RU2569579C2 - Мехатронно-модульный робот - Google Patents

Мехатронно-модульный робот Download PDF

Info

Publication number
RU2569579C2
RU2569579C2 RU2013114569/08A RU2013114569A RU2569579C2 RU 2569579 C2 RU2569579 C2 RU 2569579C2 RU 2013114569/08 A RU2013114569/08 A RU 2013114569/08A RU 2013114569 A RU2013114569 A RU 2013114569A RU 2569579 C2 RU2569579 C2 RU 2569579C2
Authority
RU
Russia
Prior art keywords
mechatronic
modules
robot
modular
module
Prior art date
Application number
RU2013114569/08A
Other languages
English (en)
Other versions
RU2013114569A (ru
Inventor
Владимир Викторович Черниченко
Сергей Валерьевич Андроханов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority to RU2013114569/08A priority Critical patent/RU2569579C2/ru
Publication of RU2013114569A publication Critical patent/RU2013114569A/ru
Application granted granted Critical
Publication of RU2569579C2 publication Critical patent/RU2569579C2/ru

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

Изобретение относится к робототехнике и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в повышении надежности и работы создаваемых мехатронно-модульных роботов. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой тождественных модулей, каждая из которых состоит из сопряженных между собой модулей, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей является управляющим по отношению к другому/им, с ним стыкуемому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота. 1 з.п. ф-лы, 4 ил.

