RU2572381C2 - Мехатронно-модульный робот - Google Patents

Мехатронно-модульный робот Download PDF

Info

Publication number
RU2572381C2
RU2572381C2 RU2013105811/08A RU2013105811A RU2572381C2 RU 2572381 C2 RU2572381 C2 RU 2572381C2 RU 2013105811/08 A RU2013105811/08 A RU 2013105811/08A RU 2013105811 A RU2013105811 A RU 2013105811A RU 2572381 C2 RU2572381 C2 RU 2572381C2
Authority
RU
Russia
Prior art keywords
modules
mechatronic
robot
modular
module
Prior art date
Application number
RU2013105811/08A
Other languages
English (en)
Other versions
RU2013105811A (ru
Inventor
Владимир Викторович Черниченко
Сергей Валерьевич Андроханов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority to RU2013105811/08A priority Critical patent/RU2572381C2/ru
Publication of RU2013105811A publication Critical patent/RU2013105811A/ru
Application granted granted Critical
Publication of RU2572381C2 publication Critical patent/RU2572381C2/ru

Links

Images

Landscapes

  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысить эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов. Мехатронно-модульный робот состоит как минимум из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. 1 з.п. ф-лы, 4 ил.

Description

Изобретение относится к машиностроению, а именно: к робототехнике и может быть использовано при создании мехатронно-модульных роботов.
Одним из важнейших и перспективных направлений развития современной робототехники связано с разработкой нового класса устройств - многозвенных мехатронно-модульных роботов с адаптивной структурой. Структурный синтез при проектировании реконфигурируемых мехатронно-модульных роботов рассматривается как одновременное, автоматизированное решение двух задач выбора: порядка блочно- модульной сборки и варианта настройки априорно периодического закона изменения обобщенных координат (y, z), определяющего алгоритм управления движением.
Известен способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов, заключающийся в проведении синтеза структуры многоинвариантной модели мехатронно-модульных роботов и последующей фиксации полученных оптимальных решений (И.М. Макаров, В.М. Лохин, С.В. Манько, М.П. Романов, М.В. Кадочников. ИТ, ″Технологии обработки знаний в задачах управления автономными мехатронно-модульными реконфигурируемыми роботами″, приложение к ″Информационные технологии″ №8, М., ″Новые технологии″, 2010, стр.3-7, рис.14 -прототип).
Указанный способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов заключается в создании конкретных модулей и запоминании конкретных положений отдельных модулей для решения целевых задач.
Недостатками данного способа является его значительная сложность, низкая эффективность ориентации в окружающей среде реконфигурируемых мехатронных устройств, преимущественно мехатронно-модульных роботов.
Задачей предложенного технического решения является устранение указанных недостатков и создание мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысит эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов.
Решение поставленной задачи достигается тем, что предложенный мехатронно-модульный робот, согласно изобретению, состоит как минимум из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно, первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота, при этом количество модулей, объединяемых в упомянутый робот, определено из соотношения n=1, N, где n - количество модулей, объединяемых в один робот, определено из соотношения n=1+x1+2x2+4x3+8x4, где x1,x4=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:
Angle=А+В sin(ωt+φ),
где A - значение обобщенной координаты, относительно которой происходит периодическое движение; B - амплитуда периодического колебания обобщенной координаты, причем суммарная величина | A | + | B |
Figure 00000001
не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.
В варианте исполнения, что для оптимизационного структурного синтеза, выбраны значения альтернативных переменных x 1 * , x 41 n * ¯
Figure 00000002
, обеспечивающих максимальное значение функции:
= [ y ( x 1 , x 41 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10 , x 41 n ¯ ) max
Figure 00000003
при ограничениях n=1, N
| A 1 ( x 10 , x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max , | A 2 ( x 26 , x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max x 1 , x 41 n ¯ = { 1, 0.
Figure 00000004
где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.
Предложенный мехатронно-модульный робот может быть создан следующим образом.
Рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении.
Обозначают количество модулей 2 и 3, объединяемых в один мехатронно-модульный робот 1, без четко выраженной структуры, n = 1, N ¯
Figure 00000005
. Тогда в двоичном исчислении получают при N≤16, где: N - количество сторон, n - количество возможный итераций.
n = 1 + x 1 + 2 x 2 + 4 x 3 + 8 x 4 , г д е x 1 , x 4 ¯ = { 1, 0. ¯
Figure 00000006
При блочно-модульной сборке робота 1 полагают, что сопряжение каждого нового модуля с ранее собранными осуществляется вдоль выбранного направления и обеспечивается стыковкой его первой свободной интерфейсной площадки 4 с одной из свободных аналогичных интерфейсных площадок 4 на любых других модулях 3 как элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду.
