RU2016105829A - Способ формирования твердооксидных топливных элементов с металлической опорой - Google Patents

Способ формирования твердооксидных топливных элементов с металлической опорой Download PDF

Info

Publication number
RU2016105829A
RU2016105829A RU2016105829A RU2016105829A RU2016105829A RU 2016105829 A RU2016105829 A RU 2016105829A RU 2016105829 A RU2016105829 A RU 2016105829A RU 2016105829 A RU2016105829 A RU 2016105829A RU 2016105829 A RU2016105829 A RU 2016105829A
Authority
RU
Russia
Prior art keywords
paragraphs
firing
reducing
nickel
sintering
Prior art date
Application number
RU2016105829A
Other languages
English (en)
Other versions
RU2670423C2 (ru
Inventor
Роберт ЛИ
Майк ЛЭНКИН
Робин ПИРС
Адам Боун
Original Assignee
Серес Интеллектчуал Проперти Компани Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Серес Интеллектчуал Проперти Компани Лимитед filed Critical Серес Интеллектчуал Проперти Компани Лимитед
Publication of RU2016105829A publication Critical patent/RU2016105829A/ru
Application granted granted Critical
Publication of RU2670423C2 publication Critical patent/RU2670423C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Claims (24)

1. Способ формирования твердооксидного топливного элемента с металлической опорой, включающий:
a) нанесение на металлическую опорную пластину слоя зеленого анода, содержащего оксид никеля и оксид церия, легированный редкоземельным элементом;
b) предварительный обжиг слоя анода в условиях невосстановительной среды для формирования композитного материала;
c) обжиг композитного материала в восстановительной среде для формирования спеченного металлокерамического материала;
d) обеспечение электролита и
e) обеспечение катода,
причем восстановительная среда содержит источник кислорода.
2. Способ по п. 1, в котором восстановительная среда на стадии с) обжига содержит инертный газ, газообразный восстанавливающий реагент и газообразный источник кислорода.
3. Способ по п. 2, в котором восстанавливающий реагент выбирают из водорода, монооксида углерода и их сочетаний.
4. Способ по п. 2, в котором газообразный источник кислорода выбирают из диоксида углерода, водяного пара и их сочетаний.
5. Способ по п. 2, в котором восстановительная среда на стадии с) обжига содержит источник кислорода в количестве от 0,01 до 50 об.% и/или восстанавливающий реагент в количестве от 0,5 до 50 об.%.
6. Способ по любому из п.п. 1-5, в котором парциальное давление кислорода в восстановительной среде на стадии с) обжига находится от 10-14 до 10-22 бар.
7. Способ по любому из п.п. 1-5, в котором на стадии с) обжига оксид никеля перед спеканием восстанавливают до металлического никеля.
8. Способ по любому из п.п. 1-5, в котором на стадии с) обжига оксид никеля перед восстановлением до металлического никеля по меньшей мере частично спекают.
9. Способ по любому из п.п. 1-5, в котором предварительный обжиг слоя зеленого анода и/или обжиг композитного материала происходит при температуре от 950°С до 1100°С.
10. Способ по любому из п.п. 1-5, включающий жесткое крепление металлической опорной пластины в процессе выполнения по меньшей мере одной из стадий нагрева, выбранной из: предварительного обжига анода, обжига анода, спекания анода, спекания электролита, спекания катода или их сочетаний.
11. Способ по любому из п.п. 1-5, в котором оксид никеля и оксид церия, легированный редкоземельным элементом, измельчают в порошок с распределением d90 размеров частиц от 0,1 мкм до 4 мкм.
12. Способ по любому из п.п. 1-5, в котором оксид никеля и оксид церия, легированный редкоземельным элементом, наносят как печатную краску.
13. Способ по п. 12, в котором нанесение слоя зеленого анода включает начальное нанесение печатной краски на металлическую опорную пластину и высушивание печатной краски для обеспечения напечатанного слоя толщиной от 5 до 40 мкм.
14. Способ по любому из п.п. 1-5 и 13, включающий также стадию уплотнения слоя зеленого анода под давлением от 100 до 300 МПа.
15. Способ по любому из п.п. 1-5 и 13, включающий также стадию повторного окисления спеченного никеля перед обеспечением электролита.
16. Твердооксидный топливный элемент с металлической опорой, полученный с использованием способа по любому предыдущему пункту.
17. Батарея топливных элементов, содержащая два или более топливных элементов по п. 16.
18. Применение топливного элемента по п. 16 для генерирования электрической энергии.
RU2016105829A 2013-09-04 2014-08-20 Способ формирования твердооксидных топливных элементов с металлической опорой RU2670423C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1315744.1A GB2517927B (en) 2013-09-04 2013-09-04 Process for forming a metal supported solid oxide fuel cell
GB1315744.1 2013-09-04
PCT/GB2014/052546 WO2015033103A1 (en) 2013-09-04 2014-08-20 Process for forming a metal supported solid oxide fuel cell