Description

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов.
Одно из важнейших и перспективных направлений развития современной робототехники связано с разработкой нового класса устройств - многозвенных мехатронно-модульных роботов с адаптивной структурой. Структурный синтез при проектировании реконфигурируемых мехатронно-модульных роботов рассматривается как одновременное, автоматизированное решение двух задач выбора: порядка блочно-модульной сборки и варианта настройки априорно периодического закона изменения обобщенных координат (y, z), определяющего алгоритм управления движением.
Известен способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов заключающийся в проведении синтеза структуры многоинвариантной модели мехатронно-модульных роботов, и последующей фиксации полученных оптимальных решений (И.М.Макаров, В.М.Лохин, С.В.Манько, М.П.Романов, М.В.Кадочников. ИТ, "Технологии обработки знаний в задачах управления автономными мехатронно-модульными реконфигурируемыми роботами". - Приложение к ж. "Информационные технологии". М., "Новые технологии", 2010, №8, стр.3-7, рис.14 - прототип).
Указанный способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов заключается в создании конкретных модулей и запоминании конкретных положений отдельных модулей для решения целевых задач.
Недостатками данного способа являются его значительная сложность, низкая эффективность ориентации в окружающей среде реконфигурируемых мехатронных устройств, преимущественно мехатронно-модульных роботов.
Задачей предложенного технического решения является устранение указанных недостатков и создание мехатронно-модульных роботов, применение которых позволит ускорить процесс синтеза, а также повысит эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов.
Решение поставленной задачи достигается тем, что предложенный мехатронно-модульный робот, согласно изобретению состоит как минимум из двух совокупностей сопряженных между собой тождественных модулей, предпочтительно трех и более, при этом каждая совокупность состоит как минимум из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота, при этом в каждой совокупности стыкуемые с управляющим модулем вторичные модули имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль, причем количество модулей, объединяемых в упомянутый робот, определено: из соотношения n=1, N, где n - количество модулей, объединяемых в один робот; из соотношения n=1+x1+2x2+4x3+8x4, где x1, x4=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:
Angle=A+Bsin(ωt+φ),
где А - значение обобщенной координаты, относительно которой происходит периодическое движение; В - амплитуда периодического колебания обобщенной координаты, причем суммарная величина |А|+|В| не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.
В варианте исполнения, для оптимизационного структурного синтеза выбраны значения альтернативных переменных x 1 , x 41 n ¯
Figure 00000001
, обеспечивающих максимальное значение функции:
f = [ y ( x 1 , x 4 1 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10 , x 41 n ¯ ) max
Figure 00000002
при ограничениях n=1, N
| A 1 ( x 10 , x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max
Figure 00000003
,
| A 2 ( x 26 , x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max x 1 , x 41 n ¯ = { 1 0
Figure 00000004
где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.
Сущность изобретения иллюстрируется чертежами, где на фиг.1 показаны отдельные мехатронно-модульные роботы со свободными интерфейсными площадками, на фиг.2 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде многоугольника, на фиг.3 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде квадрата, на фиг.4 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде прямоугольника.
Мехатронно-модульный робот 1 состоит как минимум из двух совокупностей 2 и 3 сопряженных между собой модулей 4, 5 и 6.
Один из двух сопрягаемых между собой модулей, преимущественно первичный 4, выполнен управляющим по отношению к другому, вторичному 5, с ним стыкуемому, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота. В каждой совокупности стыкуемые с управляющим модулем 4 вторичные модули 5 имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль 4. В свою очередь, модуль 5, являющийся вторичным и управляемым по отношению к модулю 4, является первичным и управляющим по отношению к модулю 6. Указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей 2 и 3 до формирования окончательной структуры мехатронно-модульного робота
Сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой свободной интерфейсной площадки 7 с одной из свободных аналогичных площадок 7 на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. Несвободная интерфейсная площадка 8 образована за счет стыковки между собой двух свободных интерфейсных площадок 7.
Модули предложенного мехатронно-модульного робота могут быть соединены между собой следующим образом.
Рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении.
Обозначают количество модулей, объединяемых в один мехатронно-модульный робот 1, без четко выраженной структуры, n = 1, N ¯
Figure 00000005
. Тогда в двоичном исчислении получают при N≤16, где N - количество сторон; n - количество возможный итераций
n = 1 + x 1 + 2 x 2 + 4 x 3 + 8 x 4
Figure 00000006
,
где x 1 , x 4 ¯ = { 1, 0.
Figure 00000007
При блочно-модульной сборке робота 1 полагают, что сопряжение каждого нового модуля с ранее собранными осуществляется вдоль выбранного направления и обеспечивается стыковкой его первой свободной интерфейсной площадки 7 с одной из свободных аналогичных интерфейсных площадок 7 на любых других модулях 4, 5 и 6, как элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду.
Выделяют этот алгоритм преимущественно как Асб. Описание порядка сборки приводят к указанию направления и места крепления очередного элемента с использованием алгоритма Асб.
В направлении для стыковки n-го модуля n принимают четыре значения n=1 - север, nст=2 - восток, nст=3 - юг, nст=4 - запад и представляют через альтернативные переменные:
n c т . n = 1 + x 5 n + 2 x 6 n ,
Figure 00000008
где n = 1 N , x 5 n , x 6 n { 1, 0.
Figure 00000009
Номер площадки, выбираемой для стыковки n-го модуля в двоичном исчислении, записывают в следующем виде:
n c т . n = 1 + x 7 n + 2 x 8 n + 4 x 9 n ,
Figure 00000010
где n = 2 N , x 7 n , x 9 n ¯ { 1, 0.
Figure 00000011
Альтернативные переменные для описания параметров периодического закона вводят следующим образом:
Angle=A+Bsin(ωt+φ),
где A - значение обобщенной координаты, относительно которой происходит периодическое движение;
B - амплитуда периодического колебания обобщенной координаты; суммарная величина |A|+|B| не должна превышать максимально допустимого отклонения обобщенной координаты модуля;
φ - смещение фазы периодического движения.
Настройкой параметров этого закона определяют алгоритмы управления синтезируемой мехатронно-модульной конструкции. Указанные параметры характеризуются дискретными значениями, имеющими соответствующие численные номера в пределах N≤16.
Затем для оптимизационного структурного синтеза выбирают значения альтернативных переменных x 1 , x 41 n ¯
Figure 00000001
, обеспечивающих максимальное значение функции
f = [ y ( x 1 , x 4 41 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10 , x 41 n ¯ ) max
Figure 00000012
при ограничениях n=1, N
| A 1 ( x 10 , x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max
Figure 00000003
,
| A 2 ( x 26 , x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max x 1 , x 41 n ¯ = { 1 0
Figure 00000004
где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.
Для нахождения максимального значения функции f используют рандомизированный алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц.
Для синхронизации процедуры метода роя частиц и вариационной процедуры многоальтернативной оптимизации на каждом шаге управляют выбором частицы для обновления скорости изменения координат, которую осуществляют с использованием рандомизированной схемы. С этой целью вводят случайную дискретную величину m, которая принимает значение m=1, M с вероятностью pn. На первом шаге получают:
p n 1 = 1 N n = 1, N ¯
Figure 00000013
Далее изменение значений p n k
Figure 00000014
при условии n = 1 M p n ν k = 1
Figure 00000015
осуществляют следующим образом. Определяют значение случайной величины n ˜
Figure 00000016
. Пусть n ˜ = ν
Figure 00000017
. Тогда скорости изменения координат на (k+1)-м шаге вычисляются:
Figure 00000018
а значение вероятностей pn:
p n k + 1 = { p n k 1 + ε k + 1 n 1, N ¯ , n ν , p n k + ε k + 1 1 + ε k + 1 , n = ν .
Figure 00000019
При этом величина ε>0 определяет степень рекордности движения ν-й частицы в направлении к экстремуму оптимизируемой функции.
Предложенный мехатронно-модульный робот функционирует следующим образом.
Выбирается первичный управляющий модуль 4 со свободной интерфейсной площадкой 7 и стыкуется с любым произвольно выбранным модулем 5 с аналогичной свободной интерфейсной площадкой 7. При стыковке между собой двух свободных интерфейсных площадок 7 образуется несвободная интерфейсная площадка 8. Дальнейшее присоединение свободных модулей 6 к образованному модулю, состоящему из двух соединенных между собой модулей 4 и 5, происходит вдоль выбранного направления с образованием требуемой конечной структуры мехатронно-модульного робота.
Совокупность 2 или 3 образована модулями 4, 5 и 6, состыкованными в заданном порядке между собой.
Использование предложенного технического решения позволит проводить синтез структуры многоинвариантной модели мехатронно-модульных роботов с последующим фиксированием полученных оптимальных решений с последующем повышением количества возможных итераций мехатронно-модульного робота при значительном сокращении времени синтеза.

