютерная программа, содержащая компьютерный код, подходящий для исполнения способа по любому из пп. 4-6 при выполнении на компьютере.
RU2016144026A 2014-04-17 2015-04-17 Всенаправленный колесный человекоподобный робот, основанный на контроллере положения и скорости с линейным прогнозированием RU2680628C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14305584.6A EP2933068B1 (en) 2014-04-17 2014-04-17 Omnidirectional wheeled humanoid robot based on a linear predictive position and velocity controller
EP14305584.6 2014-04-17
PCT/EP2015/058367 WO2015158884A2 (en) 2014-04-17 2015-04-17 Omnidirectional wheeled humanoid robot based on a linear predictive position and velocity controller

Publications (3)

Publication Number Publication Date
RU2016144026A3 RU2016144026A3 (ru) 2018-05-22
RU2016144026A true RU2016144026A (ru) 2018-05-22
RU2680628C2 RU2680628C2 (ru) 2019-02-25

Family

ID=50588608

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016144026A RU2680628C2 (ru) 2014-04-17 2015-04-17 Всенаправленный колесный человекоподобный робот, основанный на контроллере положения и скорости с линейным прогнозированием

Country Status (13)

Country Link
US (1) US10293486B2 (ru)
EP (1) EP2933068B1 (ru)
JP (1) JP6423075B2 (ru)
KR (1) KR101942167B1 (ru)
CN (1) CN106794576B (ru)
AU (1) AU2015248710B2 (ru)
CA (1) CA2946047C (ru)
HK (1) HK1216404A1 (ru)
MX (1) MX2016013020A (ru)
NZ (1) NZ725276A (ru)
RU (1) RU2680628C2 (ru)
SG (1) SG11201608202YA (ru)
WO (1) WO2015158884A2 (ru)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3022383A1 (en) * 2016-04-29 2017-11-02 Softbank Robotics Europe A mobile robot with enhanced balanced motion and behavior capabilities
CN106426197B (zh) * 2016-09-14 2018-12-11 中国兵器装备集团自动化研究所 一种可变服务机器人
US10493617B1 (en) 2016-10-21 2019-12-03 X Development Llc Robot control
KR102660834B1 (ko) * 2016-12-23 2024-04-26 엘지전자 주식회사 안내 로봇
CN110382174A (zh) * 2017-01-10 2019-10-25 直觉机器人有限公司 一种用于执行情绪姿势以与用户交互作用的装置
JP7000704B2 (ja) * 2017-05-16 2022-01-19 富士フイルムビジネスイノベーション株式会社 移動式サービス提供装置及びプログラム
CN109991989B (zh) * 2017-12-29 2021-12-17 深圳市优必选科技有限公司 机器人空闲状态下的动态平衡方法、装置及存储介质
US11855932B2 (en) 2018-03-02 2023-12-26 Intuition Robotics, Ltd. Method for adjusting a device behavior based on privacy classes
CN109782759B (zh) * 2019-01-08 2021-11-02 华侨大学 一种轮式移动机器人的近似解耦、快速轨迹跟踪控制方法
CN109885052B (zh) * 2019-02-26 2022-03-25 华南理工大学 基于全向移动机器人运动学建模的误差模型预测控制方法
WO2020248130A1 (zh) * 2019-06-11 2020-12-17 深圳市大疆创新科技有限公司 可移动平台的控制方法、设备、可移动平台及存储介质
RU2731793C1 (ru) * 2019-09-17 2020-09-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный государственный университет физической культуры, спорта и здоровья имени П.Ф. Лесгафта, Санкт-Петербург" Устройство дистанционного измерения кинематических характеристик 3D движения человека, в том числе антропоморфного механизма
KR102492869B1 (ko) * 2020-10-27 2023-01-31 한국과학기술연구원 영공간으로 투영된 작업 공간을 활용한 볼봇의 자세 균형 제어 방법 및 이를 이용하는 제어 시스템
RU2749202C1 (ru) * 2020-12-07 2021-06-07 Общество с ограниченной ответственностью «РобоСиВи» Способ планирования движения робота и мобильный робот
CN112666939B (zh) * 2020-12-09 2021-09-10 深圳先进技术研究院 一种基于深度强化学习的机器人路径规划算法
CN112987769B (zh) * 2021-02-22 2022-07-05 武汉科技大学 四足机器人在变刚度地形稳定过渡的腿部主动调节方法
CN113601504A (zh) * 2021-08-04 2021-11-05 之江实验室 机器人肢体动作的控制方法及装置、电子设备、存储介质
CN113561189B (zh) * 2021-09-27 2021-12-31 深圳市优必选科技股份有限公司 冗余度机器人的关节加速度规划方法、装置、设备及介质
CN113791535B (zh) * 2021-09-29 2024-04-19 北京布科思科技有限公司 轨迹跟随实时控制方法、装置和控制系统以及存储介质
CN114147710B (zh) * 2021-11-27 2023-08-11 深圳市优必选科技股份有限公司 机器人的控制方法、装置、机器人及存储介质
CN114654462A (zh) * 2022-02-28 2022-06-24 电子科技大学 一种稳定运输的送餐机器人
CN115407791B (zh) * 2022-08-19 2023-12-12 沈阳工业大学 一种考虑重心偏移影响的步行训练机器人轨迹跟踪方法
CN115958575B (zh) * 2023-03-16 2023-06-02 中国科学院自动化研究所 类人灵巧操作移动机器人
CN116382101B (zh) * 2023-06-05 2023-09-01 成都信息工程大学 考虑不确定性的轮式移动机器人自适应控制方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003330539A (ja) * 2002-05-13 2003-11-21 Sanyo Electric Co Ltd 自律移動ロボットおよびその自律移動方法
JP4613539B2 (ja) * 2004-07-16 2011-01-19 トヨタ自動車株式会社 ロボットの動作計画方法
JP2006136962A (ja) * 2004-11-11 2006-06-01 Hitachi Ltd 移動ロボット
US7606411B2 (en) * 2006-10-05 2009-10-20 The United States Of America As Represented By The Secretary Of The Navy Robotic gesture recognition system
FR2920686B1 (fr) * 2007-09-12 2010-01-15 Aldebaran Robotics Robot apte a echanger des programmes informatiques codant pour des comportements
US20120130540A2 (en) * 2008-05-21 2012-05-24 Georgia Tech Research Corporation Force balancing mobile robot and robotic system
JP4821865B2 (ja) * 2009-02-18 2011-11-24 ソニー株式会社 ロボット装置及びその制御方法、並びにコンピューター・プログラム
FR2946160B1 (fr) * 2009-05-26 2014-05-09 Aldebaran Robotics Systeme et procede pour editer et commander des comportements d'un robot mobile.
US8418705B2 (en) * 2010-07-30 2013-04-16 Toyota Motor Engineering & Manufacturing North America, Inc. Robotic cane devices
CA2720886A1 (en) * 2010-11-12 2012-05-12 Crosswing Inc. Customizable virtual presence system
CA2734318C (en) * 2011-03-17 2017-08-08 Crosswing Inc. Delta robot with omni treaded wheelbase
KR20130074144A (ko) * 2011-12-26 2013-07-04 평화산업주식회사 무인 주행 라이더 로봇
KR20130074143A (ko) * 2011-12-26 2013-07-04 평화산업주식회사 옴니인 휠을 구비한 라이더 로봇
JP5807591B2 (ja) * 2012-03-06 2015-11-10 トヨタ自動車株式会社 脚式歩行ロボットおよびその重心軌道生成方法

Also Published As

Publication number Publication date
US10293486B2 (en) 2019-05-21
AU2015248710A1 (en) 2016-11-03
AU2015248710B2 (en) 2018-02-08
CA2946047C (en) 2018-11-13
WO2015158884A2 (en) 2015-10-22
US20170144306A1 (en) 2017-05-25
CN106794576B (zh) 2019-06-21
CN106794576A (zh) 2017-05-31
CA2946047A1 (en) 2015-10-22
SG11201608202YA (en) 2016-10-28
JP6423075B2 (ja) 2018-11-14
RU2016144026A3 (ru) 2018-05-22
MX2016013020A (es) 2017-10-04
EP2933068B1 (en) 2021-08-18
NZ725276A (en) 2018-03-23
JP2017515698A (ja) 2017-06-15
WO2015158884A3 (en) 2015-12-10
KR20170029408A (ko) 2017-03-15
EP2933068A1 (en) 2015-10-21
RU2680628C2 (ru) 2019-02-25
KR101942167B1 (ko) 2019-04-11
HK1216404A1 (zh) 2016-11-11

Similar Documents

Publication Publication Date Title
RU2016144026A (ru) Всенаправленный колесный человекоподобный робот, основанный на контроллере положения и скорости с линейным прогнозированием
RU2016144008A (ru) Всенаправленный колесный человекоподобный робот, основанный на контроллере положения и скорости с линейным прогнозированием
US10222868B2 (en) Wearable device and control method using gestures
Zhou et al. Adaptive artificial potential field approach for obstacle avoidance path planning
US9440353B1 (en) Offline determination of robot behavior
JP2014518774A5 (ru)
JP2013146853A5 (ru)
CN104317292A (zh) 一种复杂形状机器人避碰路径的方法
JP2014024162A5 (ru)
JP2014185955A5 (ru)
CN205674214U (zh) 一种工业机器人新型示教装置
JP2018094248A5 (ru)
CN102566446A (zh) 基于线性模型组的无人直升机全包线数学模型构建方法
CN108098760A (zh) 一种新的双足机器人行走控制装置及方法
Mironov et al. Fast kNN-based Prediction for the Trajectory of a Thrown Body
CN105818145A (zh) 仿人机器人的分布式控制系统及方法
CN108051001A (zh) 一种机器人移动控制方法、系统及惯性传感控制装置
CN106682733B (zh) 无人机运动状态分析方法和装置
Shafii et al. Learning a fast walk based on ZMP control and hip height movement
Chuan-ling et al. Path planning of mobile robot using new potential field method in dynamic environments
Wang et al. The simulation of nonlinear model predictive control for a human-following mobile robot
KR101568084B1 (ko) 이족보행로봇의 보행 모방 제어장치
Allione et al. Effects of repetitive low-acceleration impacts on attitude estimation with micro-electromechanical inertial measurement units
CN106239503B (zh) 一种基于部分已知参数的两轮自平衡机器人控制系统
Wang et al. A novel trajectory prediction approach for table-tennis robot based on nonlinear output feedback observer

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200418