RU2018112122A - Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора - Google Patents

Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора Download PDF

Info

Publication number
RU2018112122A
RU2018112122A RU2018112122A RU2018112122A RU2018112122A RU 2018112122 A RU2018112122 A RU 2018112122A RU 2018112122 A RU2018112122 A RU 2018112122A RU 2018112122 A RU2018112122 A RU 2018112122A RU 2018112122 A RU2018112122 A RU 2018112122A
Authority
RU
Russia
Prior art keywords
reversible
booster
electric machine
synchronous
static
Prior art date
Application number
RU2018112122A
Other languages
English (en)
Other versions
RU2018112122A3 (ru
RU2714022C2 (ru
Inventor
Петр Михайлович Радченко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского"
Priority to RU2018112122A priority Critical patent/RU2714022C2/ru
Publication of RU2018112122A3 publication Critical patent/RU2018112122A3/ru
Publication of RU2018112122A publication Critical patent/RU2018112122A/ru
Application granted granted Critical
Publication of RU2714022C2 publication Critical patent/RU2714022C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supercharger (AREA)
  • Control Of Eletrric Generators (AREA)

Claims (6)

1. Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора, заключающегося в том, что при запуске синхронного дизель-генератора посредством его пусковоздушной системы по сигналам его подсистемы дистанционного автоматизированного управления разгоняют одновременно и его турбоэлектронаддувочный агрегат, содержащий утилизационную газовую турбину и турбокомпрессор наддува, посредством бустерной обратимой синхронной электрической машины, соединенной электрически с шинами главного распределительного щита посредством автоматического выключателя и статического полупроводникового преобразователя данной бустерной обратимой синхронной электрической машины, включаемой в режим приводного электродвигателя посредством ее статического полупроводникового преобразователя, при номинальном токе возбуждения, а после завершения процесса запуска синхронного дизель-гененратора нагружают его типовым способом статической активной мощностью; в рабочем режиме с увеличением статической нагрузки на включенном синхронном дизель-генераторе по мере ее приема и соответственно непрерывном возрастании вращающего момента, развиваемого утилизационной газовой турбиной турбокомпрессора наддува, электромагнитный двигательный момент бустерной обратимой синхронной электрической машины, работающей приводным электродвигателем, адекватно снижают путем уменьшения напряжения статического полупроводникового преобразователя по сигналу, формируемому трехимпульсным электронным пропорционально-интегрально-дифференциальным регулятором подачи топлива и наддувчного воздуха; при этом в период работы данного синхронного дизель-генератора в статических режимах и возрастании его нагрузки измеряют посредством данного трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора подачи топлива и давления наддувочного воздуха сигнал статического приращения этой мощности, воздействуют этим статическим сигналом приращения как на увеличение подачи топлива посредством серводвигателя одноимпульсного механогидравлического центробежного регулятора угловой скорости, так и давления наддувочного воздуха первичного двигателя синхронного генератора посредством бустерной обратимой синхронной электрической машины и системы управления ее статическим полупроводниковым преобразователем, снижая при этом напряжение на клеммах бустерной обратимой синхронной электрической машины, ее якорный ток и электромагнитный двигательный момент обратно пропорционально возрастающей статической нагрузке синхронного дизель-генератора; причем одновременно с возрастанием вращающего момента, развиваемого утилизационной турбиной турбокомпрессора наддува, контролируют посредством датчика холостого хода и направления мощности бустерной обратимой синхронной электрической машины момент ее перехода в режим холостого хода, соответствующий возросшей нагрузке синхронного дизель-генератора до значения, равного 35% номинальной, воздействуют нулевым сигналом данного датчика холостого хода и направления мощности на систему управления статическим полупроводниковым преобразователем, обращая бустерную обратимую синхронную электрическую машину в данный момент в генераторный режим холостого хода, которая, управляя данной машиной и ее режимами, осуществляет программные изменения знака электромагнитного момента на валу машины, затем в период работы синхронного дизель-генератора со статической активной нагрузкой более 35% номинальной увеличивают тормозной электромагнитный момент бустерной обратимой синхронной электрической машины турбоэлектронаддувочного агрегата, переведенной в генераторный режим, посредством системы управления полупроводниковым преобразователем-возбудителем, утилизируя все возрастающий избыток энергии теплоты отработавших газов синхронного дизель-генератора в электрическую энергию и направляя ее в электрическую сеть по цепи питания; при работе синхронного дизель-генератора в диапазоне статических активных нагрузок выше 35% номинальной и набросе мощности измеряют посредством трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора подачи топлива и давления наддувочного воздуха сигналы статического и динамического приращения этой мощности, согласованно и синхронно увеличивают этими сигналами подачу топлива и давление наддувочного воздуха путем того, что статическим сигналом приращения воздействуют на серводвигатель одноимпульсного механогидравлического центробежного регулятора угловой скорости и увеличивают подачу топлива, а динамическим - на систему управления статическим полупроводниковым преобразователем бустерной обратимой синхронной электрической машины, чем понижают на этом этапе переходного процесса якорный ток и тормозной электромагнитный момент обратимой синхронной электрической машины, работающей генератором, а при сбросе мощности в этом же диапазоне статических нагрузок синхронного дизель-генератора подачу топлива изложенным путем и теми же средствами понижают, а давление наддува синхронного дизель-генератора одновременно и согласованно теми же средствами дефорсируют путем увеличения на этом этапе переходного процесса якорного тока и электромагнитного тормозного момента бустерной обратимой синхронной электрической машины, отличающийся тем, что бустерную обратимую синхронную электрическую машину заявляемого высокооборотного - свыше 50⋅103 мин-1 - турбоэлектронаддувочного агрегата, выполненного с воздушными подшипниками без жидкостной смазки, возбуждают постоянными магнитами, расположенными на полюсах ротора данной бустерной обратимой синхронной электрической машины, а магнитный поток в ее воздушном зазоре независимо от текущего генераторного или электродвигательного режимов поддерживают неизменным и равным номинальному значению; саму бустерную обратимую синхронную электрическую машину, которую выполняют встроенной в приемную полость турбокомпрессора наддува на его валу, охлаждают потоком всасываемого воздуха данного турбокомпрессора, а вышеназванным статическим полупроводниковым преобразователем, состоящим из двух одинаковых обратимых полупроводниковых преобразователей, а именно электромашинного и сетевого, и содержащим звено постоянного тока, управляют посредством его системы управления, состоящей из независимых подсистем управления указанными обратимыми соответственно электромашинным и сетевым полупроводниковыми преобразователями, при этом командные сигналы и напряжения управления в процессе регулирования параметров наддувочного воздуха на данные независимые подсистемы управления обратимыми соответственно электромашинным и сетевым полупроводниковыми преобразователями формируют посредством блока логического управления бустерной обратимой синхронной электрической машиной, в состав которого входят сумматор входных управляющих сигналов, субблоки соответственно пуска, задания режимов, управления двигательным, управления генераторным режимами и субблок торможения, причем синхронизирующие напряжения при работе всех данных подсистем управления подают на их синхронизирующие входы посредством соответствующих трансформаторов и датчика положения ротора бустерной обратимой синхронной электрической машины; при этом упомянутые выше программные изменения знака электромагнитного момента на валу бустерной обратимой синхронной электрической машины, управляющие ее режимами, и саму корректировку значения последнего по абсолютной величине в процессе осуществления регулирования давления наддувочного воздуха синхронного дизель-генератора, связанного с изменением его текущих статических и динамических нагрузочных режимов, производят по цепям данных подсистем управления обратимыми сетевым и электромашинным полупроводниковыми преобразователями статического полупроводникового преобразователя бустерной обратимой синхронной электрической машины путем воздействия на углы управления их полупроводниковых приборов по сигналам трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора подачи топлива и давления наддувочного воздуха, взаимодействующего согласованно и синхронно с указанным блоком логического управления бустерной обратимой синхронной электрической машиной турбоэлектронаддувочного агрегата; в период работы синхронного дизель-генератора в диапазоне статических активных нагрузок выше 35% номинальной и набросе мощности, наряду с воздействием на увеличение подачи