Выделяют этот алгоритм преимущественно как Асб. Описание порядка сборки приводят к указанию направления и места крепления очередного элемента с использованием алгоритма Асб.
В направлении для стыковки n-го модуля n принимают четыре значения: ncm=1 - север, ncm=2 - восток, ncm=3 - юг, ncm=4 - запад и представляют через альтернативные переменные:
n c m . n = 1 + x 5 n + 2 x 6 n , г д е n = 1, N , ¯ x 5 n , x 6 n = { 1, 0.
Figure 00000007
Номер площадки, выбираемой для стыковки n-го модуля в двоичном исчислении, записывают в следующем виде:
n c m . n = 1 + x 7 n + 2 x 8 n + 4 x 9 n , г д е n = 2, n , ¯ x 7 n , x 9 n ¯ = { 1, 0.
Figure 00000008
Альтернативные переменные для описания параметров периодического закона вводят следующим образом:
Angle=А+В sin(ωt+φ),
где A - значение обобщенной координаты, относительно которой происходит периодическое движение;
B - амплитуда периодического колебания обобщенной координаты; суммарная величина | A | + | B |
Figure 00000001
не должна превышать максимально допустимого отклонения обобщенной координаты модуля;
φ - смещение фазы периодического движения.
Настройкой параметров этого закона определяют алгоритмы управления, синтезируемой мехатронно-модульной конструкцией. Указанные параметры характеризуются дискретными значениями, имеющими соответствующие численные номера в пределах N≤16.
Затем для оптимизационного структурного синтеза выбирают значения альтернативных переменных x 1 * , x 41 n * ¯
Figure 00000002
, обеспечивающих максимальное значение функции.
= [ y ( x 1 , x 41 n ¯ ) ] 2 + [ z ( x 1 , x 41 n ¯ ) ] 2 N ( x 1 , x 4 n ¯ ) N c ( x 10 , x 41 n ¯ ) max
Figure 00000003
при ограничениях N=1, N
| A 1 ( x 10 , x 12 n ¯ ) + B 1 ( x 14 n , x 17 n ¯ ) | y max , | A 2 ( x 26 , x 29 n ¯ ) + B 2 ( x 30 n , x 33 n ¯ ) | z max x 1 , x 41 n ¯ = { 1, 0.
Figure 00000004
где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.
Для нахождения максимального значения функции fдачи, используют рандомизированной алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц.
Для синхронизации процедуры метода роя частиц и вариационной процедуры многоальтернативной оптимизации на каждом шаге управляют выбором частицы для обновления скорости изменения координат, которую осуществляют с использованием рандомизированной схемы. С этой целью вводят случайную дискретную величину m, которая принимает значение m=1, М с вероятностью pn. На первом шаге получают:
p n 1 = 1 N n = 1, N ¯
Figure 00000009
Далее изменение значений p n k
Figure 00000010
при условии n = 1 M p n ν k = 1
Figure 00000011
осуществляют следующим образом. Определяют значение случайной величины n ˜
Figure 00000012
. Пусть n ˜ = ν
Figure 00000013
. Тогда скорости изменения координат на (k+1)-м шаге вычисляются:
ν m n r + 1 = { ν m n r , n = 1, N , ¯ n ν , p B m n r + 1 [ q z m n r æ ( 1 m F ) p z m n r æ ( Δ 1 m n F ) n = ν
Figure 00000014
,
а значение вероятностей pn:
p n k + 1 = { p n k 1 + ε k + 1 n = 1, N ¯ , n ν , p n k + ε k + 1 1 + ε k + 1 , n = ν .
Figure 00000015
При этом величина ε>0 определяет степень рекордности движения ν-й частицы в направлении к экстремуму оптимизируемой функции.
Сущность изобретения иллюстрируется чертежами, где на фиг.1 показаны отдельные мехатронно-модульные роботы со свободными интерфейсными площадками, на фиг.2 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам, и образующий фигуру в виде многоугольника, на фиг.3 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде квадрата, на фиг.4- мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам, и образующий фигуру в виде прямоугольника.
Мехатронно-модульный робот 1 состоит как минимум из двух сопряженных между собой модулей первичного 2 и вторичного 3. Один из двух сопрягаемых между собой модулей, преимущественно первичный 2, является управляющим по отношению к другому, вторичному 3, с ним стыкуемым, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота. Сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой свободной интерфейсной площадки 4 с одной из свободных аналогичных площадок 4 на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. Несвободная интерфейсная площадка 5 образована за счет стыковки между собой двух свободных интерфейсных площадок 4.
Предложенный мехатронно-модульный робот функционирует следующим образом.
Произвольно выбирается управляющий первичный модуль 2 со свободной интерфейсной площадкой 4 и стыкуется с любым произвольно выбранным вторичным модулем 3 с аналогичной свободной интерфейсной площадкой 4. При стыковке между собой двух свободных интерфейсных площадок 4 образуется несвободная интерфейсная площадка 5. Дальнейшее присоединение свободных модулей 3 к образованному модулю, состоящему из двух первоначально соединенных между собой управляющего модуля 2 и вторичного 3, происходит вдоль выбранного направления с образованием требуемой конечной структуры мехатронно-модульного робота.
Использование предложенного технического решения позволит проводить синтез структуры многоинвариантной модели мехатронно-модульных роботов с последующим фиксированием полученных оптимальных решений с последующим повышением количества возможных итераций мехатронно-модульного робота при значительном сокращении времени синтеза.

