RU2015156228A - Усовершенствованный способ контроля с помощью ультразвука - Google Patents

Усовершенствованный способ контроля с помощью ультразвука Download PDF

Info

Publication number
RU2015156228A
RU2015156228A RU2015156228A RU2015156228A RU2015156228A RU 2015156228 A RU2015156228 A RU 2015156228A RU 2015156228 A RU2015156228 A RU 2015156228A RU 2015156228 A RU2015156228 A RU 2015156228A RU 2015156228 A RU2015156228 A RU 2015156228A
Authority
RU
Russia
Prior art keywords
specified
amplitude
gain
control
ultrasonic beam
Prior art date
Application number
RU2015156228A
Other languages
English (en)
Other versions
RU2639585C2 (ru
Inventor
Никола БРУССЕ-КОЛЕЛЛА
Жан-Ив ШАТЕЛЬЕ
Жереми ДЮВАЛЬ
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2015156228A publication Critical patent/RU2015156228A/ru
Application granted granted Critical
Publication of RU2639585C2 publication Critical patent/RU2639585C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Claims (18)

1. Способ контроля объекта (О) при помощи ультразвука, включающий сканирование указанного объекта ультразвуковым пучком и измерение амплитуды ультразвукового пучка, прошедшего через указанный объект (О), при этом указанное измерение включает в себя преобразование ультразвукового пучка в электрический сигнал, применение коэффициента усиления к указанному сигналу и измерение амплитуды указанного сигнала с тем, чтобы на основании измеренной амплитуды вывести картографию, в которой каждая точка поверхности проекции указанного объекта в направлении экспозиции связана с амплитудой ультразвукового пучка, прошедшего к указанной точке через указанный объект, отличающийся тем, что:
- осуществляют указанное сканирование и указанное измерение амплитуды (1100) на контрольной детали, имеющей геометрическую форму, идентичную с контролируемым объектом, чтобы из этого вывести (1200) картографию указанной детали, при этом коэффициент усиления, применяемый для измерения амплитуды, является заранее определенным контрольным коэффициентом усиления (Gref),
- для множества точек картографии контрольной детали определяют (1300) поправки коэффициента усиления для коррекции контрольного коэффициента усиления (Gref) в соответствующих точках сканирования таким образом, чтобы получить постоянную для всех точек картографии амплитуду (Ас) ультразвукового пучка, прошедшего через контрольную деталь,
- осуществляют указанное сканирование и указанное измерение амплитуды (2100) на контролируемом объекте (О), применяя к различным точкам сканирования коэффициент усиления (Gc), соответствующий контрольному коэффициенту усиления (Gref), скорректированному при помощи ранее определенных поправок к коэффициенту усиления.
2. Способ по п. 1, в котором на основании указанного измерения амплитуды на контролируемом объекте (О) выводят картографию объекта (2200) и анализируют (2300) полученную таким образом картографию, чтобы обнаружить возможную аномалию, касающуюся амплитуды, прошедшей через объект.
3. Способ контроля по п. 1, в котором контролируемый объект и контрольная деталь являются осесимметричными, при этом направление экспозиции ультразвукового пучка является радиальным по отношению к оси симметрии, и контрольную деталь сканируют по линии указанной детали на пересечении поверхности контрольной детали с радиальной плоскостью.
4. Способ контроля по п. 1, в котором контролируемый объект и контрольная деталь содержат композиционный материал.
5. Способ контроля по п. 1, в котором постоянная амплитуда (Ас), прошедшая через контрольную деталь, превышает 60% амплитуды (As) излучаемого ультразвукового пучка, предпочтительно составляет от 70 до 90% указанной амплитуды и предпочтительно равна 80% указанной амплитуды.
6. Способ контроля по п. 1, в котором поправку коэффициента усиления, применяемую к контрольному коэффициенту усиления (Gref) в точке сканирования, определяют одновременно со сканированием соответствующей точки контрольной детали.
7. Применение способа по любому из пп. 1-6 для контроля лопатки (10).
8. Применение способа по п. 3 для контроля картера лопаточного колеса.
9. Применение способа по любому из пп. 1-6 для контроля лопатки (10) вентилятора газотурбинного двигателя, при этом указанная лопатка выполнена из композиционного материала и дополнительно содержит армирование (11) из металла, приклеенное к ее передней кромке, при этом указанный способ позволяет обнаруживать возможные аномалии склеивания.
10. Система (100) контроля объекта с помощью ультразвука для осуществления способа по любому из пп. 1-6, содержащая:
- зонд (110), излучающий ультразвуковой пучок, и средства (120) управления сканированием зонда, выполненные с возможностью осуществления сканирования указанного объекта ультразвуковым пучком, излучаемым зондом,
- приемник (130) ультразвука, выполненный с возможностью преобразования ультразвукового пучка, прошедшего через указанный объект, в электрический сигнал, и
- блок (140) обработки, содержащий усилитель (142), выполненный с возможностью применения коэффициента усиления к электрическому сигналу, получаемому приемником (130), и блок (143) управления, выполненный с возможностью измерения амплитуды усиленного сигнала и с возможностью выведения на основании указанного измерения амплитуды картографии, в которой каждая точка поверхности проекции указанного объекта в направлении экспозиции связана с амплитудой, прошедшей к указанной точке через указанный объект,
отличающаяся тем, что блок (143) управления дополнительно выполнен с возможностью определения для множества точек картографии, реализуемой на основании сканирования контрольной детали ультразвуковым пучком с заранее определенным контрольным коэффициентом усиления (Gref), поправок к коэффициенту усиления, применяемых к контрольному коэффициенту усиления (Gref) в соответствующих точках сканирования для получения постоянной амплитуды (Ас), прошедшей через контрольную деталь, для всех точек картографии,
и с возможностью управления усилителем (142) таким образом, чтобы во время сканирования и указанного измерения амплитуды на контролируемом объекте применять в различных точках сканирования ультразвуковым пучком коэффициент усиления (Gc), соответствующий контрольному коэффициенту усиления (Gref), скорректированному в соответствии с определенными таким образом поправками к коэффициенту усиления.
RU2015156228A 2013-05-30 2014-05-22 Усовершенствованный способ контроля с помощью ультразвука RU2639585C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1354956A FR3006447B1 (fr) 2013-05-30 2013-05-30 Procede d'inspection par transmission d'ultrasons ameliore
FR1354956 2013-05-30
PCT/FR2014/051202 WO2014191661A1 (fr) 2013-05-30 2014-05-22 Procede d'inspection par transmission d'ultrasons ameliore

