RU2015117174A - Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах - Google Patents

Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах Download PDF

Info

Publication number
RU2015117174A
RU2015117174A RU2015117174A RU2015117174A RU2015117174A RU 2015117174 A RU2015117174 A RU 2015117174A RU 2015117174 A RU2015117174 A RU 2015117174A RU 2015117174 A RU2015117174 A RU 2015117174A RU 2015117174 A RU2015117174 A RU 2015117174A
Authority
RU
Russia
Prior art keywords
static
generator
electric machine
signal
turbocharger
Prior art date
Application number
RU2015117174A
Other languages
English (en)
Other versions
RU2637793C2 (ru
Inventor
Петр Михайлович Радченко
Антон Петрович Данилович
Original Assignee
Федеральное бюджетное образовательное учреждение высшего профессионального образования "Морской государственный университет имени адмирала Г.И. Невельского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное бюджетное образовательное учреждение высшего профессионального образования "Морской государственный университет имени адмирала Г.И. Невельского" filed Critical Федеральное бюджетное образовательное учреждение высшего профессионального образования "Морской государственный университет имени адмирала Г.И. Невельского"
Priority to RU2015117174A priority Critical patent/RU2637793C2/ru
Publication of RU2015117174A publication Critical patent/RU2015117174A/ru
Application granted granted Critical
Publication of RU2637793C2 publication Critical patent/RU2637793C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supercharger (AREA)

Abstract

1. Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах, состоящий в том, что при запуске синхронного дизель-генератора разгоняют одновременно и обратимую синхронную электрическую машину турбонаддувочного агрегата, а при работе данного дизель-генератора в диапазоне статических активных нагрузок менее 30-40% номинальной и резком набросе значительной мощности измеряют посредством трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора подачи топлива и давления наддувочного воздуха сигналы статического и динамического приращения этой мощности, согласованно и синхронно форсируют этими сигналами подачу топлива и давление наддувочного воздуха путем того, что воздействуют статическим сигналом на серводвигатель одноимпульсного механогидравлического регулятора угловой скорости дизеля, а динамическим сигналом - на систему управления статическим полупроводниковым преобразователем обратимой синхронной электрической машины турбонаддувочного агрегата, повышая на этом этапе напряжение этого преобразователя в цепи постоянного тока и вращающий электромагнитный момент данной обратимой синхронной электрической машины, работающей c приводным двигателем, а при резком сбросе значительной мощности в этом диапазоне статических нагрузок измеряют тем же трехимпульсным электронным пропорционально-интегрально-дифференциальным регулятором подачи топлива и давления наддувочного воздуха сигналы статического и динамического понижения этой мощности, которыми также согласованно и синхронно дефорсируют подачу топлива и

Claims (3)

1. Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах, состоящий в том, что при запуске синхронного дизель-генератора разгоняют одновременно и обратимую синхронную электрическую машину турбонаддувочного агрегата, а при работе данного дизель-генератора в диапазоне статических активных нагрузок менее 30-40% номинальной и резком набросе значительной мощности измеряют посредством трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора подачи топлива и давления наддувочного воздуха сигналы статического и динамического приращения этой мощности, согласованно и синхронно форсируют этими сигналами подачу топлива и давление наддувочного воздуха путем того, что воздействуют статическим сигналом на серводвигатель одноимпульсного механогидравлического регулятора угловой скорости дизеля, а динамическим сигналом - на систему управления статическим полупроводниковым преобразователем обратимой синхронной электрической машины турбонаддувочного агрегата, повышая на этом этапе напряжение этого преобразователя в цепи постоянного тока и вращающий электромагнитный момент данной обратимой синхронной электрической машины, работающей c приводным двигателем, а при резком сбросе значительной мощности в этом диапазоне статических нагрузок измеряют тем же трехимпульсным электронным пропорционально-интегрально-дифференциальным регулятором подачи топлива и давления наддувочного воздуха сигналы статического и динамического понижения этой мощности, которыми также согласованно и синхронно дефорсируют подачу топлива и давление наддувочного воздуха дизеля путем того, что воздействуют первым сигналом на серводвигатель одноимпульсного механогидравлического регулятора угловой скорости и вторым сигналом воздействуют на систему управления статическим полупроводниковым преобразователем обратимой синхронной электрической машины турбонаддувочного агрегата, чем уменьшают на этом этапе напряжение этого преобразователя в цепи постоянного тока и вращающий электромагнитный момент обратимой синхронной электрической машины; при работе дизель-генератора в диапазоне статических нагрузок выше 30-40% номинальной и резком набросе значительной мощности измеряют таким же путем сигналы статического и динамического приращения этой мощности, согласованно и синхронно форсируют этими сигналами подачу топлива и давление наддувочного воздуха путем того, что также статическим сигналом воздействуют на серводвигатель одноимпульсного механогидравлического регулятора угловой скорости дизеля и увеличивают подачу топлива, а динамическим сигналом воздействуют на систему управления статическим полупроводниковым преобразователем обратимой синхронной электрической машины турбонаддувочного агрегата, работающей в данном диапазоне нагрузок в генераторном режиме, чем понижают на этом этапе ток возбуждения и тормозной электромагнитный момент обратимой синхронной электрической машины, при этом при резком сбросе значительной мощности в этом диапазоне статических нагрузок подачу топлива и давление наддува дизеля таким же путем и теми же средствами одновременно и согласованно на этом этапе дефорсируют, в отличие от него в заявляемом в динамических режимах работы дизель-генератора давление наддувочного воздуха при всех его нагрузках регулируют поэтапно; при резком набросе нагрузки на дизель-генератор при суммарном воздействии сигналов приращений статической и динамической нагрузок на первом этапе воздействуют дополнительно сигналом приращения статической нагрузки на повышение давления наддувочного воздуха за счет кратковременной подачи по сигналу блока динамической коррекции частоты напряжения генератора во всасывающий патрубок турбокомпрессора наддува сжатого воздуха из его источника по вспомогательному воздухопроводу посредством управляемого клапана, установленного на этом воздухопроводе непосредственно перед входом в турбокомпрессор, а также воздействуют и на обратимую синхронную электрическую машину турбонаддувочного агрегата посредством статического полупроводникового преобразователя, системы его управления, выполненной в виде подсистем управления обратимыми сетевым и электромашинным полупроводниковыми преобразователями, и субблоков управления двигательным и генераторным режимами блока логического управления обратимой синхронной электрической машиной; при этом в периоды работы дизель-генератора со статической нагрузкой более 30-40% номинальной, при упомянутом резком набросе нагрузки, когда обратимая синхронная электрическая машина турбонаддувочного агрегата работает в генераторном режиме, резко уменьшают, за счет воздействия суммарным сигналом приращений статической и динамической нагрузок дизель-генератора посредством статического полупроводникового преобразователя, его подсистем управления обратимыми сетевым и электромашинным полупроводниковыми преобразователями и соответственно субблоков управления двигательным и генераторным режимами, электромагнитный тормозной момент обратимой синхронной электрической машины вплоть до временного ее перевода в двигательный режим с последующим его доведением до номинального посредством управляемого полупроводникового преобразователя-возбудителя с его подсистемой управления, причем измеряют на первом этапе данного наброса нагрузки