1. Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах, состоящий в том, что при запуске синхронного дизель-генератора разгоняют одновременно и обратимую синхронную электрическую машину турбонаддувочного агрегата, а при работе данного дизель-генератора в диапазоне статических активных нагрузок менее 30-40% номинальной и резком набросе значительной мощности измеряют посредством трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора подачи топлива и давления наддувочного воздуха сигналы статического и динамического приращения этой мощности, согласованно и синхронно форсируют этими сигналами подачу топлива и давление наддувочного воздуха путем того, что воздействуют статическим сигналом на серводвигатель одноимпульсного механогидравлического регулятора угловой скорости дизеля, а динамическим сигналом - на систему управления статическим полупроводниковым преобразователем обратимой синхронной электрической машины турбонаддувочного агрегата, повышая на этом этапе напряжение этого преобразователя в цепи постоянного тока и вращающий электромагнитный момент данной обратимой синхронной электрической машины, работающей c приводным двигателем, а при резком сбросе значительной мощности в этом диапазоне статических нагрузок измеряют тем же трехимпульсным электронным пропорционально-интегрально-дифференциальным регулятором подачи топлива и давления наддувочного воздуха сигналы статического и динамического понижения этой мощности, которыми также согласованно и синхронно дефорсируют подачу топлива и давление наддувочного воздуха дизеля путем того, что воздействуют первым сигналом на серводвигатель одноимпульсного механогидравлического регулятора угловой скорости и вторым сигналом воздействуют на систему управления статическим полупроводниковым преобразователем обратимой синхронной электрической машины турбонаддувочного агрегата, чем уменьшают на этом этапе напряжение этого преобразователя в цепи постоянного тока и вращающий электромагнитный момент обратимой синхронной электрической машины; при работе дизель-генератора в диапазоне статических нагрузок выше 30-40% номинальной и резком набросе значительной мощности измеряют таким же путем сигналы статического и динамического приращения этой мощности, согласованно и синхронно форсируют этими сигналами подачу топлива и давление наддувочного воздуха путем того, что также статическим сигналом воздействуют на серводвигатель одноимпульсного механогидравлического регулятора угловой скорости дизеля и увеличивают подачу топлива, а динамическим сигналом воздействуют на систему управления статическим полупроводниковым преобразователем обратимой синхронной электрической машины турбонаддувочного агрегата, работающей в данном диапазоне нагрузок в генераторном режиме, чем понижают на этом этапе ток возбуждения и тормозной электромагнитный момент обратимой синхронной электрической машины, при этом при резком сбросе значительной мощности в этом диапазоне статических нагрузок подачу топлива и давление наддува дизеля таким же путем и теми же средствами одновременно и согласованно на этом этапе дефорсируют, в отличие от него в заявляемом в динамических режимах работы дизель-генератора давление наддувочного воздуха при всех его нагрузках регулируют поэтапно; при резком набросе нагрузки на дизель-генератор при суммарном воздействии сигналов приращений статической и динамической нагрузок на первом этапе воздействуют дополнительно сигналом приращения статической нагрузки на повышение давления наддувочного воздуха за счет кратковременной подачи по сигналу блока динамической коррекции частоты напряжения генератора во всасывающий патрубок турбокомпрессора наддува сжатого воздуха из его источника по вспомогательному воздухопроводу посредством управляемого клапана, установленного на этом воздухопроводе непосредственно перед входом в турбокомпрессор, а также воздействуют и на обратимую синхронную электрическую машину турбонаддувочного агрегата посредством статического полупроводникового преобразователя, системы его управления, выполненной в виде подсистем управления обратимыми сетевым и электромашинным полупроводниковыми преобразователями, и субблоков управления двигательным и генераторным режимами блока логического управления обратимой синхронной электрической машиной; при этом в периоды работы дизель-генератора со статической нагрузкой более 30-40% номинальной, при упомянутом резком набросе нагрузки, когда обратимая синхронная электрическая машина турбонаддувочного агрегата работает в генераторном режиме, резко уменьшают, за счет воздействия суммарным сигналом приращений статической и динамической нагрузок дизель-генератора посредством статического полупроводникового