Publications (2)

Publication Number Publication Date
RU2016105829A true RU2016105829A (ru) 2017-10-09
RU2670423C2 RU2670423C2 (ru) 2018-10-23

Family

ID=49397281

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016105829A RU2670423C2 (ru) 2013-09-04 2014-08-20 Способ формирования твердооксидных топливных элементов с металлической опорой

Country Status (12)

Country Link
US (1) US10003080B2 (ru)
EP (1) EP3042412B1 (ru)
JP (2) JP2016533016A (ru)
KR (1) KR102232286B1 (ru)
CN (1) CN105518921B (ru)
CA (1) CA2922876C (ru)
GB (1) GB2517927B (ru)
HK (1) HK1204150A1 (ru)
MX (1) MX2016002175A (ru)
RU (1) RU2670423C2 (ru)
SG (1) SG11201601148SA (ru)
WO (1) WO2015033103A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2535338B (en) * 2015-02-06 2017-01-25 Ceres Ip Co Ltd Electrolyte forming process
JP6667238B2 (ja) * 2015-09-18 2020-03-18 大阪瓦斯株式会社 金属支持型電気化学素子、固体酸化物形燃料電池および金属支持型電気化学素子の製造方法
TWI558568B (zh) * 2015-11-03 2016-11-21 行政院原子能委員會核能研究所 透氣金屬基板、金屬支撐固態氧化物燃料電池及其製作方法
GB2550317B (en) * 2016-03-09 2021-12-15 Ceres Ip Co Ltd Fuel cell
US11978937B2 (en) 2016-03-18 2024-05-07 Osaka Gas Co., Ltd. Electrochemical element, electrochemical module, electrochemical device, and energy system
KR102109231B1 (ko) * 2016-09-30 2020-05-11 주식회사 엘지화학 고체 산화물 연료전지의 운전 방법
TWI620376B (zh) * 2016-10-21 2018-04-01 行政院原子能委員會核能硏究所 可攜式火焰發電裝置、金屬支撐型固態氧化物燃料電池及製作方法
JP6841663B2 (ja) * 2017-01-10 2021-03-10 森村Sofcテクノロジー株式会社 電気化学反応セルスタックの製造方法
KR101896985B1 (ko) 2017-03-08 2018-09-10 금오공과대학교 산학협력단 광그라프트 개질을 포함한 uv-led 조사 광그라프트 염색방법
EP3780206A4 (en) * 2018-04-13 2021-06-09 Nissan Motor Co., Ltd. METAL SUPPORT CELL AND METHOD OF MANUFACTURING A METAL SUPPORT CELL
JP7245036B2 (ja) * 2018-11-28 2023-03-23 太陽誘電株式会社 燃料電池スタックおよびその製造方法
US11777126B2 (en) * 2019-12-05 2023-10-03 Utility Global, Inc. Methods of making and using an oxide ion conducting membrane
CN111276705B (zh) * 2020-01-06 2021-01-26 南京理工大学 金属支撑型氧化物燃料电池半电池的制备方法
CN111403762B (zh) * 2020-03-31 2021-05-18 西安交通大学 陶瓷与金属共支撑扁管、电池/电解池、电池堆结构
CN113054215A (zh) * 2021-03-19 2021-06-29 东睦新材料集团股份有限公司 一种用于燃料电池的金属支撑板的制造方法
CN113241461A (zh) * 2021-07-13 2021-08-10 北京思伟特新能源科技有限公司 抗腐蚀金属支撑单体及其制备方法、固体氧化物电池