давление наддувочного воздуха в воздушном коллекторе турбокомпрессора наддува и частоту вращения самого турбокомпрессора наддува, значение сигнала, пропорциональное этому давлению, сравнивают посредством блока динамической коррекции частоты напряжения генератора с программно заданным в этом же блоке значением, равным оптимальному для возросшей статической нагрузки дизель-генератора, и, если значение измеренного сигнала превышает оптимальное, отключают посредством сигнала данного блока управляемый клапан от источника сжатого воздуха, на втором этапе данного регулирования давления наддувочного воздуха того же режима дизель-генератора при указанном резком набросе нагрузки сравнивают в субблоке задания режима блока логического управления обратимой синхронной электрической машиной измеренные значения текущего сигнала частоты вращения турбокомпрессора наддува и давления наддувочного воздуха в воздушном коллекторе с программно заданными в том же субблоке задания режима значениями, равными оптимальным для возросшей статической нагрузки дизель-генератора, и, в случае превышения измеренных сигналов частоты вращения и соответственно давления наддувочного воздуха над заданными и работе дизель-генератора с нагрузкой более 30-40% номинальной, сигналами их разности воздействуют этим субблоком на возврат обратимой синхронной электрической машины турбонаддувочного агрегата снова в предшествующий генераторный режим, а затем и последующее повышение электромагнитного тормозного момента обратимой синхронной электрической машины, посредством ее статического полупроводникового преобразователя, его подсистем управления обратимыми электромашинным и сетевым полупроводниковыми преобразователями при возврате режима и управляемого полупроводникового преобразователя-возбудителя с его подсистемой управления при повышении тормозного момента, до тех пор, пока сравниваемые в субблоке управления генераторным режимом значения измеренного и оптимального сигналов давления наддувочного воздуха не станут равными, после чего повышение электромагнитного тормозного момента обратимой синхронной электрической машины, посредством полупроводникового преобразователя-возбудителя с его подсистемой управления, по сигналу субблока управления генераторным режимом прекращают как установившееся; а если нагрузка дизель-генератора в момент наброса соответствует значениям менее 30-40% номинальной, то первоначально, наряду с упомянутой кратковременной подачей на первом этапе в турбокомпрессор наддува тем же путем сжатого воздуха от постороннего источника, резко увеличивают одновременно за счет воздействия суммарным сигналом приращений статической и динамической нагрузок дизель-генератора электромагнитный движущий момент обратимой синхронной электрической машины, работающей в данном диапазоне нагрузок дизель-генератора в двигательном режиме, до номинального значения, посредством статического полупроводникового преобразователя, подсистемы управления его сетевым полупроводниковым преобразователем и субблока управления двигательным режимом, а на втором этапе после отключения тем же путем источника сжатого воздуха сигналами разности измеренных возросших значений частоты вращения турбокомпрессора наддувочного воздуха и соответственно давления наддувочного воздуха в воздушном коллекторе над программно заданными, вычисленными в субблоке управления двигательным режимом, воздействуют на возвращение обратимой синхронной электрической машины в предшествующий двигательный режим и дальнейшее уменьшение ее электромагнитного движущего момента посредством статического полупроводникового преобразователя, подсистемы управления его сетевым полупроводниковым преобразователем и субблока управления двигательным режимом до тех пор, пока измеренный сигнал действительного значения давления наддувочного воздуха при сравнении в субблоке управления двигательным режимом не снизится и не станет равным оптимальному значению для возросшего статического нагрузочного режима дизель-генератора, после чего данное снижение электромагнитного движущего момента обратимой синхронной электрической машины по сигналу данного субблока прекращают как установившееся; при резком сбросе с дизель-генератора значительной нагрузки, на первом этапе измеренным статическим сигналом понижения мощности воздействуют одновременно на уменьшение подачи топлива посредством одноимпульсного механогидравлического регулятора угловой скорости двигателя и на подключение к клеммам генератора компенсатора активной мощности, посредством его быстродействующего полупроводникового регулятора, по сигналу блока динамической коррекции частоты напряжения, связанного с указанным одноимпульсным механогидравлическим регулятором угловой скорости, а также воздействуют и на сброс с выдержкой 0,5 с наддувочного воздуха из воздушного коллектора турбокомпрессора на его всасывающую полость посредством воздействия дополнительным сигналом с выхода блока динамической коррекции частоты напряжения на открытие управляемого клапана, установленного на перепускном воздухопроводе, соединяющем нагнетательную полость турбокомпрессора с его всасывающей полостью, понижая тем самым коэффициент избытка воздуха в камерах сгорания дизеля, а суммарным