преобразователя, его подсистем управления обратимыми сетевым и электромашинным полупроводниковыми преобразователями и соответственно субблоков управления двигательным и генераторным режимами, электромагнитный тормозной момент обратимой синхронной электрической машины вплоть до временного ее перевода в двигательный режим с последующим его доведением до номинального посредством управляемого полупроводникового преобразователя-возбудителя с его подсистемой управления, причем измеряют на первом этапе данного наброса нагрузки давление наддувочного воздуха в воздушном коллекторе турбокомпрессора наддува и частоту вращения самого турбокомпрессора наддува, значение сигнала, пропорциональное этому давлению, сравнивают посредством блока динамической коррекции частоты напряжения генератора с программно заданным в этом же блоке значением, равным оптимальному для возросшей статической нагрузки дизель-генератора, и, если значение измеренного сигнала превышает оптимальное, отключают посредством сигнала данного блока управляемый клапан от источника сжатого воздуха, на втором этапе данного регулирования давления наддувочного воздуха того же режима дизель-генератора при указанном резком набросе нагрузки сравнивают в субблоке задания режима блока логического управления обратимой синхронной электрической машиной измеренные значения текущего сигнала частоты вращения турбокомпрессора наддува и давления наддувочного воздуха в воздушном коллекторе с программно заданными в том же субблоке задания режима значениями, равными оптимальным для возросшей статической нагрузки дизель-генератора, и, в случае превышения измеренных сигналов частоты вращения и соответственно давления наддувочного воздуха над заданными и работе дизель-генератора с нагрузкой более 30-40% номинальной, сигналами их разности воздействуют этим субблоком на возврат обратимой синхронной электрической машины турбонаддувочного агрегата снова в предшествующий генераторный режим, а затем и последующее повышение электромагнитного тормозного момента обратимой синхронной электрической машины, посредством ее статического полупроводникового преобразователя, его подсистем управления обратимыми электромашинным и сетевым полупроводниковыми преобразователями при возврате режима и управляемого полупроводникового преобразователя-возбудителя с его подсистемой управления при повышении тормозного момента, до тех пор, пока сравниваемые в субблоке управления генераторным режимом значения измеренного и оптимального сигналов давления наддувочного воздуха не станут равными, после чего повышение электромагнитного тормозного момента обратимой синхронной электрической машины, посредством полупроводникового преобразователя-возбудителя с его подсистемой управления, по сигналу субблока управления генераторным режимом прекращают как установившееся; а если нагрузка дизель-генератора в момент наброса соответствует значениям менее 30-40% номинальной, то первоначально, наряду с упомянутой кратковременной подачей на первом этапе в турбокомпрессор наддува тем же путем сжатого воздуха от постороннего источника, резко увеличивают одновременно за счет воздействия суммарным сигналом приращений статической и динамической нагрузок дизель-генератора электромагнитный движущий момент обратимой синхронной электрической машины, работающей в данном диапазоне нагрузок дизель-генератора в двигательном режиме, до номинального значения, посредством статического полупроводникового преобразователя, подсистемы управления его сетевым полупроводниковым преобразователем и субблока управления двигательным режимом, а на втором этапе после отключения тем же путем источника сжатого воздуха сигналами разности измеренных возросших значений частоты вращения турбокомпрессора наддувочного воздуха и соответственно давления наддувочного воздуха в воздушном коллекторе над программно заданными, вычисленными в субблоке управления двигательным режимом, воздействуют на возвращение обратимой синхронной электрической машины в предшествующий двигательный режим и дальнейшее уменьшение ее электромагнитного движущего момента посредством статического полупроводникового преобразователя, подсистемы управления его сетевым полупроводниковым преобразователем и субблока управления двигательным режимом до тех пор, пока измеренный сигнал действительного значения давления наддувочного воздуха при сравнении в субблоке управления двигательным режимом не снизится и не станет равным оптимальному значению для возросшего статического нагрузочного режима дизель-генератора, после чего данное снижение электромагнитного движущего момента обратимой синхронной электрической машины по сигналу данного субблока прекращают как установившееся; при резком сбросе