топлива, посредством вышеназванного трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора, статическим сигналом приращения через серводвигатель одноимпульсного механогидравлического центробежного регулятора угловой скорости, динамическим сигналом соответствующего увеличения мощности от данного трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора воздействуют на блок логического управления бустерной обратимой синхронной электрической машиной турбоэлектронаддувочного агрегата, и, посредством реверсивных сигналов, посылаемых его субблоком задания режимов на субблоки управления соответственно двигательным и генераторным режимами, воздействуют последними на подсистемы управления обратимыми сетевым и электромашинным полупроводниковыми преобразователями статического полупроводникового преобразователя, переключая бустерную обратимую синхронную электрическую машину, работающую генератором, на первом этапе этого переходного процесса из генераторного в двигательный номинальный режим и, соответственно, с последующим ее возвратом в предшествующий генераторный режим и дальнейшим увеличением ее якорного тока и тормозного электромагнитного момента на втором этапе данного переходного процесса по сигналам обратной связи пропорционально возросшей статической нагрузке синхронного дизель-генератора; в период работы синхронного дизель-генератора в статическом режиме в этом же диапазоне нагрузок и сбросе части его нагрузки, наряду с воздействием, посредством трехимпульсного электронного пропорционально-интегрально-дифференциального регулятора, статическим сигналом изменения на уменьшение подачи топлива синхронного дизель-генератора, динамическим сигналом соответствующего уменьшения мощности, формируемым этим же регулятором и посылаемым на блок логического управления бустерной обратимой синхронной электрической машиной, воздействуют на субблок задания режимов этого блока логического управления, блокируя переключение бустерной обратимой синхронной электрической машины из генераторного в двигательный режим, причем тем же динамическим сигналом, направляемым через сумматор блока логического управления на субблок управления генераторным режимом данной электрической машины, воздействуют на подсистемы управления соответственно электромашинным и сетевым обратимыми полупроводниковыми преобразователями бустерной обратимой синхронной электрической машины, увеличивая скачком ее генерирующую мощность для повышения на первом этапе переходного процесса эффективности притормаживания турбоэлектронаддувочного агрегата посредством данной бустерной обратимой синхронной электрической машины, работающей в генераторном режиме, с целью более быстрого снижения параметров наддувочного воздуха, при этом измеряют ток нагрузки в цепи постоянного тока статического полупроводникового преобразователя бустерной обратимой синхронной электрической машины посредством встроенного в нее шунта, сравнивают, посредством субблока торможения, сигнал измеренного значения тока с программно-заданным в нем номинальным значением, и, если измеренное значение сигнала окажется меньше заданного, включают по сигналу данного субблока торможения в цепь постоянного тока статического полупроводникового преобразователя, параллельно его обратимым сетевому и электромашинному полупроводниковым преобразователям, резистор динамического торможения, который отключают тем же субблоком торможения с началом второго этапа переходного процесса, при котором с его началом возвращают бустерную обратимую синхронную электрическую машину в предшествующий генераторный режим тем же субблоком торможения по сигналу обратной связи от датчика давления воздуха в воздушном коллекторе турбоэлектронаддувочного агрегата с последующим уменьшением в данном режиме тока и электромагнитного тормозного момента бустерной обратимой синхронной электрической машины на втором этапе таким же путем, как изложено выше при его повышщении; а в период нормальных и аварийных остановок синхронного дизель-генератора, не вызывающих помпажа его образованного турбоэлектрокомпрессора наддува, процедуру принудительной остановки последнего методом электрического торможения, посредством бустерной обратимой синхронной электрической машины, блокируют, сохраняя ее для случая защиты первичного двигателя от предельной частоты вращения - «разноса».
2. Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора по п. 1, отличающийся тем, что при обесточенной электрической сети разгон бустерной обратимой синхронной электрической машины его турбоэлектронаддувочного агрегата, синхронизированный с запуском первичного двигателя и гарантирующий переход последнего на топливо с первой попытки его впрыска, осуществляют в ее режиме приводного синхронного электродвигателя с частотным управлением посредством резервного пуско-зарядного устройства, состоящего из независимой стартерной аккумуляторной батареи, автономного независимого обратимого полупроводникового инвертора, независимого согласующего трансформатора, подсистемы управления данным инвертором, трансформатора синхронизации, вспомогаптельного контактора и датчика напряжения данной аккумуляторной батареи, при котором посылают пусковой сигнал с выхода подсистемы дистанционного автоматизированного управления резервным синхронным дизель-генератором на вход субблока пуска блока логического управления, на другом входе которого наличествует нулевой сигнал датчика напряжения электросети об отсутствии напряжения на ее шинах, а с выхода данного субблока пуска, дублируя команду на пуск бустерной обратимой синхронной электрической машины турбоэлектронаддувочного агрегата, направляют этот пусковой сигнал на вход подсистемы управления названным автономным независимым обратимым полупроводниковым инвертором, по команде которой, посредством этого инвертора, производят программное преобразование напряжения постоянного тока на клеммах данной аккумуляторной батареи в напряжение переменного тока нарастающей частоты с программно заданной в указанной подсистеме управления автономным независимым обратимым полупроводниковым инвертором скоростью, повышают это напряжение посредством упомянутого независимого согласующего трансформатора и подают его на клеммы бустерной обратимой синхронной электрической машины, запуская и разгоняя ее по мере нарастания частоты ƒвых выходного напряжения ~U1вых независимого обратимого полупроводникового инвертора, чем повышают и его действующее значение напряжение ~U2вых на клеммах бустерной обратимой синхронной электрической машины, согласно закону частотного регулирования для механизма с вентиляторной нагрузкой, по соотношению:
Figure 00000001
где U2вых и ƒ - переменное выходное напряжение и его частота на клеммах бустерной обратимой синхронной электрической машины; тем самым производят частотный разгон бустерной обратимой электрической машины турбоэлектронаддувочного агрегата в режиме приводного синхронного электродвигателя, а заодно и его турбоэлектрокомпрессора, которые конструктивно исполнены на одном валу; при этом одновременно разгоняют и первичный двигатель резервного синхронного дизель-генератора, посредством его пуско-воздушной системы, по сигналу, приходящему в данный момент на ее вход с выхода подсистемы дистанционного автоматизированного управления (не показано) с контролем при этом разгона первичного двигателя и его турбоэлектронаддувочного агрегата соответствующими датчиками частоты вращения, по сигналам которых осуществляют подачу с выхода блока впрыска топлива сигнал «Впрыск топлива» на вход пуско-воздушной системы первичного двигателя резервного синхронного дизель-генератора, запуская его в данном частном случае. Причем по завершении данного запуска резервного синхронного дизель-генератора и после его подключения к электрической сети, по сигналу о восстановлении напряжения, формируемому датчиком напряжения электрической сети, осуществляют дальнейшую работу бустерной обратимой синхронной электрической машины в режиме приводного вентильного электродвигателя посредством ввода в действие субблоком пуска блока логического управления и статическим полупроводниковым преобразователем данной машины, а синхронно с включением данного статического полупроводникового преобразователя бустерной обратимой синхронной электрической машины переводят автономный независимый обратимый полупроводниковый инвертор резервного пуско-зарядного устройства, посредством его подсистемы управления и контактов вспомогательного контактора, по сигналу датчика напряжения независимой стартерной аккумуляторной батареи в выпрямительный режим для автоматической подзарядки этой батареи.
3. Способ адаптивного автоматического регулирования давления по п. 1, отличающийся тем, что электромашинный и сетевой обратимые полупроводниковые преобразователи выполняют на силовых транзисторах типа IGBT.
4. Способ адаптивного автоматического регулирования давления по п. 2, отличающийся тем, что автономный независимый обратимый полупроводниковый инвертор резервного пуско-зарядного устройства бустерной обратимой синхронной электрической машины выполняют на силовых транзисторах типа IGBT.
RU2018112122A 2018-04-03 2018-04-03 Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора RU2714022C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018112122A RU2714022C2 (ru) 2018-04-03 2018-04-03 Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018112122A RU2714022C2 (ru) 2018-04-03 2018-04-03 Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора

Publications (3)

Publication Number Publication Date
RU2018112122A3 RU2018112122A3 (ru) 2019-10-04
RU2018112122A true RU2018112122A (ru) 2019-10-04
RU2714022C2 RU2714022C2 (ru) 2020-02-11

Family

ID=68205950

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018112122A RU2714022C2 (ru) 2018-04-03 2018-04-03 Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора

Country Status (1)

Country Link
RU (1) RU2714022C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137828A (zh) * 2021-12-30 2022-03-04 中联重科股份有限公司 一种工程机械功率匹配动态pid控制方法、系统及存储介质
CN114215651A (zh) * 2021-12-21 2022-03-22 福建亚南电机有限公司 一种发电机组快速启动同步运行的控制方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2338913C1 (ru) * 2006-02-06 2008-11-20 Евгений Жоресович Васильев Способ настройки и регулирования давлений наддува двигателя внутреннего сгорания с приводным компрессором и системой для его осуществления
GB2451703B (en) * 2007-08-10 2012-09-26 Bowman Power Group Ltd A method of operation of an electric turbocompounding system
JP5857396B2 (ja) * 2010-10-28 2016-02-10 いすゞ自動車株式会社 ターボ過給システム
RU2488708C2 (ru) * 2011-09-09 2013-07-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Морской государственный университет имени адмирала Г.И. Невельского" Способ автоматизированного управления синхронным дизель-генератором
RU2637793C2 (ru) * 2015-05-05 2017-12-07 Федеральное бюджетное образовательное учреждение высшего профессионального образования "Морской государственный университет имени адмирала Г.И. Невельского" Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114215651A (zh) * 2021-12-21 2022-03-22 福建亚南电机有限公司 一种发电机组快速启动同步运行的控制方法及系统
CN114137828A (zh) * 2021-12-30 2022-03-04 中联重科股份有限公司 一种工程机械功率匹配动态pid控制方法、系统及存储介质

Also Published As

Publication number Publication date
RU2018112122A3 (ru) 2019-10-04
RU2714022C2 (ru) 2020-02-11

Similar Documents

Publication Publication Date Title
US6093975A (en) Turbogenerator/motor control with synchronous condenser
CN102386829B (zh) 一种电动汽车起动发电系统
US6960900B2 (en) Method and apparatus for starting a gas turbine using a polyphase electric power generator
EP2251953B1 (en) Genset system with energy storage for transient response
US6919711B2 (en) Electrical machine and an electrical power generating system
EP2088300B1 (en) Hybrid engine assist system for vehicle
US6169334B1 (en) Command and control system and method for multiple turbogenerators
US6882060B2 (en) Turbine generating apparatus
US8975886B2 (en) Charging and distribution control
CN106208071B (zh) 混合式ac及dc分配系统和使用方法
CN105143645A (zh) 发动机停止控制装置及发动机停止控制方法
CN103872971A (zh) 一种方波复合励磁起动/发电机控制方法
RU2018112122A (ru) Способ адаптивного автоматического регулирования давления наддувочного воздуха дизель-генератора
RU2015117174A (ru) Способ автоматического регулирования давления наддувочного воздуха дизель-генератора в динамических режимах
US8198871B2 (en) Time lag reduction circuit for alternating current generator and electric drive machine using same
JP2016522344A (ja) 熱機関過給用の電動コンプレッサの制御方法
RU2745149C1 (ru) Способ управления дизель-генераторной установкой при включении асинхронного двигателя
JP2005218163A (ja) タービン発電装置およびその自立運転方法
JP3704903B2 (ja) 電力供給装置
CN202111657U (zh) 窑头排风机调速装置
RU2173020C2 (ru) Электрическая система с асинхронным стартером-генератором
CN118381093B (zh) 一种内燃机异步发电机-储能联合发电系统及其控制方法
JP2004320936A (ja) エンジン発電装置
CN103296936B (zh) 一种直流电机强行励磁启动的系统及其方法
RU79220U1 (ru) Устройство для уменьшения действия пускового тока синхронных электродвигателей напряжением выше 1000 в

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200404