сигналом статического и динамического понижения мощности, в случае если нагрузка дизель-генератора в этот момент сброса составляет менее 30-40% номинальной, воздействуя им на субблоки управления двигательным и генераторным режимами блока логического управления, временно переводят по сигналу последнего субблока обратимую синхронную электрическую машину турбонаддувочного агрегата, работающую в двигательном режиме, в генераторный режим при номинальном токе посредством ее статического полупроводникового преобразователя, подсистем управления его сетевым и электромашинным полупроводниковыми преобразователями и управляемым полупроводниковым преобразователем-возбудителем, и форсированно понижают при этом частоту вращения и производительность турбокомпрессора наддува, а также и давление наддувочного воздуха в его воздушном коллекторе; а если нагрузка дизель-генератора в момент сброса равна и более 30-40% номинальной, суммарным сигналом статического и динамического понижения мощности резко увеличивают кратковременно электромагнитный тормозной момент обратимой синхронной электрической машины турбонаддувочного агрегата, работающей в генераторном режиме, до номинальной мощности, воздействуя по этому суммарному сигналу выходным сигналом субблока управления генераторным режимом блока логического управления на подсистему управления управляемым полупроводниковым преобразователем-возбудителем, форсированно увеличивают при этом посредством данного преобразователя-возбудителя ток возбуждения и электромагнитный тормозной момент обратимой синхронной электрической машины до номинального значения, тем самым форсированно понижают частоту вращения и производительность турбокомпрессора наддува, а также и давление наддувочного воздуха в его воздушном коллекторе, далее в обоих случаях указанных режимов нагрузок дизель-генератора при сбросе последних сигналом уменьшения подачи топлива, синхронно с ним пропорционально снижают нагрузку компенсатора активной мощности посредством его быстродействующего полупроводникового регулятора по дополнительному сигналу блока динамической коррекции частоты напряжения генератора, одновременно с этим измеряют снижающиеся частоту вращения турбокомпрессора наддува и давление наддувочного воздуха в воздушном коллекторе, и по мере снижения давления наддувочного воздуха измеренный сигнал этого давления сравнивают посредством блока динамической коррекции частоты напряжения генератора с его программно заданным в этом же блоке значением, равным оптимальному для данной понизившейся статической нагрузки дизель-генератора. При этом, когда сигнал, пропорциональный давлению наддувочного воздуха, станет равным программно заданному, управляемый клапан на перепускном воздухопроводе закрывают посредством данного блока динамической коррекции частоты напряжения генератора, а когда равным программно заданному в нем станет и значение поступившего в него сигнала частоты вращения, пропорциональное угловой скорости турбокомпрессора наддува, выключают и компенсатор активной мощности посредством воздействия данного блока динамической коррекции частоты напряжения генератора на его быстродействующий полупроводниковый регулятор, затем на втором этапе регулирования в обоих случаях указанных режимов нагрузок дизель-генератора сравнивают посредством субблока управления генераторным режимом блока логического управления обратимой синхронной электрической машины турбонаддувочного агрегата измеренные значения сигналов частоты вращения турбокомпрессора наддува и давления наддувочного воздуха с их программно заданными в том же субблоке управления генераторным режимом значениями, равными оптимальным для снизившегося статического нагрузочного режима дизель-генератора, и, в случае превышения вторых сигналов над первыми, в режимах со статической нагрузкой дизель-генератора менее 30-40% номинальной воздействуют данными сигналами разности этого субблока на подсистемы управления электромашинным и сетевыми полупроводниковыми преобразователями статического полупроводникового преобразователя обратимой синхронной электрической машины, и возвращают данную машину в предшествующий двигательный режим, повышают затем посредством субблока управления двигательным режимом и его упомянутых элементов и связей электромагнитный двигательный момент обратимой синхронной электрической машины и частоту вращения турбокомпрессора наддува до тех пор, пока сравниваемые в этом субблоке управления двигательным режимом измеренное и программно заданное оптимальное для снизившегося статического нагрузочного режима дизель-генератора значения сигналов давления наддувочного воздуха не станут равными, после чего повышение электромагнитного двигательного момента обратимой синхронной электрической машины по сигналу этого субблока прекращают; при выводе дизель-генератора из работы посылают на вход его подсистемы дистанционного автоматизированного управления команду остановки и организуют посредством этой подсистемы плавный перевод нагрузки на остающийся в работе дизель-генератор, в процессе данного перевода на выходе трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора подачи топлива выводимого дизель-генератора синхронно со снижением нагрузки синхронного генератора