с дизель-генератора значительной нагрузки, на первом этапе измеренным статическим сигналом понижения мощности воздействуют одновременно на уменьшение подачи топлива посредством одноимпульсного механогидравлического регулятора угловой скорости двигателя и на подключение к клеммам генератора компенсатора активной мощности, посредством его быстродействующего полупроводникового регулятора, по сигналу блока динамической коррекции частоты напряжения, связанного с указанным одноимпульсным механогидравлическим регулятором угловой скорости, а также воздействуют и на сброс с выдержкой 0,5 с наддувочного воздуха из воздушного коллектора турбокомпрессора на его всасывающую полость посредством воздействия дополнительным сигналом с выхода блока динамической коррекции частоты напряжения на открытие управляемого клапана, установленного на перепускном воздухопроводе, соединяющем нагнетательную полость турбокомпрессора с его всасывающей полостью, понижая тем самым коэффициент избытка воздуха в камерах сгорания дизеля, а суммарным сигналом статического и динамического понижения мощности, в случае если нагрузка дизель-генератора в этот момент сброса составляет менее 30-40% номинальной, воздействуя им на субблоки управления двигательным и генераторным режимами блока логического управления, временно переводят по сигналу последнего субблока обратимую синхронную электрическую машину турбонаддувочного агрегата, работающую в двигательном режиме, в генераторный режим при номинальном токе посредством ее статического полупроводникового преобразователя, подсистем управления его сетевым и электромашинным полупроводниковыми преобразователями и управляемым полупроводниковым преобразователем-возбудителем, и форсированно понижают при этом частоту вращения и производительность турбокомпрессора наддува, а также и давление наддувочного воздуха в его воздушном коллекторе; а если нагрузка дизель-генератора в момент сброса равна и более 30-40% номинальной, суммарным сигналом статического и динамического понижения мощности резко увеличивают кратковременно электромагнитный тормозной момент обратимой синхронной электрической машины турбонаддувочного агрегата, работающей в генераторном режиме, до номинальной мощности, воздействуя по этому суммарному сигналу выходным сигналом субблока управления генераторным режимом блока логического управления на подсистему управления управляемым полупроводниковым преобразователем-возбудителем, форсированно увеличивают при этом посредством данного преобразователя-возбудителя ток возбуждения и электромагнитный тормозной момент обратимой синхронной электрической машины до номинального значения, тем самым форсированно понижают частоту вращения и производительность турбокомпрессора наддува, а также и давление наддувочного воздуха в его воздушном коллекторе, далее в обоих случаях указанных режимов нагрузок дизель-генератора при сбросе последних сигналом уменьшения подачи топлива, синхронно с ним пропорционально снижают нагрузку компенсатора активной мощности посредством его быстродействующего полупроводникового регулятора по дополнительному сигналу блока динамической коррекции частоты напряжения генератора, одновременно с этим измеряют снижающиеся частоту вращения турбокомпрессора наддува и давление наддувочного воздуха в воздушном коллекторе, и по мере снижения давления наддувочного воздуха измеренный сигнал этого давления сравнивают посредством блока динамической коррекции частоты напряжения генератора с его программно заданным в этом же блоке значением, равным оптимальному для данной понизившейся статической нагрузки дизель-генератора. При этом, когда сигнал, пропорциональный давлению наддувочного воздуха, станет равным программно заданному, управляемый клапан на перепускном воздухопроводе закрывают посредством данного блока динамической коррекции частоты напряжения генератора, а когда равным программно заданному в нем станет и значение поступившего в него сигнала частоты вращения, пропорциональное угловой скорости турбокомпрессора наддува, выключают и компенсатор активной мощности посредством воздействия данного блока динамической коррекции частоты напряжения генератора на его быстродействующий полупроводниковый регулятор, затем на втором этапе регулирования в обоих случаях указанных режимов нагрузок дизель-генератора сравнивают посредством субблока управления генераторным режимом блока логического управления обратимой синхронной электрической машины турбонаддувочного агрегата измеренные значения сигналов частоты вращения турбокомпрессора наддува и давления наддувочного воздуха с их программно заданными в том же субблоке управления генераторным режимом значениями, равными оптимальным для снизившегося статического нагрузочного режима дизель-генератора, и, в случае превышения вторых сигналов над первыми, в режимах со статической нагрузкой дизель-генератора менее 30-40% номинальной воздействуют данными сигналами разности этого субблока на подсистемы управления электромашинным и сетевыми полупроводниковыми преобразователями статического полупроводникового преобразователя обратимой синхронной электрической машины, и возвращают данную машину в предшествующий двигательный режим, повышают затем посредством субблока управления двигательным режимом и его упомянутых элементов и связей электромагнитный двигательный момент обратимой синхронной электрической машины и частоту вращения турбокомпрессора наддува до тех пор, пока сравниваемые в этом субблоке управления двигательным режимом измеренное и программно заданное оптимальное для снизившегося статического нагрузочного режима дизель-генератора значения сигналов давления наддувочного воздуха не станут равными, после чего повышение электромагнитного двигательного момента обратимой синхронной электрической машины по сигналу этого субблока прекращают; при выводе дизель-генератора из работы посылают на вход его подсистемы дистанционного автоматизированного управления команду остановки и организуют посредством этой подсистемы плавный перевод нагрузки на остающийся в работе дизель-генератор, в процессе данного перевода на выходе трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора подачи топлива выводимого дизель-генератора синхронно со снижением нагрузки синхронного генератора формируют сигнал понижения статической нагрузки двигателя, воздействуют им на серводвигатель одноимпульсного механогидравлического регулятора угловой скорости, а также на устройства регулирования давления наддувочного воздуха, снижая его давление и частоту вращения турбокомпрессора наддува, как и в случае внезапного сброса нагрузки, а когда мощность выводимого синхронного генератора станет равной нулю, по сигналу его трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора подачи топлива выключают автоматический выключатель данного генератора, посредством нормально замкнутого блок-контакта этого выключателя посылают на подсистему дистанционного автоматизированного управления выводимым дизель-генератором сигнал работы на холостом ходу, по этому сигналу посредством указанной подсистемы дистанционного управления понижает частоту вращения дизель-генератора до значения, установленного программой для режима холостого хода, а по истечении заданной в данной подсистеме программным способом выдержки времени для работы дизель-генератора на холостом ходу, этой подсистемой дистанционного автоматизированного управления формируют одновременно команду остановки дизеля посредством стоп-устройства одноимпульсного механогидравлического регулятора угловой скорости и команду остановки турбонаддувочного агрегата посредством субблока торможения блока логического управления обратимой синхронной электрической машиной, далее посредством данного субблока торможения во взаимодействии последнего со статическим полупроводниковым преобразователем и его обеими подсистемами управления сетевым и электромашинным полупроводниковыми преобразователями переводят обратимую синхронную электрическую машину в генераторный режим рекуперативного торможения, снижают частоту вращения обратимой синхронной электрической машины и турбонаддувочного агрегата, преобразуя при этом запасенную ими кинетическую энергию в электрическую и направляя ее в электрическую сеть, измеряют понижающуюся частоту вращения турбокомпрессора наддува и сравнивают ее значение в субблоке торможения блока логического управления с программно заданным в этом же субблоке торможения значением, определяющим момент перехода обратимой синхронной электрической машины уже в режим динамического торможения, при снижении частоты вращения турбокомпрессора наддува до указанного заданного значения динамического торможения сигналом этого субблока торможения электромашинный преобразователь статического полупроводникового преобразователя переключают посредством вспомогательного контактора последнего на его динамический резистор, включая последний в цепь постоянного тока самого статического преобразователя, а импульсы управления полупроводниковыми вентилями сетевого преобразователя статического полупроводникового преобразователя блокируют посредством того же субблока торможения, когда же частота вращения турбокомпрессора наддува в процессе динамического торможения станет равной нулю, тем же субблоком торможения выключают автоматический выключатель обратимой синхронной электрической машины, снимая питание со всех цепей обратимой синхронной электрической машины.