Publications (2)

Publication Number Publication Date
RU2015156228A true RU2015156228A (ru) 2017-07-06
RU2639585C2 RU2639585C2 (ru) 2017-12-21

Family

ID=49054754

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015156228A RU2639585C2 (ru) 2013-05-30 2014-05-22 Усовершенствованный способ контроля с помощью ультразвука

Country Status (9)

Country Link
US (1) US10041828B2 (ru)
EP (1) EP3004864B1 (ru)
JP (1) JP6441321B2 (ru)
CN (1) CN105247362B (ru)
BR (1) BR112015029618B1 (ru)
CA (1) CA2912809C (ru)
FR (1) FR3006447B1 (ru)
RU (1) RU2639585C2 (ru)
WO (1) WO2014191661A1 (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10338036B2 (en) * 2014-05-01 2019-07-02 TecScan Systems Inc. Method and apparatus for scanning a test object and correcting for gain
FR3068134B1 (fr) * 2017-06-23 2021-01-08 Vallourec Tubes France Controle non destructif pour produit tubulaire a forme complexe
CN107677730A (zh) * 2017-08-07 2018-02-09 中材科技(阜宁)风电叶片有限公司 风电叶片前缘粘接区的无损检测方法
US10902664B2 (en) 2018-05-04 2021-01-26 Raytheon Technologies Corporation System and method for detecting damage using two-dimensional imagery and three-dimensional model
US10473593B1 (en) 2018-05-04 2019-11-12 United Technologies Corporation System and method for damage detection by cast shadows
US10958843B2 (en) 2018-05-04 2021-03-23 Raytheon Technologies Corporation Multi-camera system for simultaneous registration and zoomed imagery
US10685433B2 (en) 2018-05-04 2020-06-16 Raytheon Technologies Corporation Nondestructive coating imperfection detection system and method therefor
US10488371B1 (en) * 2018-05-04 2019-11-26 United Technologies Corporation Nondestructive inspection using thermoacoustic imagery and method therefor
US10928362B2 (en) 2018-05-04 2021-02-23 Raytheon Technologies Corporation Nondestructive inspection using dual pulse-echo ultrasonics and method therefor
US10914191B2 (en) 2018-05-04 2021-02-09 Raytheon Technologies Corporation System and method for in situ airfoil inspection
US11268881B2 (en) 2018-05-04 2022-03-08 Raytheon Technologies Corporation System and method for fan blade rotor disk and gear inspection
US10943320B2 (en) 2018-05-04 2021-03-09 Raytheon Technologies Corporation System and method for robotic inspection
US11079285B2 (en) 2018-05-04 2021-08-03 Raytheon Technologies Corporation Automated analysis of thermally-sensitive coating and method therefor
CN108645915A (zh) * 2018-05-07 2018-10-12 广东工业大学 一种超声感声屏、超声检测系统及方法
JP7112726B2 (ja) * 2018-08-10 2022-08-04 ヤマハファインテック株式会社 超音波検査装置、及び超音波検査方法
CN110398503A (zh) * 2019-02-27 2019-11-01 广西壮族自治区农业科学院 一种基于几何形态透射测量的植物病虫害检验方法
CA3138634C (en) 2021-03-04 2023-09-19 TecScan Systems Inc. System and method for scanning an object using an array of ultrasonic transducers
FR3127813A1 (fr) * 2021-10-05 2023-04-07 Safran Aircraft Engines Procede de mesure par ultrasons en transmission d’une piece mecanique d’une turbomachine d’aeronef