формируют сигнал понижения статической нагрузки двигателя, воздействуют им на серводвигатель одноимпульсного механогидравлического регулятора угловой скорости, а также на устройства регулирования давления наддувочного воздуха, снижая его давление и частоту вращения турбокомпрессора наддува, как и в случае внезапного сброса нагрузки, а когда мощность выводимого синхронного генератора станет равной нулю, по сигналу его трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора подачи топлива выключают автоматический выключатель данного генератора, посредством нормально замкнутого блок-контакта этого выключателя посылают на подсистему дистанционного автоматизированного управления выводимым дизель-генератором сигнал работы на холостом ходу, по этому сигналу посредством указанной подсистемы дистанционного управления понижает частоту вращения дизель-генератора до значения, установленного программой для режима холостого хода, а по истечении заданной в данной подсистеме программным способом выдержки времени для работы дизель-генератора на холостом ходу, этой подсистемой дистанционного автоматизированного управления формируют одновременно команду остановки дизеля посредством стоп-устройства одноимпульсного механогидравлического регулятора угловой скорости и команду остановки турбонаддувочного агрегата посредством субблока торможения блока логического управления обратимой синхронной электрической машиной, далее посредством данного субблока торможения во взаимодействии последнего со статическим полупроводниковым преобразователем и его обеими подсистемами управления сетевым и электромашинным полупроводниковыми преобразователями переводят обратимую синхронную электрическую машину в генераторный режим рекуперативного торможения, снижают частоту вращения обратимой синхронной электрической машины и турбонаддувочного агрегата, преобразуя при этом запасенную ими кинетическую энергию в электрическую и направляя ее в электрическую сеть, измеряют понижающуюся частоту вращения турбокомпрессора наддува и сравнивают ее значение в субблоке торможения блока логического управления с программно заданным в этом же субблоке торможения значением, определяющим момент перехода обратимой синхронной электрической машины уже в режим динамического торможения, при снижении частоты вращения турбокомпрессора наддува до указанного заданного значения динамического торможения сигналом этого субблока торможения электромашинный преобразователь статического полупроводникового преобразователя переключают посредством вспомогательного контактора последнего на его динамический резистор, включая последний в цепь постоянного тока самого статического преобразователя, а импульсы управления полупроводниковыми вентилями сетевого преобразователя статического полупроводникового преобразователя блокируют посредством того же субблока торможения, когда же частота вращения турбокомпрессора наддува в процессе динамического торможения станет равной нулю, тем же субблоком торможения выключают автоматический выключатель обратимой синхронной электрической машины, снимая питание со всех цепей обратимой синхронной электрической машины.
2. Способ автоматического регулирования давления надувочного воздуха дизель-генератора в динамических режимах по п. 1, отличающийся тем, что обратимую синхронную электрическую машину турбонаддувочного агрегата в период ее работы двигателем используют в режиме вентильной машины при номинальном токе возбуждения, а в период ее работы генератором потоком электрической мощности управляют комбинированно таким образом, что в установившихся режимах потоком этой мощности управляют путем регулирования напряжения и тока возбуждения, а в переходных режимах этим же потоком управляют путем воздействия на статический полупроводниковый преобразователь обратимой вентильной синхронной электрической машины, включенный в ее якорную цепь.
3. Способ автоматического регулирования давления надувочного воздуха дизель-генератора в динамических режимах по пп. 1 и 2, отличающийся тем, что в процессе запуска дизель-генератора разгон обратимой синхронной электрической машины турбонаддувочного агрегата в режиме вентильного двигателя до начальной частоты вращения, составляющей около 5% ее номинального значения и гарантирующей устойчивую естественную коммутацию полупроводниковых вентилей электромашинного преобразователя в период работы зависимым инвертором, выполняют путем кратковременной подачи сжатого воздуха из пускового баллона дизеля во входной патрубок газовой турбины турбонаддувочного агрегата через управляемый клапан, установленный на участке вспомогательного воздухопровода между этим баллоном и входным патрубком данной газовой турбины, и прекращают подачу сжатого воздуха путем воздействия сигналом обратной связи по частоте вращения турбонаддувочного агрегата на тот же управляемый клапан.
RU2015117174A 2015-05-05 2015-05-05 Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах RU2637793C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015117174A RU2637793C2 (ru) 2015-05-05 2015-05-05 Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015117174A RU2637793C2 (ru) 2015-05-05 2015-05-05 Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах

Publications (2)

Publication Number Publication Date
RU2015117174A true RU2015117174A (ru) 2016-11-27
RU2637793C2 RU2637793C2 (ru) 2017-12-07

Family

ID=57758928

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015117174A RU2637793C2 (ru) 2015-05-05 2015-05-05 Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах

Country Status (1)

Country Link
RU (1) RU2637793C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611472A (zh) * 2018-06-15 2019-12-24 罗伯特·博世有限公司 用于运行电机的方法、电机、驱动装置以及压缩机和/或涡轮机
CN113091857A (zh) * 2021-04-30 2021-07-09 中水东北勘测设计研究有限责任公司 一种应对洪水突发的应急响应设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2714022C2 (ru) * 2018-04-03 2020-02-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского" Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора
RU2730694C1 (ru) * 2019-11-06 2020-08-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (СПбГМТУ) Способ определения коэффициента эффективности вибрационной защиты виброизолирующих муфт судовых дизель-генераторов
RU2735280C1 (ru) * 2019-12-23 2020-10-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский автомобильно-дорожный государственный технический университет (МАДИ) Автономная электростанция переменной частоты вращения

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19739917A1 (de) * 1997-09-11 1999-03-18 Siemens Ag System zur Versorgung elektromotorischer Verbraucher mit elektrischer Energie
JP3846223B2 (ja) * 2001-05-02 2006-11-15 トヨタ自動車株式会社 過給機付き内燃機関と変速機とを有する車両の制御装置
RU2338913C1 (ru) * 2006-02-06 2008-11-20 Евгений Жоресович Васильев Способ настройки и регулирования давлений наддува двигателя внутреннего сгорания с приводным компрессором и системой для его осуществления
GB2451703B (en) * 2007-08-10 2012-09-26 Bowman Power Group Ltd A method of operation of an electric turbocompounding system
JP5857396B2 (ja) * 2010-10-28 2016-02-10 いすゞ自動車株式会社 ターボ過給システム
RU2488708C2 (ru) * 2011-09-09 2013-07-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Морской государственный университет имени адмирала Г.И. Невельского" Способ автоматизированного управления синхронным дизель-генератором

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611472A (zh) * 2018-06-15 2019-12-24 罗伯特·博世有限公司 用于运行电机的方法、电机、驱动装置以及压缩机和/或涡轮机
CN113091857A (zh) * 2021-04-30 2021-07-09 中水东北勘测设计研究有限责任公司 一种应对洪水突发的应急响应设备
CN113091857B (zh) * 2021-04-30 2024-04-26 中水东北勘测设计研究有限责任公司 一种应对洪水突发的应急响应设备

Also Published As

Publication number Publication date
RU2637793C2 (ru) 2017-12-07

Similar Documents

Publication Publication Date Title
RU2015117174A (ru) Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах
CA2831665C (en) Generator
US6922996B2 (en) Method for controlling an electrically driven compressor
DE102017217796A1 (de) Steuereinrichtung und Steuerverfahren für einen Auflader-ausgestatteten Verbrennungsmotor
JP6401305B2 (ja) 過給システム及び過給システム用制御装置並びに過給システムの運転方法
JP7522774B2 (ja) ターボ機械の加速度を調整する方法
RU2012138713A (ru) Двигатель внутреннего сгорания с наддувом
JP2019031976A (ja) タービン発電機システムおよび方法
CN109252942B (zh) 一种发动机电动辅助增压控制方法及系统
US10822994B2 (en) Turbine of a turbocompound engine with variable load and a controller thereof
US9726187B2 (en) Multiple turbocharger control
JP3140783B2 (ja) ガスタービン制御
JP6216339B2 (ja) 内燃機関、内燃機関の制御装置及び方法
CN104883107A (zh) 一种三级电励磁式同步电机动态起动控制方法
KR100307051B1 (ko) 가스터빈장치 및 그 가속방법
JP2013534292A (ja) 内燃機関の排ガスターボチャージャの安定した運転を制御する方法及び相応の装置
CN111412023A (zh) 一种实现汽电双驱系统稳定运行的协调控制方法
CN106014655B (zh) 用于控制驱动装置的辅助压缩机的方法和控制装置
JP2016164399A (ja) 過給機付きガスエンジン、及びその制御方法
RU2018112122A (ru) Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора
CN116345527B (zh) 用于透平膨胀高速永磁同步发电并网装置的并网控制方法
JPH01110075A (ja) 交流励磁同期機の揚水運転停止制御方法
JP2016522344A (ja) 熱機関過給用の電動コンプレッサの制御方法
CN101000013A (zh) 电辅助涡轮增压器
JPH1144232A (ja) 電力供給装置

Legal Events

Date Code Title Description
FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20170818

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180506