Claims (2)

1. Мехатронно-модульный робот, характеризующийся тем, что он состоит как минимум из двух сопряженных между собой модулей, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/ым, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота, при этом количество модулей, объединяемых в упомянутый робот, определено из соотношения n=l,N, где n - количество модулей, объединяемых в один робот, определено из соотношения n=l+x1+2x2+4x3+8x4, где x14=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:
Figure 00000016

где A - значение обобщенной координаты, относительно которой происходит периодическое движение; В - амплитуда периодического колебания обобщенной координаты, причем суммарная величина |A|+|B| не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.
2. Мехатронно-модульный робот по п. 1, отличающийся тем, что для оптимизации структурного синтеза использована функция f - рандомизированного алгоритма многоальтернативной оптимизации с выбором значений альтернативных переменных
Figure 00000017
обеспечивающих максимальное значение функции:
Figure 00000018

при ограничениях n=1,N
Figure 00000019

где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.
RU2013105811/08A 2013-02-12 2013-02-12 Мехатронно-модульный робот RU2572381C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013105811/08A RU2572381C2 (ru) 2013-02-12 2013-02-12 Мехатронно-модульный робот

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013105811/08A RU2572381C2 (ru) 2013-02-12 2013-02-12 Мехатронно-модульный робот

Publications (2)

Publication Number Publication Date
RU2013105811A RU2013105811A (ru) 2014-08-20
RU2572381C2 true RU2572381C2 (ru) 2016-01-10

Family

ID=51384159

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013105811/08A RU2572381C2 (ru) 2013-02-12 2013-02-12 Мехатронно-модульный робот

Country Status (1)

Country Link
RU (1) RU2572381C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1158344A1 (ru) * 1983-02-28 1985-05-30 Предприятие П/Я Ю-9192 Промышленный робот модульного типа
SU1548032A1 (ru) * 1987-05-13 1990-03-07 Украинский Научно-Исследовательский Институт Станков И Инструментов Промышленный робот
RU2313442C1 (ru) * 2005-09-05 2007-12-27 Самсунг Гуангджу Электроникс Ко., Лтд. Мобильная робототехническая система с несколькими сменными рабочими модулями и способ управления этой системой

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1158344A1 (ru) * 1983-02-28 1985-05-30 Предприятие П/Я Ю-9192 Промышленный робот модульного типа
SU1548032A1 (ru) * 1987-05-13 1990-03-07 Украинский Научно-Исследовательский Институт Станков И Инструментов Промышленный робот
RU2313442C1 (ru) * 2005-09-05 2007-12-27 Самсунг Гуангджу Электроникс Ко., Лтд. Мобильная робототехническая система с несколькими сменными рабочими модулями и способ управления этой системой

Also Published As

Publication number Publication date
RU2013105811A (ru) 2014-08-20

Similar Documents

Publication Publication Date Title
US11409263B2 (en) Method for programming repeating motion of redundant robotic arm
Bradley et al. Mechatronics and the design of intelligent machines and systems
CN102099598B (zh) 准双曲面齿轮设计方法及准双曲面齿轮
Ruiz Estrada Multi-Dimensional coordinate spaces
Yang et al. Compact reachability map for excavator motion planning
Støy Controlling self-reconfiguration using cellular automata and gradients
RU2572381C2 (ru) Мехатронно-модульный робот
RU2560829C2 (ru) Мехатронно-модульный робот
Park et al. A study of sweeping coverage path planning method for deep-sea manganese nodule mining robot
RU2572382C2 (ru) Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания
Ajaweed et al. Submarine control system using sliding mode controller with optimization algorithm
AU2022228455A1 (en) Systems and methods for solar power plant assembly
RU2569579C2 (ru) Мехатронно-модульный робот
RU2560830C2 (ru) Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания
RU2556432C2 (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов
RU2572383C2 (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов
RU2572374C2 (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов
RU2560828C2 (ru) Мехатронно-модульный робот и способ многоальтернативной оптимизации модулей автоматизации структурного синтеза для его создания
RU2493577C1 (ru) Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов
RU2514925C2 (ru) Мехатронно-модульный робот
CN109976384A (zh) 一种自治水下机器人及路径跟随控制方法、装置
JP5403086B2 (ja) 移動経路生成方法、移動経路生成装置、移動経路生成プログラム、ロボットアーム制御装置、およびロボットアーム制御プログラム
Brunete et al. Offline GA-based optimization for heterogeneous modular multiconfigurable chained microrobots
CN111857166B (zh) 水下机器人定深控制方法、控制装置及相应的水下机器人
Song et al. Comparison of constrained geometric approximation strategies for planar information states

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160213