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287926A (ja) * 1995-04-17 1996-11-01 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池の製造方法
JPH10172590A (ja) * 1996-12-12 1998-06-26 Fuji Electric Corp Res & Dev Ltd 固体電解質型燃料電池
JPH1173975A (ja) * 1997-08-29 1999-03-16 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池のセルの製造方法
US5908713A (en) * 1997-09-22 1999-06-01 Siemens Westinghouse Power Corporation Sintered electrode for solid oxide fuel cells
ATE228982T1 (de) 1998-11-13 2002-12-15 Eidgenoess Tech Hochschule Verfahren zur herstellung von dotierter ceroxidkeramik
US6248468B1 (en) * 1998-12-31 2001-06-19 Siemens Westinghouse Power Corporation Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell
US6589680B1 (en) 1999-03-03 2003-07-08 The Trustees Of The University Of Pennsylvania Method for solid oxide fuel cell anode preparation
GB2368450B (en) 2000-10-25 2004-05-19 Imperial College Fuel cells
US8007954B2 (en) 2000-11-09 2011-08-30 The Trustees Of The University Of Pennsylvania Use of sulfur-containing fuels for direct oxidation fuel cells
CN1409427A (zh) * 2001-09-18 2003-04-09 中国科学技术大学 一种中温固体氧化物燃料电池pen多层膜及其制造方法
GB2386126B (en) 2002-03-06 2006-03-08 Ceres Power Ltd Forming an impermeable sintered ceramic electrolyte layer on a metallic foil substrate for solid oxide fuel cell
WO2004049491A1 (en) 2002-10-25 2004-06-10 Antonino Salvatore Arico SOLID OXIDE FUEL CELL WITH CERMET Cu/Ni ALLOY ANODE
JP2004207088A (ja) * 2002-12-26 2004-07-22 Nissan Motor Co Ltd ガス透過性基体及びこれを用いた固体酸化物形燃料電池
US6805777B1 (en) * 2003-04-02 2004-10-19 Alcoa Inc. Mechanical attachment of electrical current conductor to inert anodes
GB2400486B (en) 2003-04-09 2006-05-10 Ceres Power Ltd Densification of ceria based electrolytes
JP4709652B2 (ja) 2003-12-24 2011-06-22 ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ 固体酸化物燃料電池
US20080107948A1 (en) 2004-12-21 2008-05-08 United Technologies Corporation High Specific Power Solid Oxide Fuel Cell Stack
US20060141300A1 (en) * 2004-12-27 2006-06-29 Versa Power Systems, Ltd. Preconditioning treatment to enhance redox tolerance of solid oxide fuel cells
RU2370343C2 (ru) * 2005-01-12 2009-10-20 Текникал Юниверсити Оф Денмарк Способ контроля усадки и пористости при спекании многослойных структур
JP4899324B2 (ja) * 2005-03-04 2012-03-21 日産自動車株式会社 固体酸化物形燃料電池及びその製造方法
US7514166B2 (en) * 2005-04-01 2009-04-07 Bloom Energy Corporation Reduction of SOFC anodes to extend stack lifetime
JP2007095388A (ja) * 2005-09-27 2007-04-12 Nissan Motor Co Ltd 燃料電池用金属セパレータの製造方法、製造装置、および燃料電池用金属セパレータ
WO2007104329A1 (en) 2006-03-14 2007-09-20 Pirelli & C. S.P.A. Electrochemical device and process for manufacturing an electrochemical device
JP2007323988A (ja) * 2006-06-01 2007-12-13 Daido Steel Co Ltd 燃料電池用金属セパレータ、燃料電池用金属セパレータの製造方法及び燃料電池
US20080070084A1 (en) 2006-09-19 2008-03-20 Tatsumi Ishihara Fuel electrode precursor of low shrinkage rate in an electric power generation cell for a solid oxide fuel cell
US20080124613A1 (en) 2006-10-16 2008-05-29 Gur Turgut M Multi-functional cermet anodes for high temperature fuel cells
US20080254336A1 (en) * 2007-04-13 2008-10-16 Bloom Energy Corporation Composite anode showing low performance loss with time
EP2031675B1 (en) * 2007-08-31 2011-08-03 Technical University of Denmark Ceria and stainless steel based electrodes
RU2368983C1 (ru) * 2008-05-15 2009-09-27 Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" (ООО "Национальная инновационная компания "НЭП") Высокотемпературный электрохимический элемент с электрофоретически осажденным твердым электролитом и способ его изготовления
EA021907B1 (ru) 2008-06-13 2015-09-30 Серес Интеллекчуал Проперти Компани Лимитед Способ осаждения керамических пленок
JP2010021038A (ja) * 2008-07-11 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池スタック
JP2010245019A (ja) * 2008-09-30 2010-10-28 Dainippon Printing Co Ltd 燃料電池用触媒層、燃料電池用ガス拡散電極、燃料電池用膜・電極接合体、及び燃料電池、並びにフィルム基材付き燃料電池用触媒層
TWI373880B (en) 2008-10-16 2012-10-01 Iner Aec Executive Yuan Solid oxide fuel cell and manufacture method thereof
WO2010066444A1 (en) 2008-12-11 2010-06-17 Ezelleron Gmbh Anode material for high-temperature fuel cells
FR2945378B1 (fr) 2009-05-11 2011-10-14 Commissariat Energie Atomique Cellule de pile a combustible haute temperature a reformage interne d'hydrocarbures.
FR2948821B1 (fr) * 2009-08-03 2011-12-09 Commissariat Energie Atomique Cellule electrochimique a metal support et son procede de fabrication
KR101761346B1 (ko) 2009-10-16 2017-07-25 인하대학교 산학협력단 연료극 재료 및 이를 포함하는 고체 산화물 연료전지
WO2011096939A1 (en) * 2010-02-08 2011-08-11 Utc Power Corporation Method and device using a ceramic bond material for bonding metallic interconnect to ceramic electrode
US20130108943A1 (en) 2010-05-04 2013-05-02 Jean Yamanis Two-layer coatings on metal substrates and dense electrolyte for high specific power metal-supported sofc
TWI411154B (zh) 2010-07-23 2013-10-01 Iner Aec Executive Yuan 一種用於固態氧化物燃料電池之雙層陽極-金屬基板結構及其製作方法
KR101421245B1 (ko) * 2011-12-26 2014-07-18 한국기계연구원 금속지지형 고체산화물 연료전지의 제조방법 및 이에 의해 제조되는 금속지지형 고체산화물 연료전지

Also Published As

Publication number Publication date
KR102232286B1 (ko) 2021-03-26
GB2517927B (en) 2018-05-16
JP2016533016A (ja) 2016-10-20
MX2016002175A (es) 2016-07-05
KR20160048810A (ko) 2016-05-04
US20150064596A1 (en) 2015-03-05
GB201315744D0 (en) 2013-10-16
CN105518921A (zh) 2016-04-20
RU2670423C2 (ru) 2018-10-23
GB2517927A (en) 2015-03-11
EP3042412A1 (en) 2016-07-13
JP2019204788A (ja) 2019-11-28
US10003080B2 (en) 2018-06-19
SG11201601148SA (en) 2016-03-30
JP6794505B2 (ja) 2020-12-02
CN105518921B (zh) 2019-06-25
WO2015033103A1 (en) 2015-03-12
CA2922876C (en) 2022-07-12
CA2922876A1 (en) 2015-03-12
HK1204150A1 (en) 2015-11-06
EP3042412B1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
RU2016105829A (ru) Способ формирования твердооксидных топливных элементов с металлической опорой
RU2016105830A (ru) Твердооксидный топливный элемент с металлической опорой
JP6398647B2 (ja) 固体酸化物型燃料電池用アノードの製造方法および燃料電池用電解質層−電極接合体の製造方法
Wu et al. A high‐performing direct carbon fuel cell with a 3D architectured anode operated below 600 C
Kim-Lohsoontorn et al. Gadolinium doped ceria-impregnated nickel–yttria stabilised zirconia cathode for solid oxide electrolysis cell
Yang et al. High-performance anode-supported Solid Oxide Fuel Cells based on Ba (Zr0. 1Ce0. 7Y0. 2) O3− δ (BZCY) fabricated by a modified co-pressing process
Yan et al. A crack-free and super-hydrophobic cathode micro-porous layer for direct methanol fuel cells
Cai et al. An investigation on the kinetics of direct carbon solid oxide fuel cells
Shen et al. Co-sintering anode and Y2O3 stabilized ZrO2 thin electrolyte film for solid oxide fuel cell fabricated by co-tape casting
JP2016533017A5 (ru)
RU2017127685A (ru) Способ формирования электролита
Choi et al. Fabrication and performance evaluation of electrolyte-combined α-LiAlO2 matrices for molten carbonate fuel cells
Wang et al. Microstructural modification of the anode/electrolyte interface of SOEC for hydrogen production
Sun et al. The effect of calcination temperature on the electrochemical properties of La0. 3Sr0. 7Fe0. 7Cr0. 3O3− x (LSFC) perovskite oxide anode of solid oxide fuel cells (SOFCs)
JP5746309B2 (ja) 固体酸化物燃料電池の電極用ペースト、これを用いる固体酸化物燃料電池およびその製造方法
US8633122B2 (en) Method of manufacturing anode for in-situ sintering for molten carbonate fuel cell
Li et al. Fabrication and characterization of GDC electrolyte/electrode integral SOFC with BaO/Ni-GDC anode
Wang et al. A NiMo-YSZ catalyst support layer for regenerable solid oxide fuel cells running on isooctane
Liu et al. Enabling catalysis of Ru–CeO2 for propane oxidation in low temperature solid oxide fuel cells
Panthi et al. Performance improvement and redox cycling of a micro-tubular solid oxide fuel cell with a porous zirconia support
JP5814468B2 (ja) 固体酸化物燃料電池の単位セル製造工程
JP6664132B2 (ja) 多孔質構造体とその製造方法、及びそれを用いた電気化学セルとその製造方法
Yoo et al. Preparation of porous Ni–YSZ cermet anodes for solid oxide fuel cells by high frequency induction heated sintering
Rembelski et al. In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells
Cotana et al. A cylindrical molten carbonate fuel cell supplied with landfill biogas