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378237A (en) * 1942-09-02 1945-06-12 Wingfoot Corp Method and apparatus for ultrasonic testing
US4004454A (en) * 1975-05-07 1977-01-25 Trw Inc. Ultrasonic inspection method of pulse reflection defect detection using a thru-transmission automatic distance-amplitude compensation
US4462082A (en) * 1981-09-17 1984-07-24 Rockwell International Corporation Automatic calibration system for ultrasonic inspection
JPS599555A (ja) * 1982-07-08 1984-01-18 Toshiba Corp 超音波探傷装置
US4607341A (en) * 1984-03-05 1986-08-19 Canadian Patents And Development Limited Device for determining properties of materials from a measurement of ultrasonic absorption
GB8423023D0 (en) * 1984-09-12 1984-10-17 Short Brothers Ltd Ultrasonic scanning system
SU1350605A1 (ru) * 1986-07-14 1987-11-07 Всесоюзный научно-исследовательский и конструкторско-технологический институт трубной промышленности Способ ультразвукового контрол качества соединений многослойных труб
JPS63263467A (ja) * 1987-04-22 1988-10-31 Mitsubishi Heavy Ind Ltd 超音波探傷方法
SU1649417A1 (ru) * 1988-08-02 1991-05-15 Предприятие П/Я А-7650 Устройство дл ультразвукового контрол труб
JPH03205552A (ja) * 1989-10-13 1991-09-09 Fuji Electric Co Ltd 飛行機翼の自動超音波探傷装置
US5241473A (en) * 1990-10-12 1993-08-31 Ken Ishihara Ultrasonic diagnostic apparatus for displaying motion of moving portion by superposing a plurality of differential images
WO1992019963A1 (en) * 1991-05-07 1992-11-12 Dapco Industries Real-time ultrasonic testing system
JP3093054B2 (ja) * 1992-09-22 2000-10-03 川崎重工業株式会社 超音波探傷装置の自動感度調整方法及びその装置
CN1063848C (zh) * 1996-08-23 2001-03-28 中国航天工业总公司第二研究院第二总体设计部 热钢板在线自动化电磁超声探伤系统
US6220099B1 (en) * 1998-02-17 2001-04-24 Ce Nuclear Power Llc Apparatus and method for performing non-destructive inspections of large area aircraft structures
US6394646B1 (en) * 1999-04-16 2002-05-28 General Electric Company Method and apparatus for quantitative nondestructive evaluation of metal airfoils using high resolution transient thermography
DE10258336B3 (de) * 2002-12-12 2004-04-15 Eurocopter Deutschland Gmbh Verfahren und Vorrichtung zur zerstörungsfreien Werkstoffprüfung mittels Ultraschall
JP4102710B2 (ja) * 2003-06-04 2008-06-18 富士重工業株式会社 中空構造物の構造診断方法及びその装置
US7819805B2 (en) * 2004-09-20 2010-10-26 Mgb Investments Limited Partnership Sub-nyquist sampling of acoustic signals in ultrasound imaging
RU2295124C1 (ru) * 2005-07-18 2007-03-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Способ ультразвукового контроля
US7520172B2 (en) * 2005-09-07 2009-04-21 The Boeing Company Inspection system for inspecting a structure and associated method
CN101400994B (zh) * 2005-10-14 2013-03-27 奥林巴斯Ndt公司 用于无损检测仪器的数字时变增益电路
US7606445B2 (en) * 2005-11-30 2009-10-20 General Electric Company Methods and systems for ultrasound inspection
WO2008005311A2 (en) * 2006-06-30 2008-01-10 Carnegie Mellon University Methods, apparatuses, and systems for damage detection
JP4910768B2 (ja) * 2007-02-28 2012-04-04 Jfeスチール株式会社 超音波探傷の校正方法及び管体の品質管理方法及び製造方法
US7823451B2 (en) * 2008-05-06 2010-11-02 The Boeing Company Pulse echo/through transmission ultrasonic testing
US8668434B2 (en) * 2009-09-02 2014-03-11 United Technologies Corporation Robust flow parameter model for component-level dynamic turbine system control
FR2959817B1 (fr) * 2010-05-10 2012-06-22 Snecma Procede de controle par ultrasons d'une piece composite.
CN101975821B (zh) * 2010-09-03 2011-12-21 中国人民解放军装甲兵工程学院 发动机旧曲轴内部缺陷的自动化超声波检测方法及装置
WO2012054171A2 (en) * 2010-10-20 2012-04-26 Sonix, Inc. Method and apparatus for adjusting the level of a response signal from an ultrasound transducer
US8747321B2 (en) * 2012-08-15 2014-06-10 Scidea Research, Inc. Structured random permutation pulse compression systems and methods
US10338036B2 (en) * 2014-05-01 2019-07-02 TecScan Systems Inc. Method and apparatus for scanning a test object and correcting for gain

