RU2012116014A - Мехатронно-модульный робот и способ многоальтернативной оптимизации модулей автоматизации структурного синтеза для его создания - Google Patents

Мехатронно-модульный робот и способ многоальтернативной оптимизации модулей автоматизации структурного синтеза для его создания Download PDF

Info

Publication number
RU2012116014A
RU2012116014A RU2012116014/08A RU2012116014A RU2012116014A RU 2012116014 A RU2012116014 A RU 2012116014A RU 2012116014/08 A RU2012116014/08 A RU 2012116014/08A RU 2012116014 A RU2012116014 A RU 2012116014A RU 2012116014 A RU2012116014 A RU 2012116014A
Authority
RU
Russia
Prior art keywords
module
modules
robot
max
generalized coordinate
Prior art date
Application number
RU2012116014/08A
Other languages
English (en)
Other versions
RU2560828C2 (ru
Inventor
Яков Евсеевич Львович
Сергей Валерьевич Андраханов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority to RU2012116014/08A priority Critical patent/RU2560828C2/ru
Publication of RU2012116014A publication Critical patent/RU2012116014A/ru
Application granted granted Critical
Publication of RU2560828C2 publication Critical patent/RU2560828C2/ru

Links

Landscapes

  • Manipulator (AREA)

Abstract

1. Мехатронно-модульный робот, характеризующийся тем, что он состоит, как минимум, из двух сопряженных между собой тождественных модулей, предпочтительно, двух и более, первичного и вновь с ним сопрягаемого/ых, имеющих интерфейсные площадки для стыковки, причем количество модулей, объединяемых в упомянутый робот, определено из соотношения: n=1, N, где: n - количество модулей, объединяемых в один робот, определено из соотношения n=1+х1+2x2+4x3+8x4, где: x1, х4=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:Angle=А+Bsin(ωt+φ),где: A - значение обобщенной координаты, относительно которой происходит периодическое движение; B - амплитуда периодического колебания обобщенной координаты, причем суммарная величина |A|+|B| не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.2. Мехатронно-модульный робот по п.1, отличающийся тем, что для оптимиз�

Claims (3)

1. Мехатронно-модульный робот, характеризующийся тем, что он состоит, как минимум, из двух сопряженных между собой тождественных модулей, предпочтительно, двух и более, первичного и вновь с ним сопрягаемого/ых, имеющих интерфейсные площадки для стыковки, причем количество модулей, объединяемых в упомянутый робот, определено из соотношения: n=1, N, где: n - количество модулей, объединяемых в один робот, определено из соотношения n=1+х1+2x2+4x3+8x4, где: x1, х4=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:
Angle=А+Bsin(ωt+φ),
где: A - значение обобщенной координаты, относительно которой происходит периодическое движение; B - амплитуда периодического колебания обобщенной координаты, причем суммарная величина |A|+|B| не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.
2. Мехатронно-модульный робот по п.1, отличающийся тем, что для оптимизационного структурного синтеза, выбраны значения альтернативных переменных x 1 * , x 41 n * ¯
Figure 00000001
, обеспечивающих максимальное значение функции:
f = [ y ( x 1 , x 41 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10, x 41 n ¯ ) max
Figure 00000002
при ограничениях n=1, N
| A 1 ( x 10, x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max
Figure 00000003
,
| A 2 ( x 26, x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max
Figure 00000004
x 1, x 41 n ¯ = { 1, 0.
Figure 00000005
где: ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.
3. Способ создания мехатронно-модульного робота по п.1, характеризующийся тем, что при проведении синтеза структуры многоинвариантной модели мехатронно-модульных роботов, и последующем фиксировании полученных оптимальных решений, рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении, после чего обозначают количество модулей, объединяемых в один робот, преимущественно, без четко выраженной структуры, и обеспечивают сопряжение каждого нового модуля с ранее собранными вдоль выбранного направления и стыковку его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполняют с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, после чего вводят альтернативные переменные для описания параметров периодического закона движения следующим образом:
Angle=А+Bsin(ωt+φ),
где: A - значение обобщенной координаты, относительно которой происходит периодическое движение; B - амплитуда периодического колебания обобщенной координаты; причем суммарная величина |A|+|B| не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения; при этом настройкой параметров этого закона определяют алгоритмы управления, синтезируемой мехатронно-модульной конструкции, причем для оптимизационного структурного синтеза выбирают значения альтернативных переменных x 1 * , x 41 n * ¯
Figure 00000001
, обеспечивающих максимальное значение функции:
f = [ y ( x 1 , x 41 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10, x 41 n ¯ ) max
Figure 00000002
при ограничениях n=1, N
| A 1 ( x 10, x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max
Figure 00000003
,
| A 2 ( x 26, x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max
Figure 00000004
x 1, x 41 n ¯ = { 1, 0.
Figure 00000005
где: ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения, причем для нахождения максимального значения функции f, используют рандомизированной алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц.
RU2012116014/08A 2012-04-19 2012-04-19 Мехатронно-модульный робот и способ многоальтернативной оптимизации модулей автоматизации структурного синтеза для его создания RU2560828C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012116014/08A RU2560828C2 (ru) 2012-04-19 2012-04-19 Мехатронно-модульный робот и способ многоальтернативной оптимизации модулей автоматизации структурного синтеза для его создания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012116014/08A RU2560828C2 (ru) 2012-04-19 2012-04-19 Мехатронно-модульный робот и способ многоальтернативной оптимизации модулей автоматизации структурного синтеза для его создания

Publications (2)

Publication Number Publication Date
RU2012116014A true RU2012116014A (ru) 2013-10-27
RU2560828C2 RU2560828C2 (ru) 2015-08-20

Family

ID=49446337

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012116014/08A RU2560828C2 (ru) 2012-04-19 2012-04-19 Мехатронно-модульный робот и способ многоальтернативной оптимизации модулей автоматизации структурного синтеза для его создания

Country Status (1)

Country Link
RU (1) RU2560828C2 (ru)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1158344A1 (ru) * 1983-02-28 1985-05-30 Предприятие П/Я Ю-9192 Промышленный робот модульного типа
SU1548032A1 (ru) * 1987-05-13 1990-03-07 Украинский Научно-Исследовательский Институт Станков И Инструментов Промышленный робот
KR100749579B1 (ko) * 2005-09-05 2007-08-16 삼성광주전자 주식회사 교환가능한 복수의 작업모듈을 갖는 이동로봇 시스템 및 그제어방법

Also Published As

Publication number Publication date
RU2560828C2 (ru) 2015-08-20

Similar Documents

Publication Publication Date Title
Bayati et al. Design of a 6-DoF robotic platform for wind tunnel tests of floating wind turbines
CN102243679B (zh) 一种用于直齿非圆锥齿轮的建模方法
CN103817685A (zh) 三平移并联机构及其支链
RU2012116014A (ru) Мехатронно-модульный робот и способ многоальтернативной оптимизации модулей автоматизации структурного синтеза для его создания
RU2560829C2 (ru) Мехатронно-модульный робот
RU2013105813A (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов
Oh et al. Mathematical and experimental verification of efficient force transmission by biarticular muscle actuator
RU2572382C2 (ru) Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания
RU2013114556A (ru) Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания
RU2013114565A (ru) Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания
RU2493577C1 (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов
RU2514925C2 (ru) Мехатронно-модульный робот
RU2013105814A (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов
RU2556432C2 (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов
RU2569579C2 (ru) Мехатронно-модульный робот
RU2013105811A (ru) Мехатронно-модульный робот
CN203712693U (zh) 一种三平移并联机构及其支链
Fiestas et al. Motion control of a cartesian robot using a dual-core ARM cortex-A9 system-on-chip FPGA
KR102046064B1 (ko) 전동기의 용량 선정 장치, 용량 선정 방법 및 용량 선정 프로그램
CN110328689A (zh) 机器人平衡检测方法、装置、设备及机器人
Saccon et al. Robot motion planning: Can GPUs be a game changer?
Liu et al. Modeling inverse solution of mechanism configuration for delta industrial robot
Filipović et al. Mathematical Model of the aerial Robotic Camera base on its Geometric Relationship
Nishikawa et al. Fault-Tolerant Phototaxis of a Modular System Inspired by Gonium pectorale Using Phase-Based Control
Kim et al. A study on the propulsive motion characteristics of 3-joint fish robot

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150928