Claims (2)

1. Мехатронно-модульный робот, характеризующийся тем, что он состоит как минимум из двух совокупностей сопряженных между собой тождественных модулей, предпочтительно трех и более, при этом каждая совокупность состоит как минимум из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре совокупностей мехатронно-модульного робота соблюдается при последующем сопряжении совокупностей до формирования окончательной структуры мехатронно-модульного робота, при этом в каждой совокупности стыкуемые с управляющим модулем вторичные модули имеют возможность к самостоятельному осуществлению алгоритма сборки и синтеза структуры робота на более низком уровне, чем упомянутый управляющий модуль, причем количество модулей, объединяемых в упомянутый робот, определено из соотношения n=1, N, где n - количество модулей, объединяемых в один робот, определено из соотношения n=1+x1+2x2+4x3+8x4, где x1,x4=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:
Figure 00000020

где А - значение обобщенной координаты, относительно которой происходит периодическое движение; В - амплитуда периодического колебания обобщенной координаты, причем суммарная величина |A|+|B| не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.
2. Мехатронно-модульный робот по п. 1, отличающийся тем, что для оптимизации структурного синтеза использована функция f - рандомизированного алгоритма многоальтернативной оптимизации с выбором значения альтернативных переменных
Figure 00000021
обеспечивающих максимальное значение функции:
Figure 00000022

при ограничениях n=1, N
Figure 00000023

где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.
RU2013114569/08A 2013-04-01 2013-04-01 Мехатронно-модульный робот RU2569579C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013114569/08A RU2569579C2 (ru) 2013-04-01 2013-04-01 Мехатронно-модульный робот

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013114569/08A RU2569579C2 (ru) 2013-04-01 2013-04-01 Мехатронно-модульный робот

Publications (2)

Publication Number Publication Date
RU2013114569A RU2013114569A (ru) 2014-10-10
RU2569579C2 true RU2569579C2 (ru) 2015-11-27

Family

ID=53379786

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013114569/08A RU2569579C2 (ru) 2013-04-01 2013-04-01 Мехатронно-модульный робот

Country Status (1)

Country Link
RU (1) RU2569579C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1158344A1 (ru) * 1983-02-28 1985-05-30 Предприятие П/Я Ю-9192 Промышленный робот модульного типа
SU1548032A1 (ru) * 1987-05-13 1990-03-07 Украинский Научно-Исследовательский Институт Станков И Инструментов Промышленный робот
RU2313442C1 (ru) * 2005-09-05 2007-12-27 Самсунг Гуангджу Электроникс Ко., Лтд. Мобильная робототехническая система с несколькими сменными рабочими модулями и способ управления этой системой

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1158344A1 (ru) * 1983-02-28 1985-05-30 Предприятие П/Я Ю-9192 Промышленный робот модульного типа
SU1548032A1 (ru) * 1987-05-13 1990-03-07 Украинский Научно-Исследовательский Институт Станков И Инструментов Промышленный робот
RU2313442C1 (ru) * 2005-09-05 2007-12-27 Самсунг Гуангджу Электроникс Ко., Лтд. Мобильная робототехническая система с несколькими сменными рабочими модулями и способ управления этой системой

Also Published As

Publication number Publication date
RU2013114569A (ru) 2014-10-10

Similar Documents

Publication Publication Date Title
US11409263B2 (en) Method for programming repeating motion of redundant robotic arm
Sivakumar et al. Automated path planning of cooperative crane lifts using heuristic search
Ruiz Estrada Multi-Dimensional coordinate spaces
Kang et al. Planning and visualization for automated robotic crane erection processes in construction
Zhang et al. Towards fully BIM-enabled building automation and robotics: A perspective of lifecycle information flow
CN102099598A (zh) 准双曲面齿轮设计方法及准双曲面齿轮
CN103970020A (zh) 移动机器人系统及其在混合交互环境下的协调控制方法
CN106156425A (zh) 一种模块化机械臂的快速通用运动学建模方法
RU2569579C2 (ru) Мехатронно-модульный робот
RU2572382C2 (ru) Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания
Lu et al. Type synthesis of parallel mechanisms by utilizing sub-mechanisms and digital topological graphs
RU2560829C2 (ru) Мехатронно-модульный робот
RU2572383C2 (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов
Hernando et al. Behavior-based control architecture for legged-and-climber robots
RU2572374C2 (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов
CN109491381B (zh) 基于观测器的多移动机器人自适应编队跟踪控制方法
White et al. Reliable external actuation for full reachability in robotic modular self-reconfiguration
RU2572381C2 (ru) Мехатронно-модульный робот
RU2560830C2 (ru) Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания
Kayhani et al. Construction equipment collision-free path planning using robotic approach
RU2556432C2 (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов
RU2560828C2 (ru) Мехатронно-модульный робот и способ многоальтернативной оптимизации модулей автоматизации структурного синтеза для его создания
CN106647248A (zh) 一种确定串联机器人反解结果的方法及装置
RU2493577C1 (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов
RU2514925C2 (ru) Мехатронно-модульный робот

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151030