Also Published As

Publication number Publication date
CA2912809A1 (fr) 2014-12-04
FR3006447B1 (fr) 2015-05-29
US20160109283A1 (en) 2016-04-21
RU2639585C2 (ru) 2017-12-21
EP3004864B1 (fr) 2021-01-13
FR3006447A1 (fr) 2014-12-05
CN105247362B (zh) 2017-06-13
JP2016520202A (ja) 2016-07-11
US10041828B2 (en) 2018-08-07
JP6441321B2 (ja) 2018-12-19
WO2014191661A1 (fr) 2014-12-04
CA2912809C (fr) 2021-05-25
EP3004864A1 (fr) 2016-04-13
BR112015029618B1 (pt) 2020-12-01
CN105247362A (zh) 2016-01-13
BR112015029618A2 (pt) 2017-07-25

Similar Documents

Publication Publication Date Title
RU2015156228A (ru) Усовершенствованный способ контроля с помощью ультразвука
JP2012533748A5 (ru)
JP2013145235A (ja) 補正部材および補正方法
CN109541028A (zh) 一种风力机叶片裂纹位置定位检测方法及系统
JP2012533748A (ja) 物体を光学的に走査および測定する方法
JP5781018B2 (ja) 風計測装置
JP2018517146A5 (ru)
US20150377840A1 (en) Phased array system capable of computing gains for non-measured calibration points
JP2011095239A5 (ru)
JP2007309899A (ja) 非接触式振動・変位計測装置
JP6220838B2 (ja) 非破壊検査方法及び非破壊検査装置並びに弾性波トモグラフィにおける情報特定方法及び情報特定装置
US11041715B2 (en) Optical measurement apparatus, measurement method, program, and recording medium
JP6607127B2 (ja) X線残留応力測定方法及びx線残留応力測定システム
CN104914162B (zh) 相控阵定量化损伤监测方法、装置和系统
RU2419816C2 (ru) Способ измерения расстояния до различных точек поверхности объекта
Antova Terrestrial Laser Scanning for Dam Deformation monitoring-Case Study
JP5733029B2 (ja) 水中送波器の検査装置及び検査方法
JP2006313115A (ja) 超音波探傷方法及び装置
JP2009213574A (ja) 身長測定装置
EP2369340B1 (en) Evaluating the elasticity of wooden elements at a reference temperature
KR20160024682A (ko) 시편 부식 측정 장치
JP6411170B2 (ja) 光音響画像化装置および光音響画像構築方法
FI13231Y1 (fi) Laite harvesteripään kalibrointiin ultraäänellä
JP2016176865A (ja) 物性値検知方法
JP2020153883A (ja) 表面形状評価装置、表面形状評価システム、および表面形状評価方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner