PT929681E - Aglomerado de genes da biossíntese da rifamicina - Google Patents

Aglomerado de genes da biossíntese da rifamicina Download PDF

Info

Publication number
PT929681E
PT929681E PT97938923T PT97938923T PT929681E PT 929681 E PT929681 E PT 929681E PT 97938923 T PT97938923 T PT 97938923T PT 97938923 T PT97938923 T PT 97938923T PT 929681 E PT929681 E PT 929681E
Authority
PT
Portugal
Prior art keywords
gly
leu
ala
arg
asp
Prior art date
Application number
PT97938923T
Other languages
English (en)
Inventor
Schupp Dr Thomas
Christiane Toupet
Nathalie Engel
Original Assignee
Novartis Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis Ag filed Critical Novartis Ag
Publication of PT929681E publication Critical patent/PT929681E/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/188Heterocyclic compound containing in the condensed system at least one hetero ring having nitrogen atoms and oxygen atoms as the only ring heteroatoms
    • C12P17/189Heterocyclic compound containing in the condensed system at least one hetero ring having nitrogen atoms and oxygen atoms as the only ring heteroatoms containing the rifamycin nucleus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Description

ΡΕ0929681 1 DESCRIÇÃO "AGLOMERADO DE GENES DA BIOSSÍNTESE DA RIFAMICINA"
As rifamicinas formam um grupo importante de antibióticos macrociclicos (Wehrli, Topics in Current Chemistry (1971), 72, 21-49). Eles consistem num cromóforo de naftoquinona que se estende por uma longa ponte alifática. As rifamicinas pertencem a uma classe de antibióticos de ansamicina que são produzidos por várias bactérias do solo Gram positivas do grupo dos actinomicetes e algumas plantas.
As ansamicinas são caracterizadas por um núcleo aromático plano que se estende por uma longa ponte alifática que une posições opostas do núcleo. Podem distinguir-se dois grupos diferentes de ansamicinas pela estrutura do núcleo aromático. Um grupo possui um cromóforo de naftoquinóide, sendo representantes tipicos a rifami-cina, estreptovaricina, tolipomicina e naftomicina. 0 segundo grupo, que possui um cromóforo benzoquinóide, é caracterizado por geldanamicina, maitansinas e ansamitocinas (Ghisalba árma., Biotechnology of Industrial Antibiotics Vandamme E.J. Ed., Decker Inc New York, (1984) 281-327). Em contraste com os antibióticos do tipo macrólido, as ansamicinas contêm no sistema de anel alifático não uma ligação lactona, mas uma ligação amida que forma a conexão ao cromóforo. 2 ΡΕ0929681 A descoberta das rifamicinas produzidas pelo microrganismo Streptomyces mediterranei (como o organismo foi denominado nessa altura, ver abaixo) foi descrita pela primeira vez em 1959 (Sensi árma., ármaco Ed. Sei. (1959) 14, 146-147) . A extraeção com acetato de etilo das culturas acidificadas de Streptomyces mediterranei resultou no isolamento de uma mistura de componentes antibioticamente activos, as rifamicinas A, B, C, D e E. A rifamicina B, o componente mais estável, foi separado dos outros componentes e isolado com base nas suas propriedades fortemente acidicas e facilidade de formação de um sal. A rifamicina B possui a estrutura da fórmula (1)
A rifamicina B é o principal componente da fermentação quando é adicionado barbiturato ao meio de fermentação e/ou são utilizados produtores melhorados mutantes de Streptomyces mediterranei. 3 ΡΕ0929681 A estirpe produtora de rifamicina foi originalmente classificada como Streptomyces mediterranei (Sensi et al., Farmaco Ed. Sei. (1959) 14, 146-147). A análise da parede celular de Streptomyces mediterranei por Thiemann et al. revelou, mais tarde, que esta estirpe possui uma parede celular tipica de Nocardia e a estirpe foi reclassifiçada como Nocardia mediterranei (Thieman et al. Arch. Microbiol. (1969), 67 147-151). A Nocardia mediterranei foi novamente reclassifiçada com base em critérios morfológicos e bioquimicos rigorosos mais recentes. Com base na composição exacta da parede celular. A ausência de ácido micólico e a insensibilidade a fagos de Nocardia e Rhodococcus, a estirpe foi atribuida ao novo género Amycolatopsis como Amycolatopsis mediterranei (Lechevalier et al., Int. J. Syst. Bacteriol. (1986), 36, 29). Lai et al. (Crit. Ver. Microbiol. (1995), 21, 19-30)9 reviram métodos para melhorar a produção de rifamicina por Amycolatopsis mediterranei.
As rifamicinas possuem uma actividade antibiótica forte contra bactérias Gram-positivas, tais como micobac-térias, neisserias e estafilococos. O efeito bactericida das rifamicinas deriva da inibição especifica da polimerase de RNA dependente de DNA bacteriana, que interrompe a biossintese do RNA (Wehrli e Staehelin, Bacteriol. Rev. (1971), 35, 290-309). A rifamicina derivada de rifamicina B semi-sintética (rifampicina) é largamente utilizada clini-camente como antibiótico contra o agente que provoca a tuberculose, Mycobacterium tuberculosis. 4 ΡΕ0929681
As ansamicinas naftoquinóides do grupo da estre-ptovaricina e tolipomicina apresenta, tal como a rifa-micina, um efeito antibacteriano através da inibição da polimerase de RNA bacteriana. Em contraste, a naftomicina possui um efeito antibacteriano sem inibir a polimerase de RNA bacteriana. As ansamicinas benzoquinóides não apresentam inibição da polimerase do RNA bacteriano e podem por isso possuir actividade antibacteriana relativamente fraca, ou nenhuma. Por outro lado, alguns representantes desta classe de substâncias possuem um efeito nas células de eucariotas. Assim, as propriedades antifúngicas, antiproto-zoários e antitumorais foram descritas para a geldanami-cina. Por outro lado, as propriedades antimitóticas (anti-tubilina), antileucemia e antitumoral são atribuídas às maitansinas. Algumas rifamicinas também apresentam actividade antitumoral e antiviral, mas apenas a concentrações elevadas. Este efeito biológico parece, assim, ser não específico.
Apesar da grande variedade estrutural das ansamicinas, a sua biossíntese parece ocorrer através de uma via metabólica que contém muitos elementos comuns (Ghisalba et al. Biotechnology of Industrial Antibiotics Vandamme E.J. Ed., Decker Inc. New York, (1984) 281-327). 0 núcleo aromático para todas as ansamicinas é provavelmente construído partindo de ácido 3-amino-5-hidroxibenzóico. A partir desta molécula, que é presumivelmente activada como coenzima A, a ponte alifática inteira é sintetizada por uma 5 ΡΕ0929681 sintase de policétido multifuncional. 0 comprimento da ponte e o processamento dos grupos ceto, que são inicialmente formados pelos passos de condensação, são controlados pela sintase de policétido. Para construir a ponte alifática completa para rifamicinas, são necessários 10 passos de condensação, 2 com acetato e 8 com propionato como blocos de construção. A sequência destes passos de condensação individual é igualmente determinada pela sintase de policétido. Comparações e estudos estruturais com incorporação de acetato e propionato radioactivos demonstraram que a sequência de incorporação de acetato e de propionato para as várias ansamicinas ocorre de acordo com um esquema que parece ser idêntico, ou muito semelhante, nos primeiros passos de condensação. Assim, a partir de um esquema de síntese comum das sintases de policétido de ansamicina (o esquema de síntese de rifamicina), as sínteses das várias ansamicinas mais cedo ou mais tarde ramificam, de acordo com a sua diferença estrutural em relação à estrutura da rifamicina, nos ramos laterais da síntese (Ghisalba et al., Biotechnology of Industrial Antibiotics Vandamme E.J. Ed. Decker Inc. New Iork, (1984) 281-327)
Devido à grande variedade estrutural das rifamicinas e ao seu efeito biológico específico e interessante, existem um grande interesse no entendimento da base genética da sua síntese de modo a criar a possibilidade de o influenciar especificamente. Isto é particularmente desejável porque, como explicado acima, há muito em comum 6 ΡΕ0929681 entre a síntese de rifamicinas e a de outras ansamicinas. Esta semelhança na biossíntese, que provavelmente deriva de uma origem comum da sua via metabólica, em termos evolutivos, possui naturalmente uma base genética. A base genética da biossíntese dos metabolitos secundários existe essencialmente nos genes que codificam para as enzimas biossintéticas individuais. Os genes da síntese de metabolitos secundários de actinomicetes têm sido, até agora, encontrados como aglomerados de genes adjacentes em todos os sistemas investigados. 0 tamanho desses aglomerados de genes de antibióticos estende-se desde cerca de 10 quilobases (kb) até mais do que 100 kb. Os aglomerados contêm, frequentemente, genes de regulador específico e genes para resistência do organismo produtor aos seu próprio antibiótico (Chater, Ciba Found. Symp. (1992), 171, 144-162). A invenção aqui descrita teve agora sucesso através da identificação e clonagem de genes da biossíntese de rifamicina, criando a base genética para a síntese, através de métodos genéticos de análogos de rifamicina ou ansamicinas novas, que combinam elementos estruturais de rifamicina com outras ansamicinas. Isto também cria a base para preparar novas colecções de substâncias com base no aglomerado de genes da biossíntese de rifamicina através de biossíntese combinatória. identificar e
Foi possível, num primeiro passo 7 ΡΕ0929681 clonar um fragmento de DNA do genoma de Ά. mediterranei, que apresenta homologia com genes da sintase de policétidos conhecidos. Após a obtenção da informação de sequência deste fragmento de DNA, que confirmou uma sequência tipica para sintases de policétido foi possível o rastreio de uma biblioteca de cosmideos de A. mediterranei com sondas de DNA especificas derivadas deste fragmento num programa de rastreio para outros fragmentos de DNA que estão envolvidos no aglomerado de genes de rifamicina. Como um resultado, foi identificado e sujeito a determinação da sequência (SEQ ID NO 3) o aglomerado completo de genes da sintase de policétido de rifamicina. 0 aglomerado de genes compreende seis grelhas de leitura aberta, que são de aqui em diante referidas como ORF A, B, C, D, E e F e que codificam as proteínas e polipéptidos descritos em SEQ ID NOS 4 a 9. O aglomerado de genes isolado e caracterizado deste modo representa a base, por exemplo, para a opti-mização derivada da produção de rifamicina, ansamicina, ou seus análogos. Exemplos de técnicas e possíveis áreas de aplicação disponíveis nesta ligação são como se segue: • Sobrexpressão de genes individuais nas estirpes produtoras com vectores plasmídicos ou através da incorporação no cromossoma. • Estudo da expressão e regulação de transcrição do aglomerado de genes durante a fermentação com várias estirpes produtoras e sua optimização através de parâmetros fisiológicos e condições de fermentação apropriada. ΡΕ0929681 • Identificação de genes de regulação e dos sitios de ligação ao DNA das proteínas de regulação correspondentes no aglomerado de genes. Caracterização do efeito destes elementos de regulação na produção de rifamicinas ou ansamicinas; e influenciá-los para mutação especifica nestes genes ou nos sitios de ligação do DNA. • Duplicação do aglomerado completo de genes ou sua partes em estirpes produtoras.
Para além destas aplicações do aglomerado de genes para melhorar a produção por fermentação como acima descrito, pode ser igualmente empregue para a preparação biossintética de novos análogos de rifamicina ou novas ansamicinas ou compostos do tipo ansamicina, nos quais a ponte alifática é ligada a apenas uma extremidade do núcleo aromático. As seguintes possibilidades entram aqui em consideração, por exemplo: • Inactivação de passos individuais na biossintese, por exemplo por interrupção de genes. • Mutação de passos individuais na biossintese, por exemplo por substituição genética. • Utilização do aglomerado ou seus fragmentos como sonda de DNA, de modo a isolar outros microrganismos naturais, que produzem metabolitos semelhantes a rifamicina ou ansamicinas. 9 ΡΕ0929681 • Permuta de elementos individuais neste aglomerado de genes pelos de outros aglomerados de genes. • Utilização de sintases de policétidos para a construção de bibliotecas de vários análogos de rifamicina ou ansamicinas, gue são então testados em relação à sua actividade (Jackie & Khosla, Chemistry & Biology, (1995), 2, 355-362). • Construção de estirpes de actinomicetes mutados dos quais o aglomerado de genes da biossintese de rifamicina natural ou ansamicina no cromossoma foi parcialmente ou completamente removida e pode por isso ser utilizado para expressar aglomerados de genes geneticamente modificados. • Permuta de elementos individuais no aglomerado de genes.
Descrição detalhada da invenção A invenção refere-se a um fragmento de DNA do genoma de Amycilatopsis mediterranei, que compreende uma região de DNA que está envolvida directa, ou indirec-tamente, no aglomerado de genes responsáveis pela sintese de rifamicina; e as regiões de DNA adjacentes; e seus constituintes ou dominios funcionais.
Os fragmentos de DNA, de acordo com a invenção pode compreender, além disso, sequências reguladoras tais como sitios de ligação de promotores, repressor ou acti-vador, genes de repressor ou activador, terminadores; ou 10 ΡΕ0929681 genes estruturais. Igualmente, parte da invenção são quaisquer combinações destes fragmentos de DNA uns com os outros, ou com outros fragmentos de DNA, por exemplo combinações de sitios de ligação de promotores, repressor ou activador e/ou genes de repressor ou activador de um aglomerado de genes de ansamicina, em particular do aglomerado de genes de rifamicina, com genes estruturais estranhos, ou combinações de genes estruturais do aglomerado de genes de ansamicina, especialmente o aglomerado de genes de rifamicina, com promotores estranhos; e combinações de genes estruturais uns com os outros ou com fragmentos de genes, que codificam para domínios enzimaticamente activos e são de vários sistemas de biossíntese de ansamicina. Os genes estruturais estranhos e fragmentos de gene estranhos codificando para domínios enzimaticamente activos, codificam, por exemplo, proteínas envolvidas na biossíntese de outras ansamicinas.
Um fragmento de DNA preferido é um directamente ou indirectamente envolvido no aglomerado de genes responsável pela síntese de rifamicina. O aglomerado de genes da região de DNA acima descrito contém, por exemplo, os genes que codificam as enzimas individuais envolvidas na biossíntese de ansamicinas e, em particular, de rifamicina e os elementos reguladores que controlam a expressão dos genes de biossíntese. O tamanho desses aglomerados de genes de antibióticos estende-se desde cerca de 10 quilobases (kb) ΡΕ0929681 até mais de 100 kb. Os aglomerados de genes compreendem normalmente genes de regulação específicos e genes para resistência do organismo produtor para o seu próprio antibiótico. Exemplos do que se pretende designar por enzimas ou domínios enzimaticamente activos envolvidos nesta biossíntese são aqueles necessários para sintetizar, iniciando com ácido 3-amino-5-hidroxibenzóico, as ansamici-nas tais como rifamicina, por exemplo sintases de policétido, aciltransferases, desidratases, cetorredutases, proteínas de veículo de acilo ou sintases de cetoacilo.
Assim, são particularmente preferidos a sequência completa do aglomerado de genes apresentado na SEQ ID NO 3, bem como fragmentos de DNA que compreendem porções de sequência que codificam para uma sintase de policétido, ou um seu domínio enzimaticamente activo. Exemplos desses fragmentos de DNA preferidos são, por exemplo, aqueles que codificam para uma ou mais das proteínas e polipéptidos apresentados nas SEQ ID NOS 4, 5, 6, 7, 8 e 9, ou seus derivados funcionais, também incluindo sequências parciais destes que compreendem, por exemplo, 15 ou mais nucleótidos consecutivos. Outras formas de realização preferidas referem-se a regiões de DNA do aglomerado de genes, de acordo com a invenção ou seus fragmentos, como aqueles presentes nos clones depositados pNE95, pRi44-2 e pNE112, ou seus derivados. Outros fragmentos de DNA preferidos são aqueles que compreendem porções de sequência que apresenta, homologias com as sequências compreendidas pelos clones pNE95, pRi44-2 e/ou pNE112 ou com SEQ ID ID NOS 1 e/ou 3, e 12 ΡΕ0929681 por isso podem ser utilizadas como sonda de hibridação com um banco de genes genómicos com um organismo que produz ansamicina, em particular que produzem rifamicina, para encontrar constituintes do aglomerado de genes correspondentes. 0 fragmento de DNA pode, para além disso, por exemplo, compreender exclusivamente DNA genómico. Um fragmento de DNA particularmente preferido é aquele que compreende a sequência de nucleótidos apresentada em SEQ ID NO 1 a 3, ou sua sequências parciais que, por uma questão de homologias, pode ser encarada como equivalente estrutural ou funcional para a referida sequência ou sequência parcial destas e que por isso são capazes de hibridar com esta sequência.
Os fragmentos de DNA de acordo com a invenção compreendem, por exemplo, porções de sequência que compreendem homologias com as enzimas, domínios de enzimas, ou fragmentos acima descritos. 0 termo homologias e equivalentes estruturais e/ou funcionais refere-se principalmente a sequências de DNA e de aminoácidos com poucas ou nenhumas diferenças entre as sequências relevantes. Estas diferenças podem possuir causas diversas. Assim, por exemplo isto pode requerer mutações ou diferenças específicas da estirpe, que ocorrem naturalmente, ou são induzidas artificialmente. Ou as diferenças observadas a partir da sequência inicial são derivadas de uma modificação alvo, que podem ser introduzidas, por exemplo, durante uma síntese química. ΡΕ0929681
As diferenças funcionais podem ser encaradas como mínimas se, por exemplo, a sequência de nucleótidos que codifica para um polipéptido, uma sequência de proteínas possui essencialmente as mesmas propriedades caracterís-ticas que a sequência inicial, quer em relação à actividade enzimática, reactividade imunológica ou, no caso de uma sequência de nucleótidos, regulação de genes.
As diferenças estruturais podem ser encaradas como mínimas, desde que existe uma sobreposição significativa entre as várias sequências, ou possuem pelo menos propriedades físicas semelhantes. Esta última inclui, por exemplo, a mobilidade electroforética, semelhanças cromato-gráficas, coeficientes de sedimentação, propriedades espec-trofotométricas, etc.
No caso de sequências de nucleótidos, a concordância deve ser de pelo menos 70%, mas de um modo preferido 80% e de um modo muito particularmente preferido 90% ou mais. No caso da sequência de aminoácidos, as figuras correspondentes são pelo menos 50%, mas preferencialmente 60% e de um modo particularmente preferido 70%. É muito particularmente preferida uma concordância de 90%. A invenção refere-se, para além disso, a um método para identificar, isolar e clonar um dos fragmentos de DNA acima descritos. Um método preferido compreende, por exemplo, os passos seguintes: 14 ΡΕ0929681 a) construção de um banco de genes genómico, b) rastreio deste banco de genes com a assistência das sequências de acordo com a invenção, e c) isolamento dos clones identificados como positivos .
Um método geral para identificar fragmentos de DNA envolvidos na biossintese de ansamicinas compreendem, por exemplo, os seguintes passos 1) Clonagem de um fragmento de DNA que apresenta homologia com genes de sintase de policétido conhecidos. a) A presença de fragmentos de DNA possuindo homologia cornos genes da sintase de policétido de acordo com a invenção é detectada nas estirpes do microrganismo a ser investigado através de uma experiência de Southern com DNA cromossómico desta estirpe. O tamanho desses fragmentos de DNA homólogo podem ser determinados através da digestão do DNA com uma enzima de restrição adequada. b) Produção de um banco genético de plasmideos compreendendo os fragmentos cromossómicos acima digeridos. Normalmente, os clones individuais deste banco genético são testados novamente para a homologia com os 15 ΡΕ0929681 genes da sintase de policético de acordo com a invenção. Os clones com plasmídeos recom-binantes compreendendo fragmentos possuindo homologia com a sonda de policétido são então normalmente isolados com base nesta homologia. 2) Análise da região clonada a) Análise de restrição dos plasmideos recombi-nantes isolados e verificação da identidade desses fragmentos clonados um com o outro b) Através de Southern cromossómico com DNA do microrganismo original e o fragmento de DNA isolado como sonda, pode ser demonstrado que o fragmento clonado é um fragmentos de DNA cromossómico original do microrganismo original . c) É possivel, como uma opção, demonstrar uma homologia significativa do fragmento de DNA clonado com o DNA cromossómico de outros produtores de ansamicina (estreptovaricina, tolipomicina, geldanamicina, ansamitocina). Isto confirmaria que o DNA clonado é tipico de aglomerados de genes da biossintese de ansamicina e deste modo, também da biossintese de rifamicina. d) sequenciação de DNA de um fragmento de restrição interno e demonstração, através de análise de sequências comparativa, que a região clonada é uma sequência de DNA típica 16 ΡΕ0929681 de sintases de policétido, codificando para a biossintese de antibióticos de policétido a partir de actinomicetes.
3) Isolamento e caracterização de regiões de DNA adj acentes a) Construção de um banco de cosmideos do microrganismo original e sua análise para ho-mologia com os fragmentos isolados. Isolamento de cosmideos possuindo homologia com este fragmento. b) Demonstração, através de análise de restrição, de que os clones de cosmideo isolados compreendem uma região de DNA do microrganismo original que se sobrepõe ao fragmento original.
Como descrito acima, o primeiro passo no isolamento dos fragmentos de acordo com a invenção é normalmente a construção de bancos de genes genómicos do organismo de interesse, que sintetiza a ansamicina desejada, especialmente rifamicina. 0 DNA genómico pode ser obtido de um organismo hospedeiro de vários modos, por exemplo através de extrac-ção da fracção nuclear e purificação do DNA extraído, através de métodos conhecidos. A fragmentação, que é necessária para construir 17 ΡΕ0929681 um banco de genes representativos do DNA genómico a ser clonado para um tamanho que é adequado para inserção num vector de clonagem pode ocorrer quer por quebra mecânica ou, preferencialmente, através de corte com enzimas de restrição adequados.
Vectores de clonagem adequados, que são já utilização de rotina para produzir bibliotecas de genes genómicos compreendem, por exemplo, vectores cosmidicos, vectores plasmidicos ou vectores fágicos. É então possível, num programa de rastreio, obter clones adequados que compreendem o(s) gene(s) requerido(s) das bibliotecas de genes deste modo.
Uma possibilidade para identificar a região de DNA necessária consiste, por exemplo, na utilização do banco de genes acima descrito para transformar estirpes que, devido ao bloqueamento de uma via sintética, são incapazes de produzir ansamicinas e identificar os clones que são novamente capazes, após a transformação, de produzir ansamicina (revertentes). Os vectores que conduzem a revertentes compreendem um fragmento de DNA que é necessário na síntese de ansamicina.
Outra possibilidade para identificar a região de DNA necessária baseia-se, por exemplo, na utilização de moléculas de sondas adequadas (sonda de DNA), que são obtidas, por exemplo, como descrito acima. São disponíveis 18 ΡΕ0929681 vários métodos convencionais para identificar clones adequados, tais como hidridação de colónias diferencial, ou hibridação de placas. É possivel utilizar como molécula de sonda um fragmento de DNA previamente isolado do gene ou aglomerado de genes igual ou estruturalmente relacionado que, devido à homologia presente, é capaz de hibridar com a secção de sequência correspondente no gene ou aglomerado de genes necessários a ser identificado. É utilizado, preferencialmente, como uma sonda para o objectivo da presente invenção um fragmento de DNA que se pode obter a partir de um gene ou uma sequência de DNA envolvido na sintese de policétidos, tais como ansamicinas ou sorafenos.
Se a sequência de nucleótidos do gene a ser isolado, ou pelo menos partes desta sequência, são conhecidos, é possivel utilizar, numa forma de realização alternativa, com base nesta informação de sequências, uma sequência de DNA sintetizada correspondente para as hibridações ou amplificações por PCR.
De modo a facilitar a detectabilidade do gene necessário, ou pelo menos parte de um gene necessário, uma das moléculas de sonda de DNA acima descritas pode ser marcada com um grupo adequado, facilmente detectável. Um grupo detectável para o objectivo desta invenção significa qualquer material que possui uma propriedade fisica ou química particular facilmente detectável. 19 ΡΕ0929681
Pode ser feita menção particular, neste ponto, a grupos enzimaticamente activos, tais como enzimas, substratos enzimáticos, coenzimas e inibidores enzimáticos, além disso agentes fluorescentes e luminescentes, cromó-foros e radioisótopos, tais como 3H, 35S, 32P, 125I e 14C. A fácil capacidade de detecção destes marcadores baseia-se, por um lado, nas suas propriedades fisicas intrínsecas (por exemplo marcadores fluorescentes, cromóforos, radioisótopos) ou, por outro lado, nas suas propriedades de reacção e ligação (por exemplo enzimas, substratos, coenzimas, inibidores). Os materiais destes tipos são já largamente utilizados, em particular em imunoensaios e, na maioria dos casos, também podem ser utilizados na presente aplicação. Métodos gerais referentes a hibridação de DNA são descritos, por exemplo, por Maniatis, T. et al., Molecular Cloning, Cold Spring Harbor Laboratory Press (1982).
Os clones nas bibliotecas previamente descritas que são capazes de hibridar com uma molécula sonda e que podem ser identificados por um dos métodos de detecção acima mencionados podem ser ainda analisados de modo a determinar a extensão e a natureza da sequência codifi- cante, em detalhe.
Um método alternativo para identificar genes de clones baseia-se na construção de uma biblioteca de genes consistindo em vectores plasmídicos ou de expressão. Isto 20 ΡΕ0929681 requer, em analogia com os métodos previamente descritos, que o DNA genómico compreendendo o gene necessário seja inicialmente isolado e depois clonado num vector plasmídico ou de expressão adequado. As bibliotecas de genes produzidas deste modo podem ser então rastreado através de procedimentos adequados, por exemplo através da utilização de estudos complementares e podem ser seleccionados os clones que compreendem o gene necessário ou pelo menos uma parte deste gene como uma inserção. É por isso possível, com o auxílio dos métodos acima descritos, isolar um gene, vários genes ou um aglomerado de genes que codificam par um ou mais produtos de genes particulares.
Para posterior caracterização, as sequências de DNA purificadas e isoladas do modo descrito acima são sujeitas a análise de restrição e a análise de sequências.
Para a análise de sequências, os fragmentos de DNA previamente isolados são primeiro fragmentados utilizando enzimas de restrição adequados e depois clonados em vectores de clonagem adequados. De modo a evitar enganos na sequenciação, é vantajoso sequenciar ambas as cadeias de DNA completamente.
Estão disponíveis várias alternativas para analisar o fragmento de DNA clonado em relação à sua função na biossíntese de ansamicina. 21 ΡΕ0929681
Assim, por exemplo, é possível, em experiências de complementação com mutantes defeituosos, não apenas estabelecer o envolvimento em princípio de um gene ou fragmento de gene na biossíntese dos metabolitos secundários, mas também verificar especificamente o passo sintético no qual o referido fragmento de DNA está envolvido.
Num tipo de análise alternativo, é obtida evidência do modo exactamente oposto. A transferência de plasmídeos que compreende secções de DNA que possuem homologias com secções apropriadas no genoma resulta na integração das referidas secções de DNA homólogo através de recombinação homóloga. Se, como no caso presente, a secção de DNA homólogo é uma região na grelha de leitura aberta do aglomerado de genes, a integração do plasmídeo resulta na activação deste gene através da denominada interrupção de genes e, consequentemente, numa interrupção na produção de metabolitos secundários. Assume-se, de acordo com o conhecimento actual, que uma região homóloga que compreende pelo menos 100 pb, mas preferencialmente mais do que 1000 pb, é suficiente para realizar o evento de recombinação desej ado.
Todavia, é preferida uma região homóloga que se estende ao longo de um intervalo de cerca de 0,3 a 4 kb, mas em particular ao longo de um intervalo de 1 a 3 kb.
Para preparar plasmídeos adequados que possuem 22 ΡΕ0929681 homologia suficiente para integração através de recombi-nação homóloga há uma condição preferencial de um passo de subclonagem em que o DNA previamente isolado é digerido e os fragmentos de tamanho adequado são isolados e subsequentemente clonados num plasmideo adequado. Exemplos de plasmideos adequados são os plasmideos geralmente utilizados para manipulações genéticas em estreptomicetes ou E. coli. É possivel, em principio, utilizar para a preparação e multiplicação das construções previamente descritas, todos os vectores de clonagem convencionais, tais como vectores plasmidicos ou de bacteriófago, desde que possuam sequências de replicação e de controlo derivadas de espécies compatíveis com a célula hospedeira. 0 vector de clonagem possui normalmente uma origem de replicação mais genes específicos que resultam em caracteristicas de selecção fenotipicas na célula hospedeira transformada, em particular resistências a antibióticos. Os vectores transformados podem ser seleccionados com base nestes marcadores fenotipicos após transformação numa célula hospedeira.
Marcadores fenotipicos seleccionáveis que podem ser utilizados para o objectivo desta invenção compreendem, por exemplo, sem esta representar uma limitação da matéria sujeito da invenção, resistência a tioestrepona, ampi- cilina, tetraciclina, cloranfenicol, higromicina, G418, 23 ΡΕ0929681 canamicina, neomicina e bleomicina. Outro marcador de selecção pode ser, por exemplo, prototrofia para amino-ácidos particulares. São principalmente preferidos para o objectivo da presente invenção plasmideos de estreptomicetes e de E. coli, por exemplo os plasmideos utilizados para o objectivo da presente invenção. Células hospedeiras principalmente adequadas para a clonagem previamente descrita para o objectivo desta invenção são procariotas, incluindo hospedeiros bacte-rianos, tais como estreptomicetes, actinomicetes, E. coli, ou família das Pseudomonas.
Os hospedeiros de E. coli são particularmente preferidos, por exemplo da estirpe de E. coli HB101 ou X-l blue MR® (Stratagene) ou estreptomicetes, tais como as estirpes de Streptomyces lividans isentas de plasmideos TK2 3 e TK2 4.
As células competentes da estirpe de E. coli HB101 são produzidas pelos métodos normalmente utilizados para transformar E. coli. 0 método de transformação de Hopwood et al (Genetic manipulation of streptomyces a laboratory manual. The John Innes Foundation, Norwich (1985)) é normalmente utilizado para estreptomicetes.
Após a transformação e subsequente incubação num 24 ΡΕ0929681 meio adequado, as colónias resultantes são sujeitas a um rastreio diferencial através de plaqueamento em meios selectivos. É então possivel isolar o DNA do plasmideo apropriado das colónias que contêm plasmídeos com fragmentos de DNA neles clonados. 0 fragmento de DNA de acordo com a invenção, que compreende uma região de DNA que está envolvida direc-tamente, ou indirectamente, na biossintese de ansamicina e pode ser obtida do modo previamente descrito a partir do aglomerado de genes da biossintese de ansamicina, pode também ser utilizado como clone iniciador para identificar e isolar outras regiões de DNA adjacentes que se sobrepõem a este a partir do referido aglomerado de genes.
Isto pode ser alcançado, por exemplo, realizando um denominado "caminhar pelo cromossoma" numa biblioteca de genes consistindo em fragmentos de DNA com regiões de DNA que se sobrepõem mutuamente, utilizando o fragmento de DNA previamente isolado ou, em particular, as sequências localizadas nas suas margens 5' e 3'. Os procedimentos para caminhar pelo cromossoma são conhecidos dos especialistas na técnica. Podem ser encontrados detalhes, por exemplo, nas publicações de Smith et al. (Methods Enzymol (1987), 151, 461-489) e Wahl et al. (Proc. Natl. Acad. Sei., USA (1987), 84, 2160-2164). O pré-requisito para caminhar pelo cromossoma é a presença de clones possuindo fragmentos de DNA coerentes 25 ΡΕ0929681 que são tão compridos quanto possível e se sobrepõem mutuamente numa biblioteca de genes e um clone de iniciação adequado, que compreende um fragmento que está localizado na vizinhança ou de outro modo, preferencialmente, na região a ser analisada. Se a localização exacta do clone iniciador é desconhecida, o caminhar é preferencialmente realizado em ambas as direcções. 0 verdadeiro passo de caminhar inicia-se utilizando o clone iniciador isolado como sonda numa das reacções de hibridação previamente descritas, de modo a detectar clones adjacentes que possuem regiões que se sobrepões ao clone iniciador. É possível, através da análise de hibridação, estabelecer que fragmento se projecta para mais longe além da região de sobreposição. Este é então utilizado como clone iniciador para o 2o passo de clonagem, caso em que há o estabelecimento de um fragmento que se sobrepõe ao referido 2o clone na mesma direcção. A progressão contínua deste modo no cromossoma resulta numa colecção de clones de DNA que se sobrepõem, que cobrem uma região de DNA grande. Estes podem então, quando apropriado após um ou mais passos de subclonagem, ser ligados juntamente através de métodos conhecidos para produzir um fragmento que compreende partes ou, de outro modo, preferencialmente todos os constituintes essenciais para a biossíntese de ansamicina. A reacção de hibridação para estabelecer clones com regiões marginais sobreponíveis faz uso, preferen- 26 ΡΕ0929681 cialmente, não de um fragmento completo muito grande e difícil de manipular mas, em seu lugar, um fragmento parcial da região da margem esquerda ou direita, que pode ser obtido através de um passo de subclonagem. Devido ao tamanho mais pequeno do referido fragmento parcial, a reacção de hibridação resulta em menos sinais de hibridação positiva, de modo a que o esforço analítico seja menos distinto do que na utilização do fragmento completo. É além disso aconselhável caracterizar o fragmento parcial em detalhe, de modo a excluir a inclusão das suas quantidades maiores de sequências repetitivas, que podem ser distribuídas ao longo de todo o genoma e, desse modo, impediria fortemente uma sequência alvo de passos de caminhar.
Uma vez que o aglomerado de genes responsáveis pela biossíntese de ansamicina cobre uma região relativamente grande do genoma, pode ser vantajoso realizar um denominado passo grande de caminhar ou caminhar pelo cosmídeo. É possível nestes casos, utilizando vectores cosmídicos que permitem a clonagem de fragmentos de DNA muito grandes, cobrir uma região muito grande de DNA, que pode compreender até 42 kb, num único passo de caminhar.
Numa possível forma de realização da presente invenção, por exemplo, para construir um banco de genes em cosmideo de estreptomicetes ou actinomicetes, o DNA completo é isolado sendo o tamanho dos fragmentos de DNA da ordem de cerca de 100 kb e é subsequentemente parcialmente digerido com endonucleases de restrição adequadas. 27 ΡΕ0929681 0 DNA digerido é então extraído de um modo convencional, de modo a remover a endonuclease que ainda está presente e é precipitado e finalmente concentrado. 0 concentrado do fragmento resultante é então fraccionado, por exemplo através de centrifugação em gradiente de densidade, de acordo com o tamanho dos fragmentos individuais. Após as fracções que se podem obter deste modo terem sido dialisadas, podem ser analisados num gel de agarose. As fracções que contêm fragmentos de tamanho adequado são misturadas e concentradas para posterior processamento. Os fragmentos a serem encarados como particularmente adequados para o objectivo desta invenção possuem um tamanho da ordem dos 30 kb a 42 kb, mas preferencialmente de 35 kb a 40 kb.
Em paralelo com a fragmentação acima descrita, ou mais tarde, por exemplo um vector cosmídico adequado pWE15® (Stratagene) é completamente digerido com uma enzima de restrição adequada, por exemplo Bam Hl, para a reacção de ligase subsequente. A ligação do DNA cosmídico aos fragmentos de estreptomicetes ou actinomicetes que tinham sido fraccionados de acordo com o seu tamanho pode ser realizada utilizando uma ligase de DNA de T4. A mistura de ligação que se obtém deste modo é, após um tempo de incubação suficiente, empacotado em fagos λ atrav+es de métodos conhecidos de um modo geral. 28 ΡΕ0929681
As partículas fágicas resultantes são então utilizadas para infectar uma estirpe de hospedeiros adequada. É preferida uma estirpe de E. coli recA", tal como E. coli HB101, ou X-l Blue® (Stratagene) . A selecção de clones transfectados e o isolamento do DNA de plasmídeo pode ser realizado através de métodos geralmente conhecidos. 0 rastreio do banco de genes para os fragmentos de DNA que estão envolvidos na biossíntese da ansamicina é realizado, por exemplo, utilizando uma sonda específica de hibridação, que se assume (por exemplo com base na sequência de DNA ou homologia de DNA ou testes de complementação ou interrupção de genes ou a sua função noutros organismos) compreender regiões de DNA do 'aglomerado de genes de ansamicina'.
Um plasmídeo que compreende um fragmento adicional do tamanho requerido, ou que foi identificado com base em hibridações, pode então ser isolado do gel do modo previamente descrito. A identidade deste fragmento adicional com o fragmento requerido do cosmídeo previamente seleccionado pode ser confirmada por transferência de Southern e hibridação. A análise de função dos fragmentos de DNA isolados deste modo podem ser realizados numa experiência de interrupção de gene, como descrito acima.
Outra utilização possível dos fragmentos de DNA 29 ΡΕ0929681 de acordo com a invenção é modificar ou inactivar enzimas ou domínios envolvidos na biossíntese da ansamicina e, em particular, rifamicina, ou para sintetizar oligonucleótidos que são, por sua vez, utilizados para descobrir sequências homólogas em amplificação por PCR.
Para além dos fragmentos de DNA de acordo com a invenção como tal, são também reivindicadas as sua utilizações primeiramente para produzir rifamicina, análogos da rifamicina ou seus percursores e para a produção bios-sintética de novas ansamicinas ou de seus percursores. São incluídas nesta ligação as moléculas em que a ponte ali-fática está ligada através de uma extremidade ao núcleo aromático.
Os fragmentos de DNA de acordo com a invenção permitem, por exemplo, por combinação com fragmentos de DNA de outras vias biossintéticas, ou por sua inactivação ou modificação, a biossíntese de novos compostos híbridos, em particular de novos análogos de ansamicinas ou rifamicinas. Os passos necessários para isto são geralmente conhecidos e são descritos, por exemplo, em Hopwood, Current Opinlon in Biotechnol. (1993), 4, 531-537. A invenção refere-se ainda à utilização dos fragmentos de DNA de acordo com a invenção para realizar a nova tecnologia de biossíntese combinatória para a produção biossintética de bibliotecas de sintases de policétido com base nos genes da biossíntese de rifamicina e ansamicina. 30 ΡΕ0929681
Se, por exemplo, são produzidos vários conjuntos de modificações, é possível produzir, deste modo, por meio de biossínteses, uma biblioteca de policétidos, por exemplo análogos de ansamicinas ou rifamicinas, que precisam então de ser testados apenas para a actividade dos compostos produzidos deste modo. Os passos necessários para isto são geralmente conhecidos e são descritos, por exemplo, em Tsoi e Khosla, Chemistry & Biology (1995) , 2, 355-362 e documento WO-9508548.
Para além do fragmento como tal, é também reivindicada a sua utilização para a construção genética de estirpes de actinomicetes mutadas, nas quais o aglomerado de genes da biossíntese de rifamicina ou ansamicina natural no cromossoma foi parcialmente ou completamente removida e que podem depois ser utilizadas para expressar aglomerados de genes da biossíntese de ansamicina ou rifamicina geneticamente modificados. A invenção refere-se além disso a um vector híbrido que compreende pelo menos um fragmento de DNA de acordo com a invenção, por exemplo um sítio de ligação a um promotor, um repressor ou activador, um gene repressor ou activador, um gene estrutural, um terminador ou uma sua parte funcional. O vector híbrido compreende, por exemplo, uma cassete de expressão que compreende um fragmento de DNA de acordo com a invenção, que é capaz de expressar uma ou mais proteínas envolvidas na biossíntese de ansamicina e, em particular na biossíntese de rifamicina, ou um seu 31 ΡΕ0929681 fragmento funcional. A invenção refere-se, de igual modo, a um organismo hospedeiro que compreende o vector hibrido descrito acima. São geralmente conhecidos vectores adequados representam o ponto de partida dos vectores híbridos de acordo com a invenção, e organismos hospedeiros adequados, tais como células de bactérias ou de leveduras. 0 organismo hospedeiro pode ser transformado através de métodos geralmente usuais, tais como por meio de protoplastos, Ca2+, Cs+, polietilenoglicol, electroporação, vírus, vesículas lipídicas, ou uma arma de partículas. Os fragmentos de DNA, de acordo com a invenção podem então estar presentes tanto como constituintes extracomossómicos no organismo hospedeiro e integrados através de secções de sequência adequados no cromossoma do organismo hospedeiro. A invenção refere-se, de igual modo, a sintases de policétidos que compreendem os fragmentos de DNA de acordo com a invenção, em particular aqueles de Amycola-topsis mediterranei, que estão envolvidos directamente ou indirectamente na síntese da rifamicina e seus constituintes funcionais, por exemplo domínios enzimaticamente activos. A invenção refere-se ainda mais a uma sonda de hibridação compreendendo um fragmento de DNA de acordo com a invenção, e à sua utilização, em particular para identi- ΡΕ0929681 ficar fragmentos de DNA envolvidos na biossíntese de ansamicinas.
De modo a obter sinais inequívocos na hibridação, o DNA ligado ao filtro (por exemplo produzidos de nylon ou nitrocelulose) é normalmente lavado a 55-65 °C em 0,2 x SSC (1 x SC = cloreto de sódio a 0,15 M, citrato de sódio a 15 mM) .
Exemplos
Geral
As técnicas gerais de genética molecular, tais como isolamento e purificação de ADN, digestão de restrição de DNA, electroforese de DNA em gel de agarose, ligação de fragmentos de restrição, cultura e transformação de E. coli, isolamento de plasmídeos de E.coli são realizadas como descrito por Maniatis et al.r Molecular Cloning: A laboratory manual, Ia Edição. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1982).
As condições de cultura e genética molecular com A. mediterranei e outros actinomycetes são como descritos por Hopwood et al. (Genetic manipulation of streptomyces a laboratory manual, The John Innes Foundation, Norwich, 1985) . Todas as culturas líquidas de A. mediterranei e de outros actinomycetes são realizadas em frascos de Erlenmeyer a 28 °C num agitador a 250 rpm. ΡΕ0929681
Meios de Nutriente utilizados: LB Maniatis et al., Molecular Cloning: A laboratory manual, Ia Edição. Cold Spring Harbour Laboratory Press, Cold Spring Harbour NY (1982) NL14 8 Schupp + Divers FEMS Microbiology Lett. 36, 159-162 (1986) (NL148 = NL148G sem glicina) R2YE Hopwood et al. (Genetic manipulation of streptomyces a laboratory manual. The John Innes Foundation, Norwich, 1985) TB: 12 g/L Bacto triptona 24 g/L Bacto extracto de levedura 4 mL/L glicerol Exemplo 1: Detecção de fragmentos de DNA cromossómico de A. mediterranei possuindo homologia com genes de sintase de policétido de outra bactéria
Para obter ADN genómico de A. mediterranei, células da estirpe de A. mediterranei wt3136 (=LBGS3136, colecção de estirpes ETH) são cultivadas em meio NL148 durante 48 horas. É então transferido 1 mL desta cultura para 50 mL de meio NL148 (+ 2,5 g/L de glicina) num frasco
Erlenmeyer de 200 mL e a cultura foi incubada durante 48 h. 34 ΡΕ0929681
As células foram removidas do meio por centrifugação a 3000 g durante 10 min e são ressuspensas em 5 mL de SET (NaCl a 75 mM, EDTA a 25 mM, Tris a 20 mM, pH 7,5) . O DNA de elevado peso molecular é extraído pelo método de Pospiech e Neumann (Trends in Genetics (1995), 11, 217-218).
De modo a detectar, através de uma transferência de Southern, fragmentos individuais do DNA de A. mediterranei isolado que possuem homologia com genes da sintase de policétido, é preparada uma sonda radioactiva a partir de um aglomerado de genes da sintase de policétido conhecido. Para fazer isto, o fragmento de Pvu I de 3,8 kb de tamanho é isolada a partir do plasmideo recombinante p98/l (Schupp et al., J. of Bacteriol. (1995), 177, 3673-3679), que compreende uma região de DNA, de cerca de 32 kb de tamanho, da sintase de policétido para o antibiótico sorafeno A. Cerca de 0,5 pg do fragmento de DNA de Pvu I de 3,8 kg isolado é marcado radioactivamente com 32P-d-CTP através de tradução de "nick" de Gibco/BRL (Basle), de acordo com as instruções do fabricante.
Para a transferência de Southern, cerca de 2 pg do DNA genómico isolado acima a partir de A. mediterranei são completamente digeridos com a enzima de restrição Bgl II (Bõhringer, Mannheim) e os fragmentos resultantes são fraccionados num gel de agarose a 0,8%. Uma transferência de Southern com este gel de agarose e a sonda de DNA isolado acima (fragmento de Pvu I de 3,8 kb) detecta um fragmento de DNA cortado com Bgl II que tem cerca de 13 kb 35 ΡΕ0929681 de tamanho do DNA genómico de A. mediterranei e que possui homologia com a sonda de DNA utilizada. Pode concluir-se, com base nesta homologia que o fragmento de DNA detectado de A. mediterranei é uma região genética que codifica para uma sintase de policétido e desse modo envolvido na síntese de um antibiótico de policétido.
Exemplo 2: Produção de uma colecção de plasmideos recom- binantes específicos compreendendo fragmentos de cromossoma digeridos com Bgl II, de A. mediterranei de 12-16 kb de tamanho 0 vector de selecção positiva de E. coli pIJ4642 (derivado de pIJ666, Kieser & Melton, Gene (1988), 65, 83-91) desenvolvido no John Innes Centre (Norwich, UK) é utilizado para produzir o banco de genes. Este plasmídeo é primeiro cortado com Bam Hl e os dois fragmentos resultantes são fraccionados num gel de agarose. O mais pequeno de dois fragmentos é o fragmento de enchimento do vector e o maior é a porção de vector que, em auto-ligação após a deleção do fragmento de enchimento forma, devido às sequências de terminação que flanqueiam fd, um palindroma perfeito, o que significa que o plasmídeo não pode ser obtido como tal em E. coli. Esta porção de vector de 3,8 kb de tamanho é isolada do gel de agarose por electroeluição, como descrito nas páginas 164-165 de Maniatis et al., Molecular Cloning: A laboratory manual, Ia Edição. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1982) . 36 ΡΕ0929681
Para preparar os fragmentos de DNA cortados com Bgl II de A. mediterranei, é preparado o DNA genómico de elevado peso molecular preparado no Exemplo 1. Cerca de 10 pg deste DNA são completamente digeridos com a enzima de restrição Bgl II e subsequentemente fraccionados num gel de agarose a 0,8%. Os fragmentos de DNA com um tamanho de cerca de 12-16 kb são cortados do gel e retirados do bloco de gel através de electroeluição (ver acima). Cerca de 1 pg dos fragmentos de Bgl II isolados deste modo é ligado a cerca de 0,1 pg da porção de Bam Hl, isolada acima, do vector pIJ4642. A mistura de ligação obtida deste modo é então transformada na estirpe de E. coli HB101 (Stra-tagene). Cerca de 150 colónias transformadas são seleccio-nadas da mistura de transformação em LB agar com 30 pg por mL de cloranfenicol. Estas colónias contêm plasmídeos recombinantes com fragmentos de DNA genómico cortado com Bgl II de A. mediterranei na gama de 12 - 16 kb.
Exemplo 3: Clonagem e caracterização de DNA cromossómico de A. mediterranei possuindo homologia com genes da sintase de policétido bacteriano
Foram analisados 150 dos clones de plasmídeo preparados no Exemplo 2 por hibridação de colónias utilizando um filtro de nitrocelulose (Schleicher & Schuell), como descrito nas páginas 318-319 de Maniatis et ai., Molecular Cloning: A laboratory manual, Ia Edição. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY ΡΕ0929681 (1982). A sonda de DNA utilizada é o fragmento Pvu I de 3,8 kb, marcado radioactivamente com 32P-d-CTP e isolado no Exemplo 1, do plasmideo p98/l. Os plasmídeos são isolados de 5 clones plasmídicos que apresentam um sinal de hibridação e são caracterizados por duas digestões de restrição com as enzimas Hind III ou Κρη I. A Hind III corta duas vezes na porção do vector dos clones, 0,3 kb para a direita e para a esquerda do sitio de clivagem de Bam Hl, no qual o DNA de A. mediterranei foi integrado. A Κρη I não corta na porção do vector pIJ4642. Esta análise de restrição demonstra que os clones investigados compreendem tanto os fragmentos idênticos de Hind III de cerca de 14 e 3,1 kb como os fragmentos idênticos de Κρη I de aproximadamente 11,4 e 5,7 kb em tamanho. Isto demonstra que estes clones compreendem o mesmo fragmento genómico de Bgl II de A. mediterranei e que o último possui um comprimento de cerca de 13 kb. Pode ser concluído adicionalmente a partir desta análise de restrição que este fragmento clonado de Bgl II não possui um sítio de clivagem interno Hind III, mas possui 2 sítios de clivagem Κρη I, que originam um fragmento Κρη I interno de 5,7 kb de tamanho. O DNA plasmídico dos 5 clones acima com fragmentos de restrição idênticos é ainda caracterizado através de uma transferência de Southern. Para este objectivo, os plasmídeos são cortados com Hind III e Κρη I e a sonda de DNA utilizada é o fragmento Pvu I de 3,8 kb do plasmideo p98/l, marcado radioactivamente com P, 38 ΡΕ0929681 utilizado acima. Esta experiência confirma que os 5 plasmideos contêm fragmentos de DNA de A. mediterranei idênticos e que estes possuem homologia significativa com a sonda de DNA que é caracteristica dos genes da sintase de policétido. Adicionalmente, a transferência de Southern demonstra que o fragmento de Κρη I interno de 5,7 kb de tamanho possui, igualmente, homologia significativa com a sonda de DNA utilizada. 0 plasmídeo denominado pRi7-3 é seleccionado a partir dos 5 plasmideos para posterior processamento.
Para demonstrar que o fragmento Bgl II clonado de cerca de 13 kb em comprimento de A. mediterranei é um fragmento de DNA cromossómico original, é realizada outra transferência de Southern. 0 DNA cromossómico de A. mediterranei que foi cortado com Bgl II, Κρη I ou Bam Hl é empregue nesta transferência. Dois fragmentos Bam Hl que têm cerca de 1,8 e 1,9 kb em tamanho e estão presentes no fragmento Κρη I de 5,7 kb de pRi7-3 são utilizados como sonda de DNA marcado radioactivamente. Esta experiência confirma que o fragmento de DNA de Bgl II de cerca de 13 kb em tamanho clonado no plasmideo recombinante pRi7-3 é um fragmento genómico autêntico de A. mediterranei. Adicionalmente, esta experiência confirma que o fragmento clonado possui um fragmento Κρη I interno de 5,7 kb em tamanho e dois fragmentos Bam Hl de cerca de 1,8 e 1,9 kb em tamanho e que estes fragmentos de DNA são igualmente fragmentos de DNA genómico autênticos de A. mediterranei. 39 ΡΕ0929681
Exemplo 4: Demonstração de uma homologia significativa do fragmento Bgl II de 13 kb qenómico clonado de A. mediterranei com DNA cromossómico de outros actinomycetes que produzem ansamicinas A demonstração de uma homologia significativa entre a região de DNA cromossómica clonada de A. mediterranei e o DNA cromossómico de outros actimomycetes que produzem ansamicina ocorre através de uma experiência de transferência de Southern. As estirpes seguintes que produzem ansamicina são empregues para este efeito (as ansamicinas produzidas pelas estirpes estão entre parêntesis) : Streptomyces spectabilis (estreptovaricinas), Stre-ptomyces tolypophorus (tolipomicinas), Streptomyces hygros-copicus (geldanamicinas), Nocardia species ATCC31281 (ansamitocinas). 0 DNA genómico destas estirpes é isolado como descrito para A. mediterranei no Exemplo 1 e digerido com a enzima de restrição Κρη I e os fragmentos de restrição obtidos deste modo são fraccionados num gel de agarose para a transferência de Southern. Dois fragmentos de Bam Hl de cerca de 1,8 e 1,9 kb em tamanho de A. mediterranei, que são utilizados no Exemplo 3 e são isolados do plasmídeo pRi7-3, são utilizados como sonda radioactiva. Esta experiência demonstra que estas estirpes que produzem ansamicina possuem uma homologia de DNA significativa com a sonda de DNA utilizada e desse modo com a região cromossómica clonada de A. mediterranei. Deve ser observado a este respeito que a homologia no caso de produtores de ansamicinas com um sistema de anel de 40 ΡΕ0929681 naftoquinóide (estreptovaricina, tolipomicina) é maior do que no caso daqueles com sistema de anel de benzoquinóide (geldanamicina, ansamitocina). Este resultado sugere que a região de DNA cromossómico clonada de A. mediterranei é típica dos aglomerados de genes da biossíntese da ansami-cina e, especialmente, dos aglomerados de genes para ansa-micinas com sistemas de anel naftoquinóide, correspondendo ao sistema de anel nas rifamicinas.
Exemplo 5: Determinação da sequência de DNA do fragmento de Κρη I de 5,7 kb em tamanho, localizado no fragmento Bgl II clonado de 13 kb
Para a sequenciação, o fragmento Κρη I de 5,7 kb é isolado do plasmídeo pRi7-3 (DSM 11114) (Maniatis et al. 1992) e subclonado no sítio de clivagem de Κρη I do vector pBRKan4, que é adequado para a sequenciação de DNA, produzindo os plasmídeos pTS004 e pTS005. O vector pBRKanf4 (derivado de pBRKanfl; Bhat, Gene (1993) 134, 83-87) é adequado para introduzir deleções sequenciais de fragmentos Sau 3A no fragmento de inserção clonado, porque este vector não possui, ele próprio, uma sequência de nucleótidos GATC. Adicionalmente, os fragmentos Bam Hl de 1,9 e 1,8 kb em tamanho presentes no fragmento Κρη I de 5,7 kb são sub-clonados no sítio de clivagem Bam Hl de pBRKanf4, resultando nos plasmídeos pTS006 e pTS007, e pTS008 e pTS009, respectivamente.
Para preparar subclones truncados sequencialmente ΡΕ0929681 por fragmentos Sau 3A para a sequenciação de DNA, os plasmídeos pTS004 a pTS009 são parcialmente digeridos com Sau 3A e completamente digeridos com Xba I ou Hind III (um sitio de clivagem na região de clonagem múltipla do vec-tor). 0 DNA obtido deste modo (consistindo no vector linearizado com fragmentos de DNA inseridos truncados pelos fragmentos Sau 3A) é cheio nas suas extremidades utilizando polimerase de Klenow (fragmento da polimerase I, ver Maniatis et al., páginas 113-114), auto-ligados com ligase de DNA de T4 e transformados em E. coli DH5a. 0 DNA plasmidico que corresponde aos plasmídeos pTS004 a pTS009, mas possui regiões de DNA, que são truncados a partir de um lado por fragmentos de Sau 3A, dos fragmentos originais integrados de A. mediterranei, é isolado a partir de clones individuais transformados obtidos deste modo. A sequenciação de DNA é realizada com os plasmídeos obtidos deste modo e com pTS004 a pTS009, utilizando o kit de reacção de Perkin-Elmer/Applied Biosystems com reagentes de terminador marcados com corante (Kit N° 402122) e um iniciador universal, ou um iniciador de T7. É utilizado um protocolo de sequenciação de ciclo convencional com um termociclador (MJ Research DNA Engine Thermo-cycler, Modelo 225) e as reacções de sequenciação são analisadas pelo sequenciador de DNA automático Applied Biosystems (Modelo 373 ou 377) , de acordo com as instruções do fabricante. Para analisar estes resultados, são empregues os seguintes programas de computador (software): software de análise de DNA da Applied Biosystems, Unix 42 ΡΕ0929681
Solaris CDE software, DNA assembly and analysis package GAP licenciada por R. Staden (Nucleic Acids Research (1995) 23, 1406-1410) e Blast (NCBI).
Os métodos acima descritos podem ser utilizados para sequenciar completamente ambas as cadeias de DNA do fragmento de Κρη I de 5,7 kb de A. mediterranei estirpe wt3136. A sequência de DNA do fragmento de 5,7 kb com um comprimento de 5676 pares de bases é apresentada na SEQ ID NO 1.
Exemplo 6: Análise da região que codifica a proteína (genes) no fragmento Κρη I de 5,7 kb de A. mediterranei A sequência de nucleótidos do fragmento de Κρη I de 5,7 kb é analisada utilizando o programa de computador Codonpreference (Genetics Computer Group, Universidade de Wisconsin, 1994). Esta análise demonstra que este fragmento é na totalidade do seu comprimento uma região que codifica proteina e assim forma parte de uma grelha de leitura aberta (ORF). Os codões utilizados nesta ORF são tipicos de genes de estreptomicetes e actinomicetes. A sequência de aminoácidos derivada da sequência de DNA desta ORF é apresentada em SEQ ID NO 2.
As sintases de policétido dos antibióticos de macrólido (tais como eritromicina, rapacinina) são proteínas multifuncionais muito grandes que compreendem vários 43 ΡΕ0929681 domínios enzimaticamente activos que são estão agora bem caracterizados (Hopwood e Khosla, Ciba Foundation Symposium (1992), 171, 88-112/ Donadio e Katz, Gene (1992), 111, 51-60; Schwecke et ai., Proc. Natl. Acad. Sei. U.S.A. (1995) 92 (17), 7839-7843). A comparação da sequência de aminoácidos apresentada em SEQ ID NO 2 com a da muito bem caracterizada sintase de policétido de eritromicina, ORF1 de eryA (Donadio, Science, (1991) 252, 675-679, gene de sequência de DNA /NO de acesso da EMBL M6367 6) origina os seguintes resultados:
Região da SEQ ID NO 2: aminoácidos 2 - 235: é 40% idêntica ao domínio da aciltransferase do módulo 2 do locus eryA de Saccharopolyspora erythraea.
Região da SEQ ID NO 2: aminoácidos 325 - 470: é 43% idêntica ao domínio da desidratase do módulo 4 do locus eryA de Saccharopolyspora erythraea.
Região da SEQ ID NO 2: aminoácidos 7 62 - 940: é 48% idêntica ao domínio da cetorredutase do módulo 2 do locus eryA de Saccharopolyspora erythraea.
Região da SEQ ID NO 2: aminoácidos 1024 - 1109: é 57% idêntica ao domínio da proteína de veículo de acilo do módulo 2 do locus eryA de Saccharopolyspora erythraea.
Região da SEQ ID NO 2: aminoácidos 1126 - 1584: é 59% idêntica ao domínio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea. 44 ΡΕ0929681
As semelhanças muito grandes encontradas na sequência de aminoácidos e no tamanho e arranjo dos domínios enzimáticos sugerem que a região Κρη I clonada de 5,7 kb em tamanho de A. mediterranei codifica para parte de uma sintase de policétido que é típica de policétidos do tipo macrólido.
Exemplo 7: Construção de um banco de genes em cosmídeo de A. mediterranei 0 vector cosmídico empregue é o plasmídeo pWE15, que pode ser adquirido (Stratagene, La Jolla, CA, USA). 0 pWE15 é completamente cortado com a enzima Bam Hl (Maniatis et al. 1989) e precipitado com etanol. Para a ligação do DNA cosmídico, o DNA cromossómico de A. mediterranei é isolado como descrito no Exemplo 1 e parcialmente digerido com a enzima de restrição Sau 3A (Bõhringer, Mannheim) para formar fragmentos de DNA, a maioria dos quais possui um tamanho de 2 0 - 4 0 kb. O DNA pré-tratado deste modo é fraccionado pelo tamanho de fragmento por centrifugação (83 000 g, 20 °C) num gradiente de densidade em sacarose de 10% a 40% durante 18 h. O gradiente é fraccionado em alíquotas de 0,5 mL e dialisado e são analisadas amostras de 10 pL num gel de agarose a 0,3% com padrão de tamanho de DNA. As fracções com DNA de 25 - 40 kb em comprimento são combinadas, precipitadas com etanol e ressuspensas num pequeno volume de água. 45 ΡΕ0929681 A ligação do DNA cosmídico aos fragmentos Sau 3A de A. mediterranei isolados de acordo com o seu tamanho (ver acima) ocorre com a ajuda de uma ligase de DNA de T4. Cerca de 3 gg de cada um dos dois materiais de partida são empregues num volume de reacção de 2 0 gL e a ligação é realizada a 12 °C durante 15 h. São empacotados 4 mL desta mistura de ligação em fagos lambda utilizando um kit de empacotamento in vitro, que pode ser adquirido a Stratagene (La Jolla , CA, USA) (de acordo com as instruções do fabricante ) . Os fagos resultantes são introduzidos por infecção na estirpe de E. coli X-IBlue® (Stratagene), . A titulação do material fágico revela cerca de 20 000 partículas fágicas por mL, a análise de 12 clones de cosmideos demonstra que todos os clones contêm inserções de plasmideo de 25 - 40 kb em tamanho. Exemplo 8: Identificação, clonagem e caracterização da região de DNA cromossómico de A. mediterranei que está adjacente ao fragmento Κρη I de 5,7 kb clonado
Para identificar e clonar a região de DNA cromossómico de A. mediterranei que está adjacente ao fragmento Κρη I de 5,7 kb acima descrito nos Exemplo 3 e 5, primeiramente é preparada uma sonda de DNA radioactiva a partir do fragmento Κρη I de 5,7 kb. Isto é realizado marcando radioactivamente aproximadamente 0,5 gg do fragmento de DNA isolado com 32P-d-CTP através do sistema de tradução de "nick" da Gibco/BRL (Basle), de acordo com as instruções do fabricante. 46 ΡΕ0929681 A infecção de E. coli X-l Blue MR (stratagene) , com uma fracção dos fagos lambda empacotados in vitro (ver Exemplo 7) resulta em mais de 2000 clones em várias placas de LB + ampicilina (50 pg/mL) . Estes clones são testados por hibridação de colónias em filtros de nitrocelulose (ver Exemplo 3 para o método) . A sonda de DNA utilizada no fragmento de DNA Κρη I de 5,7 kb de A. mediterranei, que é marcada radioactivamente com 32P-d-CTP e foi preparada acima.
Foram encontrados 5 clones de cosmideo apresentando um sinal significativo com a sonda de DNA. O DNA plasmidico destes cosmideos é isolado (Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), digerido com Κρη I e isolado num gel de agarose. A análise revela que todos os 5 plasmideos integraram DNA cromossómico de A. mediterranei, com um tamanho da ordem de cerca de 23-35 kb e contêm todos o fragmento Κρη I de 5,7 kb.
Para caracterizar a região do DNA cromossómico de A. mediterranei que está adjacente ao fragmento Κρη I clo-nado, o plasmideo de um dos 5 clones de cosmideo é sujeito a análise de restrição. O plasmideo seleccionado do clone do cosmideo possui o número pNE112 e, de igual modo, compreende o fragmento Bgl II de 13 kb descrito no Exemplo 3. A digestão do plasmideo pNE112 com as enzimas de 47 ΡΕ0929681 restrição Bam Hl, Bgl II, Hind III (isoladamente ou em combinação) permite que seja preparado um mapa de restrição da região clonada de A. mediterranei e isto permite que esta região de cerca de 2 6 kb em tamanho no cromossoma de A. mediterranei seja caracterizada. Esta região é carac-terizada pelos seguintes sitios de clivagem de restrição, com a distância apresentada em kb a partir de uma extremidade: Bam Hl na posição 3,2 kb, Hind III na posição 6,6 kb, Bgl II na posição 11,5 kb, Bam Hl na posição 16,6 kb, Bam Hl na posição 17,3 kb, Bam Hl na posição 21 kb e Bgl II na posição 24 kb.
Exemplo 9: Determinação da sequência da região de DNA cromossómico de A. mediterranei presente no plasmideo pNE112 e sobrepondo com o fragmento Κρη I de 5,7 kb clonado 0 DNA do plasmideo pNE112 é dividido em fragmentos directamente utilizando um nebulizador Aero-Mist (CIS-US Inc., Bedford, MA, USA) sob uma pressão de azoto de 8-12 libras por polegada quadrada. Estes fragmentos de DNA aleatórios são tratados com polimerase de DNA de T4, cinase de DNA de T4 e polimerase de DNA de E. coli na presença de 4 dNTPs, de modo a criar extremidades rombas nos fragmentos de DNA de cadeia dupla (Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) . Os fragmentos são então fraccionados em agarose de baixo ponto de fusão a 0,8% (FMC SeaPlaque Agarose, N° de catálogo 50113) e os fragmentos de 48 ΡΕ0929681 1,5-2 kb em tamanho são extraídos por extracção com fenol a quente (Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Os fragmentos de DNA obtidos deste modo são então ligados com o auxílio da ligase de DNA de T4 ao vector plasmídico pBRKanf4 (ver Exemplo 5) ou pBlueScript KS+ (Stratagene, La Jolla, CA, USA), cada um dos quais é cortado uma vez com extremidades quadradas através de digestão de restrição apropriada (Sma I para pBRKanf4 e Eco RV para pBluScript KS+) e é desfosforilado nas extremidades através de tratamento com fosfatase alcalina (Bõhringer, Mannheim). A mistura de ligação é então transformada em E. coli DH5a e as células são incubadas durante a noite em LB agar com o antibiótico apropriado (canamicina a 40 pg/mL para pBRKanf4, ampicilina a 100 pg/mL para pBlueScript KS+) . As colónias crescidas são transferidas isoladamente para 1,25 mL de meio TB líquido com antibiótico em placas de 96 poços com pólos de um volume de 0,2 mL e incubadas a 37 °C durante a noite. O DNA molde para sequenciação é preparado directamente a partir destas culturas por lise alcalina (Birboim, Methods in Enzymology (1993) 100, 243-255) . A sequenciação do DNA ocorre utilizando o kit de reacção da Perkin Elmer/Applied Biosystems com reagentes de terminação marcados com corante (Kit N° 402122) e os iniciadores universais de M13 mpl8/19 ou iniciadores T3, T7, ou com iniciadores preparados pelos autores, que se ligam a sequências internas. É utilizado um protocolo de sequenciação de ciclos convencional com 20 ciclos, com um termociclador (MJ Research DNA Engine Thermocycler, Modelo 225) . As reacções de sequenciação são precipitadas com 49 ΡΕ0929681 etanol, ressuspensas em tampão de aplicação de formamida e fraccionadas e analisadas por electroforese utilizando o sequenciador de DNA automatizado da Applied Biosystems (Modelo 377) de acordo com as instruções do fabricante. Os ficheiros de sequência são produzidos com o auxílio do programa de computador Applied Biosystems DNA Analysis Software e transferidos para um computador SUN UltraSpark para análise posterior. São empregues os seguintes programas de computador (software) para analisar os resultados: o pacote de montagem e análise de DNA GAP (Genetics Computer Group, Universidade de Wisconsis, R. Staden, Universidade de Cambridge, UK) e os quatro programas: Phred, Cross-match, Phrad e Consed (P. Green, Universidade de Washington, B. Ewing e D. Gordon, Universidade de Washington em Saint Louis). Após as sequências originais terem sido ligadas umas com as outras para produzir sequências coerentes mais longas (contigs), as secções de DNA em falta são sequenciadas especificamente com o auxílio de novos iniciadores (que se ligam a secções sequenciadas), ou através de sequenciação mais longa ou sequenciando a outra cadeia. É possível, com o método descrito acima, sequen-ciar toda a região de DNA cromossómico de 26 kb em tamanho de A mediterranei que é clonado em pNE112. A sequência de DNA é apresentada na SEQ ID NO 3 na secção de 27801 - 53789 pares de bases. A sequência de DNA do fragmento Κρη I de 5,7 kb no Exemplo 5 está presente em pNE112 e é apresentada na SEQ ID NO 3 na região de 43093 - 48768 pares de bases. 50 ΡΕ0929681
Exemplo 10: Identificação e caracterização de clones cosmldicos com fragmentos de DNA cromossómico de A mediterranei que se sobrepõem a uma extremidade da região de A mediterranei de 26 kb de pNE112
Para identificar os clones cosmidicos que compreendem os fragmentos de DNA cromossómico de A mediterranei localizados directamente em frente à região de 26 kb de pNE112, o plasmideo pNE112 é cortado com a enzima de restrição Bam Hl e o fragmento Bam Hl resultante de 3,2 kb em tamanho é separado dos outros fragmentos Bam Hl num gel de agarose e isolado a partir do gel. Este fragmento Bam Hl está localizado numa extremidade do DNA de A mediterranei incorporado em pNE112 (ver Exemplo 8) e pode então ser utilizado como sonda de DNA para descobrir os clones cosmidicos requeridos. Aproximadamente 0,5 pg do fragmento de DNA Bam Hl de 3,2 kb isolado é marcado radioactivamente com 32P-dCTP através do sistema de tradução de "nick" da Gibco/BRL (Basel), de acordo com as instruções do fabricante. O banco de genes em cosmideos de A mediterranei descrito no Exemplo 7 é então analisado por hibridação de colónias (Método do Exemplo 3), utilizando esta sonda de 3,2 kb para clones com sobreposições. Podem ser identificados deste modo dois clones de cosmideos com um forte sinal de hibridação e são-lhes atribuídos os números pNE95 e pRi44-2. É possivel, através de análise de restrição e transferência de Southern, confirmar que os plasmideos 51 ΡΕ0929681 pNE95 e pRi44-2 compreendem fragmentos de DNA cromossómico de A mediterranei, que se sobrepõe ao fragmento Bam Hl de 3,2 kb de pNE112 e em conjunto cobrem uma região cro-mossómica de 35 kb de A mediterranei que está directamente adjacente ao fragmento de 26 kb de A mediterranei de pNE112 clonado em pNE112.
Exemplo 11: Análise de restrição da região cromossómica de A mediterranei clonada com os clones cosmi-dicos pNE112, pNE95 e pRi44-2
A região de DNA cromossómico de A mediterranei clonada com os clones cosmidicos pNE112, pNE95 e pRi44-2 é caracterizada realizando uma análise de restrição. A digestão do DNA plasmidico os três cosmideos com as enzimas de restrição Eco RI, Bgl II e Hind III (isoladamente ou em combinação) produz uma mapa de restrição grosseiro da região clonada de A mediterranei. Os fragmentos sobrepo-níveis dos três plasmideos são, neste caso, estabelecidos e confirmados por transferência de Southern. Esta região cromossómica de A mediterranei possui um tamanho de cerca de 61 kb e é caracterizada pelos seguintes sitios de clivagem de restrição com a distância apresentada em kb a partir de uma extremidade: Eco RI na posição 7,2 kb, Hind III na posição 21 kb, Bgl II na posição 31 kb, Hind III na posição 42 kb, Bgl II na posição 47 kb e Bgl II na posição 59 kb. Nesta região no cromossoma de A mediterranei, o plasmideo pRi 44-2 cobre uma região desde a posição 1 até aproximadamente 37 kb, o plasmideo pNE95 cobre uma região de aproximadamente a posição 9 kb - 51 kb e o plasmideo pNE 52 ΡΕ0929681 112 cobre uma região de aproximadamente a posição 35 kb -61 kb.
Exemplo 12: Determinação da sequência da região de DNA cromossómico de A mediterranei descrita no Exemplo 11 desde o sitio de clivagem de Eco RI na posição 7,2 kb até à extremidade de 61 kb A determinação da sequência de DNA da região cromossómica descrita no Exemplo 11 de A mediterranei (sitio de clivagem de Eco RI na posição 7,2 kb até 51 kb) é realizada com os plasmideos pRi 44-2 e pNE95, utilizando exactamente o mesmo método como descrito no Exemplo 9. A análise da sequência de DNA obtida deste modo confirma o mapa de restrição grosseiro descrito no Exemplo 11 e as sobreposições dos fragmentos de A mediterranei clonados nos plasmideos pNE112, pNE95 e pRi44-2. A sequência de DNA da região de DNA cromossómica de A mediterranei descrita no Exemplo 11 desde o sitio de clivagem de Eco RI na posição 7,2 kb até à extremidade em 61 kb é apresentada na SEQ D NO 3 (comprimento de 537 8 9 pares de bases).
Exemplo 13: Análise de uma região codificante da primeira proteína (ORF A) da região cromossómica de A mediterranei clonada apresentada em SEQ ID NO 3
A sequência de nucleótidos apresentada na SEQ ID ΡΕ0929681 NO 3 é analisada com o programa de computador Codon-preference (Genetics Computer Group, Universidade de Wis-consin, 1994) . Esta análise demonstra que uma grelha de leitura aberta muito grande (ORF A) , que codifica para uma proteína está presente no primeiro terço da sequência (posição 1825 - 15543 incluindo um codão stop na SEQ ID NO 3) . Os codões utilizados na ORF A são típicos de genes de actinomicetes com um teor em G+C elevado. A comparação da sequência de aminoácidos de ORF A (SEQ ID NO 4, tamanho de 4572 aminoácidos) com outras sintases de policétido e especificamente com a sintase de policétido muito bem caracterizada de Saccharopolyspora erythraea (Donadio, Science, (1991) 252, 675-679, gene da sequência de DNA/N° de acesso EMBL M63676) produz os seguintes resultados:
Região da ORF A, SEQ ID NO 4: aminoácidos 370 - 451: é 50% idêntico ao domínio da proteína veículo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 469 - 889: é 65% idêntica ao domínio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 982 - 1292: é 54% idêntica ao domínio da acil-transferase do módulo 1 do locus eryA de Saccharopolyspora erythraea. 54 ΡΕ0929681
Região da ORF A, SEQ ID NO 4: aminoácidos 1324 - 1442: é 42% idêntica ao domínio da desidratase do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 1664 - 1840: é 56% idêntica ao domínio da cetorredutase do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 1929 - 2000: é 53% idêntica ao domínio da proteína veículo de acilo do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 2032 - 2453: é 64% idêntica ao domínio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 2554 - 2865: é 37% idêntica ao domínio da acil-transferase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 2918 - 2991: é 54% idêntica ao domínio da proteína veículo de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 3009 - 3431: é 65% idêntica ao domínio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 3532 - 3847: 55 ΡΕ0929681 é 53% idêntica ao domínio da acil-transferase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 4142 - 4307: é 43% idêntica ao domínio da cetorredutase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF A, SEQ ID NO 4: aminoácidos 4405 - 4490: é 50% idêntica ao domínio da proteína veículo de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Adicionalmente a estas homologias significativas com a sintase de policétido de eryA de S. erythraea, a região da ORF, SEQ ID NO 4: aminoácidos 1 - 356 é 53% idêntico ao domínio forma de realização activação da unidade de iniciação postulado da sintase de policétido da rapamicina de Streptomyces hygroscopicus (Aparicio et al. GENE (1996) 169, 9-16).
As grandes semelhanças encontradas na sequência de aminoácidos dos domínios enzimáticos sugerem, de forma inequívoca, que a região que codifica a proteína (ORF A) da região cromossómica de A. mediterranei apresentada na SEQ ID NO 3 codifica para uma sintase de policétido modular típico (tipo 1). Esta sintase de policétido muito grande de A. mediterranei codificada pela ORF A compreende três módulos bioactivos completos que são, cada um, responsável pela condensação de uma unidade de C2 no anel de macrólido da molécula e pela modificação correcta dos grupos β-ceto 56 ΡΕ0929681 inicialmente formados. Devido à homologia com dominios activantes da sintase de policétido de rapamicina, o primeiro módulo descrito acima compreende muito provavelmente um dominio enzimático para activar a unidade iniciadora aromática da biossintese de rifamicina, ácido 3-amino-5-hidroxibenzóico (Ghisalba et al.r Biotechnology of Industrial Antibiotics Vandamme E.J. Ed., Decker Inc. New York, (1984) 281-327).
Exemplo 14: Análise de uma região codificando uma segunda proteína (ORF B) da região cromossómica clona-da de A. mediterranei apresentada na SEQ ID NO 3 A sequência de nucleótidos em SEQ ID NO 3 é analisada utilizando o programa de computador Codon-preference (Genetics Computer Group, Universidade de Wis-consin, 1994). Esta análise demonstra que outra grelha de leitura aberta (ORF B) que codifica para uma proteína está presente na região média da sequência (posição 15550 30759 incluindo o codão stop na SEQ ID NO 3) . Os codões utilizados na ORF B são típicos dos genes de actinomicetes com um teor de G + C elevado. A comparação da sequência de aminoácidos de ORF B (SEQ ID NO 5, 5069 aminoácidos de comprimento) com outras sintases de policétido e especificamente com uma sintase de policétido muito bem caracterizada de Saccharopolyspora 57 ΡΕ0929681 erythraea (Donadio, Science, (1991) 252, 675-679, gene da sequência de DNA(N° de acesso da EMBL M63676) produz os seguintes resultados:
Região da ORF B, SEQ ID NO 5: aminoácidos 44 - 468: é 62% idêntica ao domínio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5: aminoácidos 571 - 889: é 56% idêntica ao domínio da transferase de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5: aminoácidos 921 - 1055: é 47% idêntica ao domínio da desidratase do módulo 4 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5: aminoácidos 1353 - 1525: é 49% idêntica ao domínio da cetorredutase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5: aminoácidos 1621 - 1706: é 53% idêntica ao domínio da proteína veículo de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5: aminoácidos 1726 - 2148: é 62% idêntica ao domínio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea. 58 ΡΕ0929681
Região da ORF B, SEQ ID NO 5: aminoácidos 2251 - 2560: é 55% idêntica ao dominio da transferase de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5: aminoácidos 2961 - 3132: é 49% idêntica ao domínio da cetorredutase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5: aminoácidos 3228 - 3313: é 52% idêntica ao domínio da proteína de veículo de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5: aminoácidos 3332 - 3313; é 63% idêntica ao domínio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5; aminoácidos 3857 - 4173; é 52% idêntica ao domínio da transferase de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5: aminoácidos 4664 - 4799: é 47% idêntica ao domínio da cetorredutase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF B, SEQ ID NO 5: aminoácidos 4929 - 5014: é 52% idêntica ao domínio da proteína de veículo de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea. 59 ΡΕ0929681
Exemplo 15: Análise da região codificando uma terceira proteína (ORF C) da região cromossómica clona-da de A, mediterranei apresentada na SEQ ID NO 3 A sequência de nucleótidos na SEQ ID NO 3 é analisada utilizando o programa de computador Codon-preference (Genetics Computer Group, Universidade de Wis-consin, 1994) . Esta análise demonstra que uma grelha de leitura aberta (ORF C) que codifica para uma proteína está presente na região média da sequência (posição 30895 30060 incluindo o codão stop na SEQ ID NO 3) . Os codões utilizados na ORF C são típicos dos genes de actinomicetes com um teor de G + C elevado. A comparação da sequência de aminoácidos de ORF C (SEQ ID NO 6, 1721 aminoácidos de comprimento) com outras sintases de policétido e especificamente com uma sintase de policétido muito bem caracterizada de Saccharopolyspora erythraea (Donadio, Science, (1991) 252, 675-679, gene da sequência de DNA(N° de acesso da EMBL M63676) produz os seguintes resultados:
Região da ORF C, SEQ ID NO 6: aminoácidos 1 - 414: é 63% idêntica ao domínio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF C, SEQ ID NO 6: aminoácidos 614 - 828: é 54% idêntica ao domínio da transferase de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea. 60 ΡΕ0929681
Região da ORF C, SEQ ID NO 6: aminoácidos 1290 - 1399: é 49% idêntica ao domínio da cetorredutase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF C, SEQ ID NO 6: aminoácidos 1563 - 1648: é 55% idêntica ao domínio da proteína veículo de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Exemplo 16: Análise da região codificando uma guarta proteína (ORF D) da região cromossómica clonada de A. mediterranei apresentada na SEQ ID NO 3 A sequência de nucleótidos na SEQ ID NO 3 é analisada utilizando o programa de computador Codonpreference (Genetics Computer Group, Universidade de Wisconsin, 1994). Esta análise demonstra que uma grelha de leitura aberta (ORF D) que codifica para uma proteína está presente na região média da sequência (posição 36259 - 41325 incluindo o codão stop na SEQ ID NO 3). Os codões utilizados na ORF D são típicos dos genes de actinomicetes com um teor de G + C elevado. A comparação da sequência de aminoácidos de ORF D (SEQ ID NO 7, 1688 aminoácidos de comprimento) com outras sintases de policétido e especificamente com uma sintase de policétido muito bem caracterizada de Saccharopolyspora erythraea (Donadio, Science, (1991) 252, 675-679, gene da sequência de DNA(N° de acesso da EMBL M63676) produz os seguintes resultados: 61 ΡΕ0929681
Região da ORF D, SEQ ID NO 7: aminoácidos 1 - 418: é 64% idêntica ao dominio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF D, SEQ ID NO 7: aminoácidos 524 - 841: é 54% idêntica ao domínio da transferase de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF D, SEQ ID NO 7: aminoácidos 1260 - 1432: é 51% idêntica ao domínio da cetorredutase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF D, SEQ ID NO 7: aminoácidos 1523 - 1608: é 53% idêntica ao dominio da proteína veículo de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Exemplo 17: Análise da região codificando uma quinta proteína (ORF E) da região cromossómica clonada de A, mediterranei apresentada na SEQ ID NO 3 A sequência de nucleótidos na SEQ ID NO 3 é analisada utilizando o programa de computador Codon-preference (Genetics Computer Group, Universidade de Wis-consin, 1994). Esta análise demonstra que uma grelha de leitura aberta (ORF E) que codifica para uma proteína está presente na região média da sequência (posição 41373 - 51614 incluindo o codão stop na SEQ ID NO 3) . Os codões utilizados na ORF E são típicos dos genes de actinomicetes com um teor de G + C elevado. 62 ΡΕ0929681 A comparação da sequência de aminoácidos de ORF D (SEQ ID NO 8, 3413 aminoácidos de comprimento) com outras sintases de policétido e especificamente com uma sintase de policétido muito bem caracterizada de Saccharopolyspora erythraea (Donadio, Science, (1991) 252, 675-679, gene da sequência de DNA(N° de acesso da EMBL M63676) produz os seguintes resultados:
Região da ORF E, SEQ ID NO 8: aminoácidos 31 - 451: é 64% idêntica ao dominio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF E, SEQ ID NO 8: aminoácidos 555 - 874: é 37% idêntica ao dominio da transferase de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF E, SEQ ID NO 8: aminoácidos 907 - 1036: é 49% idêntica ao dominio da desidratase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF E, SEQ ID NO 8: aminoácidos 1336 - 1500: é 52% idêntica ao dominio da cetorredutase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF E, SEQ ID NO 8: aminoácidos 1598 - 1683: é 51% idêntica ao domínio da proteína veículo de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea. 63 ΡΕ0929681
Região da ORF E, SEQ ID NO 8: aminoácidos 1702 - 2124: é 62% idêntica ao dominio da sintase de cetoacilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF E, SEQ ID NO 8: aminoácidos 2229 - 2543: é 53% idêntica ao dominio da transferase de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF E, SEQ ID NO 8: aminoácidos 2573 - 2700: é 47% idêntica ao dominio da desidratase do módulo 4 do locus eryA de Saccharopolyspora erythraea.
Região da ORF E, SEQ ID NO 8: aminoácidos 3054 - 3227: é 52% idêntica ao dominio da cetorredutase do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Região da ORF E, SEQ ID NO 8: aminoácidos 3324 - 3405: é 51% idêntica ao dominio da proteína veículo de acilo do módulo 1 do locus eryA de Saccharopolyspora erythraea.
Exemplo 18: Análise da região codificando uma sexta proteína (ORF F) da região cromossómica clonada de A, mediterranei apresentada na SEQ ID NO 3 A sequência de nucleótidos na SEQ ID NO 3 é analisada utilizando o programa de computador Codon-preference (Genetics Computer Group, Universidade de Wis-consin, 1994) . Esta análise demonstra que uma grelha de leitura aberta (ORF F) que codifica para uma proteína está 64 ΡΕ0929681 presente na região traseira da sequência (posição 51713 -52393 incluindo o codão stop na SEQ ID NO 3) . Os codões utilizados na ORF F são tipicos dos genes de actinomicetes com um teor de G + C elevado. A comparação da sequência de aminoácidos de ORF F (SEQ ID NO 9, 226 aminoácidos de comprimento) com proteínas da base de dados EMBL (Heidelberg) apresenta uma grande semelhança com a O-aciltransferase de N-hidroxilamina de Salmonella typhymurium (29% de identidade numa região de 134 aminoácidos). Também existe homologia significativa com aciltransferases de arilamina de outros organismos. Pode concluir-se a partir destes argumentos que a ORF F encontrada em A. mediterranei na SEQ ID NO 3 codifica para uma transferase de arilaminacilo e pode assumir-se que esta enzima é responsável pela ligação de uma cadeia de acilo longa produzida pela sintase de policétido ao grupo amino na molécula iniciadora, ácido 3-amino-5-hidroxibenzóico. Esta reacção fecharia o sistema de anel da rifamicina correctamente após a finalização dos passos de condensação pela sintase de policétido.
Exemplo 19: Resumindo a avaliação da função das proteínas codificadas por ORF A - F na SEQ ID NO 3 e o seu papel na biossíntese da rifamicina
As cinco regiões que codificam proteínas (ORF A-E) , descritas nos Exemplos 13 - 17, da SEQ ID NO 3 com- 65 ΡΕ0929681 preendem proteínas com semelhança muito grande (na sequência de aminoácidos e o arranjo dos domínios enzimá-ticos) com sintases de policétido para policétidos do tipo macrólido. Tomadas em conjunto, estas cinco enzimas multifuncionais compreendem 10 módulos da sintase de policétido que são cada um responsável por um passo de condensação na síntese de policétidos. Esses 10 passos de condensação são igualmente necessários para a biossíntese da rifamicina (Ghisalba et al., Biotechnology of Industrial Antibiotics Vandamme E.J. Ed., Decker Inc New York, (1984) 281-327). O processamento dos grupos ceto particulares requeridos pelos domínios enzimáticos nos módulos corresponde substancialmente à actividade requerida pela molécula de rifamicina, se for assumido que a síntese de policétidos ocorrer "colinearmente" com o arranjo dos módulos no aglomerado de genes de A. mediterranei (é o que se passa para outros antibióticos macrólidos, tais como eritromicina e rapamicina). Pode ser aqui adicionado que não é certo se a transcrição das cinco ORFs resulta em cinco proteínas; em particular, a ORF C e a ORF D podem ser possivelmente traduzidas numa proteína grande.
Um domínio enzimático que é muito provavelmente responsável pela activação da molécula iniciadora, ácido 3-hidroxi-5-aminobenzóico, da biossíntese da rifamicina, pode ser encontrada no terminal N da ORF A, o início da sintase de policétido. Directamente abaixo do aglomerado de genes da sintase de policétido rifamicina está um gene (ORF F) 66 ΡΕ0929681 que muito provavelmente determina uma proteína que provoca o fecho do anel da molécula de rifamicina após a finalização dos passos de condensação pela sintase de policétido.
Pode concluir-se, com base nestas descobertas, que a região cromossómica de A. mediterranei descrita na SEQ ID NO 3 é responsável pelos 10 passos de condensação requeridos para a síntese de policétido rifamicina, incluindo a activação da molécula iniciadora ácido 3-hidroxi-5-aminobenzóico e o fecho conclusivo do anel.
Organismos depositados
Foram depositados os seguintes microrganismos e plasmídeos na Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM), Mascheroder Weg lb, D-381244 Braunschweig, de acordo com os requisitos do Tratado de Budapeste.
Microrganismo/Plasmideo Data do Numero do depósito depósito E. coli com o plasmídeo pRi7-3 10.08.96 DSM 11114 E. coli com o plasmídeo pNE112 14.07.97 DSM 11657 E. coli com 0 plasmídeo pNE95 14.07.97 DSM 11656 E. coli com o plasmídeo pRi44-2 14.07.97 DSM 11655 ΡΕ0929681 LISTAGEM DE SEQUÊNCIAS (1) INFORMAÇÃO GERAL:
(i) REQUERENTE
(A) NOME: Novartis AG (B) RUA: Schwarzwaldallee 215 (C) CIDADE: Basel (E) PAÍS: Suíça (F) CÓDIGO POSTAL (ZIP): 4058 (G) TELEFONE: +41 61 324 1111 (H) TELEFAX: +41 61 322 75 32 (ii) TÍTULO DA INVENÇÃO: Aglomerado de genes da biossíntese da rifamicina (iii) NÚMERO DE SEQUÊNCIAS: 9 (iv) FORMA DE LEITURA EM COMPUTADOR: (A) TIPO DE MEIO: Disquete (B) COMPUTADOR: IBM PC compatível
(C) SISTEMA OPERATIVO: PC-DOS/ME-DOS (D) SOFTWARE: Patentln Release #1.0, Versão #1.30 (EPO) 68 ΡΕ0929681 (xi) DESCRIÇÃO DA SEQUÊNCIA: SEQ ID NO: 1: osmcccaGT anxmmcG gcg3*tcg&cg ãggctsgoga gcaoctggâc ssoescpse 60 COGGCCGSGC CfâGGC^CSC GimaGSàCG rcCTGCTCGG CGÃ&ST^CCe GCCGMãCCG 120 eSCTOCTGÃÃ CCAGÃCGG1C mãOCCMG <gQH3ClQR CGCCGÍGGMÍ AGC&CGCTGT? 183 TÇCGQCfCGC CGÃATCO?GG QG7S$OG8GC CGGÃCGISSGS QCSOGãOCtC WXMOGQ&* 240 aasascacosc csosms^c íxgggcgtct tctcgctgcc gg&cqcggcc cggatcgtqg 300 OS3CGCGCGG CCGGCTGftTG CASGCGCTGG CGeCGGGOSG ÇGCGAIÍSGTC ÍSCCGlCGCCG 360 OCÍKXGMGC OCÃGGTGGCC GASCBSCTCG GCÇACGGCGff OGMCTCGCC GCCC?TCAaCG 420 SCCCTTCGGC OT®COT TCCGSQGftCG CGGACGCGG3? CSfCGQSSCC CCCGOXGCA 48Õ ^acGCGÃGCÇ CGQQCÃCMG ÃCCÃRGC&GC TCMCKÍFRK: GCÃCGOSm: O^TCCGCSC 540 âGÈSGQSGCC GÃ1CCTGGCG GÃ&HXX3COS COSftâCÍGSC CGGCGTGACG ISGCGGS&GC 500 CKOAGATCCC GSIQGTC^CC l&CGSSftOOG eCCGGTOOSC CGMOCCGGC GÃÃCTGftOCG 660 &3CQGQ3CE& CTGQQCOSfifi CACGTGCGGC GQCCGGIGCG GTTCGCCGftG GGQSTCGCGG 720 CC^GACSGA OEOGGCGGC TSGCTGTTCG TGGAGCTCGG GCCGGQSGCG GCGCfG&CÇG 780
arEOGffCSfc GQftG&OGQCC CÃG0fCftCC7 GC5G5PCGP3GC CXrTGCGGGÃC GSGCGCCCGG B4Q mmcMnGc ccm^rtuice gc^tcgcog asctgttcgt ocôcgqsgtt gcq3icgã.tt §m «Gocoscccs? gctsccgocg qscãccog^t tosksg»oc* gccsèasssc Gceratsacc seo mZMsCMTZh imsc-mms CCCOCOSCGC AGGCCBS0GG& CGOSOCCfCS ercaGC£Aí3Ç 1020 69 ΡΕ0929681 TCGCGGCCGA CCftCCCOCTC £03300(3085 TGGlCCaX? QCCQCRGTCG GísmsCCTGG 1080 irmACcrc iXGOHMprcA ^msmfcsoc ^ccgtggct gsccgaccsc gtciytoígcç imo QGGTGGaCOCT aKTCGOGGQC ACCC^GCTCG mGNSCSGBC CGTCCGGGCC GGGGACGAQG 1200 CCGGCKSCCC GG!PCCSfCQ« (3Ã&aX5GIC& TCG&SGC*CC GCTGGTCOTC CGlimCCACG 1260 SOSGQSimS! CMKXttUSGftC ^ÒSOGGSiS CfâmSâ ímCCGGmiG CGOMGSICG 1320 ÍS&G^Aere CtSfeCQOGRfí (ssceccoess CeS&»fí»2TG GSOX2SSC33C QCCaCC50SG5F 1380 sccixmEGC eaoscosresG c&xaoãríx cgi^ogíctf c&ccgcctqg ccsocgccog 1440 GOGTO3&S30G CCTCGftOCTC G&aaCTTCf AC0=ACl3GCTT CGTCGiACCGC GGSTÀQSCCT 1500 ÃCGQSCCSSC GTKX6t3G©C CTQCGGGCGG TS3SG033CS CGSOÍftCGM GTfSnOSCCG 1560 AGGTCGCCCT GXOAifcGSÃC G&XGCGCSG ACSCGGCCCS SrSCGfíC&TC CACCCCGGCC 1620 fQ2*£GGACGC CGCCCTGCAC GO3GGCATG0 CCQSTGCCM; CACCACGGM G&XC03GCC 1680 SSCSaSGíJSCT -TGGÂACGGCí: TGtfTGCTííCA CGCXaGGCGeG 005®C03CâC 1740 TGCQGGfCCO GCreGCCCOG ASOâSltlCOG ACSCCCS^Se GSTCGAQGOC OC®5&C<38Í3G 1800
GeGGOSGXCT CGTTOTtsRCG QC6GACTOGC IXSGTCTCOCG GOOG£K3TCG Í^CG&MAGC 1860 líSGQCGtGGC mZGM££AC GSCGCGTTGT lOCSGDSfSGà GrçâG&CCGSS ATT7CCTD3G 1920 C3DCGMS£G? imssoss&c CXGTCQàm IXSCTCQM.GC CGT03GOG&S GATCCCCTQ3 1980 AACTGAC-CSl 0£3GCT"CTG GSGGCCGIGC AGftCCTGGCT CGCCGACCCA tKCGÁOGACG 7040 CTCGCCPQST CGTGGOGACC CGCGQCGCOS mi%C<3AGGT GftCTG»CCCG GCCGGTGCCG 2ISÕ CGG1X21GG5G CCimTCCGG GCeGCOCASS CGGÃAAÃCCC GSMX33GATC CHGCTGCFSG 2160 70 ΡΕ0929681 ACACCGftOGiG mM.G'TC£CCÍ CmSGCCGGG IGCSSODCAC OGQOSftGOCC CMACAG0O3 2220 TCCGftGGCGG QySSC^GffC GGCCCGCG3C ItSGCCCGCGC CGÃGGCCGCG í^GGCaCCGG 2280 CÃSfGíiSXGG OSGSSOSSTC CMà&TCTOSG G0QD3QGCTC GCTGGSCGCG CaE&CCGCOC 2340 GGC^XIGGT OSCCCGGCAC QSMÍiCCGGC gC€ÍGS$3CF OSTC&GCCGC CQfGGCCCGíS 2400 ACÇCCGÍfcDSG caram CTGACCGCTG ΑΑΟΟίϊCGC fCAGOSCGCC G&GGfCÊCCG 2460 TÈOSCOCnXÍ CG&GCrt3GCC GfiCCGGGFi.CC AGGfCCÔ&Gl' AtXGCCGSCC GAGCACCGCC 2520 COMGGOOST CGTGCACÃCG GCCGGCGTTC fCGAOS&OSS CGTCVTOSm ^OJGACGC 2580 GGG&GCGGCT <$GC«yfc3$$C l^XXÇCCCA A&3TmOTGC fGaCMf€&.e CTCQffiGÃGC 2840 f&Ã03CGOGà ÃOaSkOTT OSCGCSTtFCG TCGTGFTGTC CTCCCCCTCC Gi^TCTSCG 2700 C^TCCGCOGG «asaXMC fMJGCSCfíerG CCMCCSCCtA OCTCGACGCC GTGGTCGCCA 2700 ACCGCC&3GC CGDGGÍSXCG <SCÔGC&C^ CGC1>3SCCTS GGÇCCTGTGG GMCAGRCCG 2820 ACGGGAme CGCGQiCerC GSCGACGCCG i^CMXsCGOG GSCGAG1ÍCGC GGOGGGGOCC 2880 TCGCXATCTC ACCCGCCGM GGCÁ'KK3AGC IGTfCG^CGC AGCGCCG3AC GGSC3GGSCG 2940 TCCCGG.fCM GCm^£CCG CGCMCACCC GCGCCGGOGG GACGSIXSCCG G%CCTGC7GC 3000 GCGGÍX^SG» CCGCCCGGCA OCCCAGCÂGG OXGTCCSGC GTGCAC1CTG GSOSACGG&C 3080 TGQCCGGGCG ACICGXGGCí CIGGOGCCGG CGGÃíXAGG iSGSGCTGCTS eitG&CSTOG 3120 UCCGCÃCGCâ GSSCGQQCSG GTGCTCGGGC ACGCCGGGCC GQfíGGCCCTC CGGGCGGACA 3180 CGSCGTFCAA GG&CACCGGC miGâOTCGC IGACGl^GG^ fíG4ÂCTGCQe MCCGX1CC 3240 71 ΡΕ0929681 osoMsscKÍMt caxcc®x& cecseesOTr osacsrscoos ;Sfô5s®» oGcmcrcs Ksmxsmcm «p«s mmmsm mcmzmm tâsmstxk mmmm· mzmmmx· «»aa. mo»® ammixxes swcsscf^ <mmmm cmmmmc mmmm mmmm mmmmm wmmm oscmsmm ommcmm wmmmk mmmmc mmm<x& Mcsctccos c^ssMems ícci^xssc, ««5«. criMSMt iccxoscíks mmMmm: mmmxm mmmm mzmxm» mMmmmi mmmmm ymsmmos mommm. mmmccm ommcmm mxàcsssso mm^acm mmmmk wmmm mcssMc& esscsxsm; ssm ·< aMmmwA ®scmi wmsmmM: e» «« mscscmm mammm
cmmwsa mmmmm, cmmmsM: €tso<ss®3»g moceAMC a«c>®K» «s^sso» Àosxmcsg; çsâMse^s fíoxsxí^ ^ec©2íoc »ea mmw®c& mmmmm gmmsmm mmmxm mmmmm, mmmcm cmmmm mmcmm mmmxm mzmmm ccsmsx&sc ÃMxxsimt 'oseosasx ceseec$os& «w» ««δ f$s«§®e& «xaacceoG mmmsm cmkccmm smsmmm amssmm cmssmxgc cixcamc^. nm ái& um 34S§ mm mm 3M8 33®0 mm mm mm mm 4MÕ 4M0 mm mm 4320 «S0 72 ΡΕ0929681 CSOCSKCTÇ GCÍfâSGGTQG OTS&aGECSà ACTTCGSD2& CMSGGASECC GOQGeOSGÇG 4440 TGGCCGGGST GATCMfi&TG STQCÃGQÇGC I^QOC&DQG CGTCATOCOG CCC&COCTQC 4500 AOSIGGÃÇOS GCCCACO&C CAGGTOS&Cr OMXmSQS GGCOGlCGAâ GTGCmçÇÇ 4500 AGGCAmeam <m^oscGs moqoocouc cgcsccsgsc a§G©ss&Eec Tesraosseà 4020 $c&sc©ses£ Gmmcccm çKmrmrm msamcacc ggccgagoca cascnoccs 4680 gãccaccgcc asacasmi!? gtxi^ogc ^õssesscps qsc-tcgcagc co:ggtgcoc 4740
TtssccGGTCA ggcgcgtcgg crasoc&csf Tccimscm cg^gcccctt masesscG 4βοο CCGGTíXG·^ G&ffi&GCCGC QCCCl^GTrCG GCGA^SCGC O&J^fGGKÍ SCSSATfCGG 4860 acc^ams:: coíxgodsct cm^GDQCAC Tsxcecces cgaagacsx ecosocass 4520 TCXXXOS G3TGCCCGCG TOCSSOCT3C CGGGCAÃGC7 OSTOTSGGír® TTCCCCGOX 4980
Mms&CGCà <3fSG835SGQC SJSSGCCGQS WOCCTO» M^STCTCCG «RSHCGCCG 5040 AQCG^TCGC OsfiíãSGTGCG GQCGCGCTGG AGCCGXGM1 CSSQCTGGfCG CXrmXftCa 5100 TCCTOXTGO C®CGGK5AC CfCG&KGGG XGR-PGTGCT OCaSOOOGCS TGCTJTGCGG 5160 TGSRSSICeG CTTGGCOSGe GTCTQGTCXT CÍ3SaG0SSST GGTCCCCGM' QEGBBBCTOS 5220 OCCACTCCCh GG5TGAGATC GCOSCÍSGCGT GCGICTQGGG I^GCCTTG^CG CTGía&SATG 5280 CQXGMtXr GSmoCCTG CGCAGCXmS COffiC^DSC G&AGCrCFOC GGCCGOGGCG 5340 qg^gocttc mucmcns qgcgaagcog «reissieic gcggctggog gacggggscg 5400 âiessQQcasc assaaoesr crnscercos feeiQflosc ggsgoksgcc <asecccrcs 5460 73 ΡΕ0929681 5520 5580 5840 5878
MGAMCGCT efò&âC&CfG fCCGGTGGGG GAMCCOGSC TCGGCGGGfG GCÇGTGG&CT ACGCCfCSCA CAOX.GGCAC GTCGMG&CÃ 1CSÃM1ACAC CCTCGCCGÃA SOQCTOGCGG íiiSMeSãCCC CCGGQCQCCG C35SGEQXS® fCCKSCCÃC CCimCCGGC GftSTSGATCC CSTCGTGGAC SGCGGCÍA^ GSTACC (2) INFORMAÇÃO PARA A SEQ ID NO: 2: (i) CARACTERÍSTICAS DA SEQUÊNCIA: (A) COMPRIMENTO: 1891 aminoácidos (B) TIPO: aminoácido (C) TIPO DE CADEIA: simples (D) TOPOLOGIA: linear (ii) TIPO DE MOLÉCULA: péptido (xi) DESCRIÇÃO DA SEQUÊNCIA: SEQ ID NO: 2:
Tyr Fm Vai 3S» A1& Thr Ala Fh» &sp filu Ma Cys Ghx <*Ut Leu &sp 1 5 10 15
Vai Cys Leu Ma GLy Mg Ma Gly 8i» Arg Vai Arg Asp Vai Vai Leu 20 25 3δ
Sly Glu Vai Pr© Ma Glu Thr Gly Leu L®u Asa Gla Thr Vai Phs Thr 35 40 45
Gin Ma Gly Leu Phe Ma Vai Glu Ser Ma Leu Pi» Arg Leu Ma Glu 50 SS 60
Ser Trp Gly vai Arg Pro Asp Vai Vai Leu Gly Bis Ser 2le Gly Glu €5 70 75 80 74 ΡΕ0929681
Ile Thr Ma Ala Tyr Ala Ala Gly Vai Phe Ser Leu Pr© Asp Ala Ala ÔS 30 3S
Arg Ile Vai Ala Ala Arg Gly Arg Leu Met Gin Ala Man Ala Pr© Gly 100 10S 110
Gly Ala Met Vai Ala Vai. Ala Ala Ser Glu Ma Glu Vai Ala Glu Leu 115 120 125
Lm Gly As$> Gly Vai Glu. Leu Ala Ma Vai Μή Gly p*o Ser Ala vai 130 135 140 Vâl Leu Ser Gly Asp Ala Asp Ala Vai Vâl Ala Ml Ala Ala .Arg Mefe 145 150 155 150
Arg Glu Arg Gly Hl® Lys The Lys Gin Leu Lys Vai Ser Bis .Ala ihe 1C5 170 175
Sis Ser Ala Arg Met Ala ire itefc Leu Ma Glu She Ala Ala Glu Le& ISO 185 130
Ala Gly Vai Shr frn Arg Glu iro Glu Xle Pr© Vai Vai Ser Mn Vai 135 200 205
Thr Gly Arg Eh» Ala Glu Pro Gly Glu Leu Thr Glu Pr© Gly Tyr Trp 210 SIS 220
Mi Glu His Vai Arg Arg Pro Vai Mg Phe Ma Glu Gly Vai Ala Ma 235 230 235 240
Ala Thr Glu Ser Gly Gly Ser Leu Fbe Vâl Glu Leu Gly iro Gly Ma 245 250 253
Ala Leu. Thr Ma Leu Vai Glu Glu. Thr Ala Glu Vai Thr Çys Vai Ala 260 235 270 75 ΡΕ0929681
Ala teu Arg tep Asp Mg Pro Glu Vai TM Ma teu Ile fhr Ala Vai 21% 200 285
Ha Ç&a tem Phe Vai Mg Gly V»1 Ma Vai Asp Trp Peo Ala Leu teu 230 2.95 300 Ρϊο Pro Vai Shr Gly Ffe* Vai Asp teu Pro Ly» Tyr Ala pte Asp Gin 305 310 315 320
Gin Sis Tyr Trp teu Gin Pro Ma. Ala Gin Ma Thr Mp Ala Ala Ser 325 330 335 teu Gly Gin Vai Ma Ma Asp lis Pm teu Leu ôly Ma Vai Vai Arg 340 34S 350 teu Pro Glu Ser Ásp Gly teu Vai Pte Thr Ser Arf teu Ser teu tys 355 360 365
Ser Bis Pro Trp teu Ma Asp- sis Vai Xle Gly Gly Vai Vai te» vai 370 375 MÔ
Ma Gly $hr Gly teu Vai Glu teu Ala Vai Arg Ma Gly Asp Glut Ala 305 390 395 400
Gly Cys Pro Vai teu Glu ,Glu teu Vai lie Glu Ma Pro teu vai Vai 405 410 415
Pro Mp Bis Gly Gly Vai Arg He Gla vai ;Val Vai Gly Ala Pro Gly 420 425 430
Glu Thr Gly Ser Mg Ma Vai Glu Vai Tyr ter teu Arg Glu Asp Ala 435 440 445
Gly Ma Glu Vai Trp Ala Ãxg Bis Ma Thr Gly Phe teu Ma Ma Thr 459 455 460
Pro Ser Gin Hís Lys Pro Phe Asp Pbe Thr Ale Trp Pr© Pro Pro Gly 76 ΡΕ0929681 465 470 480
Vai Qlu Arf Vai Asp Vai Qlvt Jtôp Fhe Tyr Asp Gly FAe Vai Asp Arg 485 49Q 4f5
Gly Tyr Ma Tyr Gly Fm Ser Fhs Arg Gly Leu Rrg Ma Vai Trp Arg 500 505 510
Arg Gly Asp Glu Vai Mie Ma Glu Vai Ala Leu Ma Glu Ásp Asp Arg SIS 520 525
Ais Asp ili Ala Arg Fhe Gly Xle Ris Fr© eiy la» ta» Asp Ala Ala 530 535 540
Leu Hls Ala Gly Met Alá Gly Alá TM Thr TM Glu Glu Fro Gly Arg 545 555 555 56Ô
Pr© Vai Lee í*ró Fhe Ãlã TTp fea Gly Leu Vâl Leu Sis Ala Ala Gly 565 570 575
Ala ser Ala Leu Arg Vai Arg Leu Ala Fr© Ser Gly aro Asp Ma Leu 580 585 500
Ser Vai Glu Ala Ala Asp Glu Ala Gly Gly Leu Vai Vál TM Ma Asp 595 500 805
Ser Leu Vai Ser Arg Pr© v&X ser Ala Gly Gin Lei Gly Ala Ala, Ala, €10 615 620 itóm ílis Asp Ala Lee Phe Arg Vai Glu Trp Thr Glu Ile Ser Ser Ala 625 630 635 €40
Gly Asp Vai Pro Ala ASp Ui& Vai Gla Vai 'Leu Glu Ma Vai Gly Gly S4S 650 655
Asp Fr© Leu Glu Leu Thr Gly Arg Vai Leu Glu Ma Vai Gin Thr Lrp 660 6Ê5 670 77 ΡΕ0929681
leu Má Asp Ma Ala Asp Ãáp Ma Arg Lee Vai Vai Vai T&r Ãrg Gly S7ã 6S0 68S
Ala Vai His G&u Vai 5hr Asp Pm Ma 61y Ala. Ma Vai Ττρ Gly Leu 690 69S 700 11a Ãrg Ma Ma Mã Ma Ma Asa Fro Asp Arg 11a Vai Leu Leu Asp 705 710 715 720 fia: Asp Gly Giu Vai Aro Lao Gly Ãrg Vai Lesa Ma Shr Gly Glu Pr© 725 730 735
Gin Thr Ala Vai. Ârg Gly Ma Thr leu Fhe Ma Fro Arg Leu Ma Arg 740 745 750
Ma Glu Ma Ma alo Ma Pro Ma Vai Thr Gly Gly Thr Vai Leu Ile 755 760 765
Ser Gly Ma Gly Ser L*u aiy Ma Leu Thr Ma Arg His Leu vai Ma 770 775 780
Arg His Gly Vai Arg Arg Leu Vai Lm Vai Ser &rg Arg Gly Pro Aap 785 7SG 795 800
Ma Asp Gly Hei Ma Glu Leu Thr Ma Glu Leu Lie Ala Gia Gly Ma SQ5 810 815 <SL» Vai Ala Vai Vai Ala Cya Aap Leu Ma Asp Arg Asu Gin Vai Arg 82 D 825 830
Vai, leu Lea Ala Glu His Ajçg Fro Aan Ale Vai Vai Hi$ Thr Ala Gly 835 840 845
Vai Leu Aap Asp Gly Vai Phe Glu Ser Leu fisr Arg Glu Arg? Leu Ala
650 85S 860 78 ΡΕ0929681
Xys Vâl Phe Ma Fro Lys Vai Thr Ma Ala ÀS» His Leu Asp «la L*tt 86.5 870 87S 8B0
Tte Mg Glu Leu Asp Mu Arg Ala Phe Vai ¥&1 Phe Ser Ser Ma Ser 885 890 895
Gly Vâl Phe Gly Ser Ala Gly Gin Gly As» Tyr Mt Ma Ma &sn Ma. 900 905 910
Tyr Lô» Asp Ala Vai Vai Ala A*a Arg Arg Ala Ala Gly Im 'Pre Gly 915 920 925
Thr S®r Mn Ala Trp Gly Mu Trp Glw Gin Tfcr Asp Gly Met Thr Ma 930 935 940
His L®a Gly Ãsp Ma Asp Gin Ala Arg Ala. Ser Arg Gly Gly vai M» 945 950 955 960
Ma He ser Pro Ma Gin Gly M©t Gin Mu Phe Asp Ala Ala Píe Asse 965 970 975
Gly Leu Vai Vai Pro ¥al Lys Leu Mp Mu Arg Lys Thr Arg Ma Gly 980 §85 990
Gly ϊδιχ Vai Pro Sis Leu' Leu Arg Gly hm Vai Arg Pr» Gly Mg Gin 995 1000 1005
Gin Ala Mg Pr» Ala Ser T&x Vai Asp Mn Gly Lea Ala Gly Mg Leu 1010 1015 1030
Ma Gly Leu Mi Pro Ma. Slu Gin Glu Ala Lsu Leu Mu Asp Vai Vai 1025 1030 1035 1040
Arg Tte Gin Vai Ala Leu Vai Mu Gly Bi* Ala Gly Pro Gin Ma Vai 1045 1050 1055
Arg Ma Ase Thr Ma Pliá x»ye Asp Tte Gly f.he Asp Ser Le« Tte Ser 79 ΡΕ0929681 leso mm 1070 V&1 Glu &eu Arg Mo Arg Leu &eg Sl» Ma ser Gly Leu Lys L*u Bro 1075 1080 1085
Ma Thr Jmu Vai Phe Mje Tyr Pro fia: Pro Vai Ala Leu Ma Arg Tyr 1080 1095 1100
Leu Arg Asp Clu Phe Gly Mp ffer Vai Ma Thr rhr pro Vai Ma Thr 1105 mo 1115 1120
Ala Ma Ma Ma Mp Ma Gly Glu Pro Xle Ma Me Vai Gly Met Ma 1125 llâO 1135
Cys &rg Leu Pro Gly Gly Vai Tsr Asp Pro Glu Gly Leu Trp &rg Leu 1140 1145 1150
Vai Arg Mp Gly Loa Glu Gly Leu Ser Pro Pbe Pro Glu Mp Arg Gly 1155 1168 1165 txp Mp Leu Glu Asm Leu Phe Mp Asp Mp Pro Mp Arg Ser Gly a&r 1170 1175 1180
Thr Tyr Thr Ser Arg Gly Gly Phe teu Mp Gly Ma Gly Leu Phe Asp 1185 lim 1155 1200
Ala Gly Ffee Phs Gly lie sor Pro Arg Glu Ma Leu Ala itet Mp Pro 1205 1210 1215
Glu Glu Arg Leu Leu Leu Glu Ala Ma Trp Gla Ala Leu Glu Gly Thr· .ma 1225 1230
Gly Vai Mp Pro Gly Ser Leu Lys Gly Ma Mp Vai Gly Vai Phe Ala 1235 1240 1245
Gly Vai Ser Má Glá GLy Tyr Gly Hat Gly Má Mp Pro M© Glu Leu 1258 1255 1260 80 ΡΕ0929681
Ms Gly fyr Ma Ser Tfcr Ma Gly Ma Ser Ser vai ¥al Ser Gly Arg 1265 2270 127$ 1280 V&X Ser Tyr Vtá Phe Gly Phe Glu Gly Frõ Ala VAI Thr lie Asp fhr 1285 1290 1295
Ala Çys Ser Ser Ser Lee Vai Ala Mei Eis Leu Ma Gly Glu Ma Leu 1300 .1305 1310
Arg Gin Gly Glu Cys Ser Mefe Ala Leu Ma Gly Gly Vai Thr Vai Met 1325 2320 1325
Gly Thr Pro Gly Thr Pfe Vai Glu Lhe Ma Lys Gin Arg Gly' Leu Ma 1330 1335 1340
Gly Asp Gly Arg Cys Lys Ma Tyr Ala Glu Gly M.a Mp Gly TM Gly 1345 135© 1355 136©
Trp Ma Glu Gly Vai Gly Vai Vai Vai Leu Glu Mg Leu Ser Vai Ma 1365 1370 1375
Arg Glu Arg Gly Eis Mg Vai Leu Ma Vai Leu Mg Gly Ser Ma Vai 136© 2385 1350
Asn Ser Asp Gly Ma Ser Asn Gly Leu Thr Alâ Pr© Asm Gly Pxo Ser 1355 140© 1405
Glu Gin &rg Vai Ile Mg ATg Ala Leu Ma Gly Ma Gly leu Glu Pro 1410 2415 1420
Ser Asp Vai As» Ile Vai Glu Gly Sis Gly Thr Gly Thr Ma Leu Gly 1425 143© 1435 1440
Asp Pro Ile Glu Ma Glu Ala Leu Leu Ala Thr Tyr Gly Lys Asp Arg 1445 1450 1455 81 ΡΕ0929681
Mp Jfica Glu star Pró Leu Trp Leu «Ly Ser Vai Lys Ser Asn Pite Gly 1460 1465 1470
Sis «to Gin Sér Ala Ãla Gly Vai Ma Gly Vai 11« Lys Eet Vai Gin 1475 1480 1485
Ma Xe« Mg Eis Gly Vai Ket Pro Pro TM leu Eis Vai &sp Mg Pr© 1490 1495 1500 TEr Ser Gin Vai Asp l‘rp Ser Ma Sly Ml Vai Gin Vai Leu 3?hr Gin 1505 1510 ISIS 1520
Ala Arg 61« Trp Ero Arg Mn Gly Mf Fm Arg Mg Ma Sly Vai Ser 1525 1530 1535
Ser Fhe Sly lie Ser Sly ®hr Mn Ala Eis Leu 11« 11« Glu 61« Ala 1540 1545 1550
Er© Ala Glu Pr© Gin Leu Ala Gly Pr© Pr© Pro Asp Sly Gly Vai Vai 1553 1560 1365
Er© Le© Vsl Vai Ser Ma Mg Ser Pr© Gly Ma Leu Ma Gly Gin Ma 1570 1575 1589
Arf Mg Leu Ma ®hr Phe Leu Gly Asp Gly Pr© Leu Ser As© Vai Ala 1585 1550 153S 1600
Gly Ma Leu Thr Ser Arg Ma Lea Phe Gly Gin Mg Ala Vai VM Vai 16Ô5 1610 1615
Ma Asp Ser Ma Glu Glu Ma Mg Ma Gly Lea Gly Ma Leu Ma Mg 1620 1625 1630
Gly Glu Ãsp Ala Pr© Gly Leu Vai Arg Gly Mg Vai Pr© Ala Ser Gly 1633 1640 1643
Leu Pr© Gly Lys Leu Vai Trp Vai phe Fr© Gly Glu Gly Thr Glu Trp 82 ΡΕ0929681
ISSO MS5 ISSO
Vai Gly Met Gly Arg Gle Leu Leu Gltt Glu Ser Pro Vai Phe Ala Glu
1665 1670 1675 ISSO &rg lie Ala &u Cy» Ma Ma Ma Leu €1« Fr© *Prp Ile Gly Ssp Ser is m um i&9s
Lee phe Asp Vai Lee Arg Gly Asp Gly Asp Lee Asp Axg Vai Asp Vai 17 Õ0 1705 mo
Lee Gin Pro Ma Cys Phe Ma Vai het vai Gly Leu Ala Ala Vai Trp 1715 mo 1725
Ser Ser Ala Sly Vai Vai Pró Asp Ala Vai Leu Gly Mis Ser Gin Gly 1730 1735 1740
Glu Ile Ma Ma Ma Cys Vai Sar Gly Ma Leu Ser Leu Gin Asp Ma 1745 1750 1735 1760
Ala Lys Vai Vai Ala Leu Arg Ser Gin Ma Ile Ale Ma Lys Leu Ser 1765 1770 1775
Gly Arg Gly Gly Msst Ma Ser Vai Ala Leu Gly Gin Ma Asp Vai Vai 1780 1755 1700
Ser Arg Leu Ale Asp Gly Vai Glu Vai Ma Ma Vai Ase. Gly Pro Ma 1795 ISOO 180:5
Ser Vai Vai f ie Ma Gly Asp Ma Gin Ma, Leu Asp Glu Thr Leu Glu 1810 1815 182,0
Ma, Leu Ser Gly Ala. Gly Ile &rg Ma Arg Arg Vai Ala Vai Asp fyr ISIS 1830 1835 1640
Ala Ser Mis f£hr Arg Eis Vai Glu Asp Ile Glu Asp Th·; Lee Ais Glu 1845 1850 1855 83 ΡΕ0929681
Ma Leu Ma Gly XI® ftsp Ma Ang Ala Pm Lm Vai Pro Phe itm $er 1860 186S 1870
©ar Leu fhr Gly Glu Trp lie Ar§ Asp <Sla Gly Vai Vai ftsp Gly Gly I8TS XÔÔ6 188 S
Tyz Trp Tvr ISSO (2) INFORMAÇÃO PARA A SEQ ID NO: 3: (i) CARACTERÍSTICAS DA SEQUÊNCIA: (A) COMPRIMENTO: 53789 pares de bases (B) TIPO: ácido nucleico (C) TIPO DE CADEIA: dupla (D) TOPOLOGIA: linear (ii) TIPO DE MOLÉCULA: DNA (genómico) (xi) DESCRIÇÃO DA SEQUÊNCIA: SEQ ID NO: 3: GAftTTCCÃGG CCGTCGACGG CTSCGACATC CCGGTCnSC GSTOGTCGCA CCGCA03A&S 60 MVQCCGMT A&GM-rTTCC GGÃTCTCCCÃ CGGGfeMGGT TKCATGACC GACGCAATAT 120
OesraOSftGG» GPCVSQGCAC CGG&CCGACA AG^TCGACCC GGGCGOGGSS TTOG»C»C33C ISO TGCGCGAAGA ACGTOCGCTC GCmÃGÃTQC fSTIOXGGA fGGGC&33fC Q3CTQSS&OG 240 TTTCMLÃCÇTA CGAQCTLffiTC CGCGÃS3GTÇ5C TCÃGCGSGQT ©OGGTTOWSC CACAGCTQCG 200 AASSmSCCA CWOX&2BS ACCCMSCiVSG GCCASOfCM1 OOCGACCCM: CCGCTGMCC 360 84 ΡΕ0929681 COSGCMQTT CÂTCCACA®S <SM!0OBCCC» MOCH3SC8 CfÃCCSCMG CJSCTG&eOS 420 <3CGÃGnC?C CGÍOCGOXK: GCC&SCAGGC TGATCaX=CG GfòCaJAGGCC Gl^-CCGCCG 410 mzcxmcm íxcaaggcscg cccccgcssa cgtggtca^ GftcrrasccA S40 ASCOQCTQGT GÇTGCGGATG CfGQGCSÃSC OTSTOQGCCT ÍSCCCrACGAG GAftCGOGACC 600 C^T&CGTGCC OSCGGTGftCC CTCCTGCftCS ADSCmAMC GaACDOGGOC GAGQGCQCQG 660
CaXCTAOGA GGTQ3CCGGG MST^^TCG JOmGSTCAT CGftGCGCCÓC aSSCAGCGGC 120 CCCASGlSCGft CCTCKPCASC KGCTCCTCâ COSSG&XT GACCCAGGAG GAGOTGCGCA 1BÚ MCÁTCGECm CCTGCTQCTG Í50SO5GGGT ACG&OACCAC CSfiGGGOGCG CI^CSXACCG 840 GCG^Xrrrca* SCTOGmmC CK^COSM-C AGCB3GCGGC ACTGCGOQCiG GAGCCGSAM f 00 AGCTCGBCGC cscasm GAfâerGCm; GCTACCKl&C CGTCAACC&S TACCACACCT f 60 KSGOÍCOSC GClfâSAamC «mmÃGCTO AG&3CCàAGCT GMX^MA&G GGCGACACGG 1020 rnseossere scTscmsos goc^accgcg kxxjsgoo» gítdbgctoip cccgcsgagc isso ^COaCAfOSA. CKGGG&CACC TCCGGCCAOG TC^GTTCGG CTTCGGCMT CACCAGfGCC 1140 W3G0COGÃA C&^QCGC-GC ATOSAGCTOC GQGCCGíXTT e&OGSCGCTC CTGCGGGCGT 1200 TOCCOG8W5CT GCGGGTSGCC GfCCCGGCCG JSjDGWSGHXX GCTSOQGCÍOS ÃSâQSTTCCS 1260 fC^TCKSQST GMGÂâSCTS aCCOTCSCCT QGSBSAlSCGTT OTOCXODS MCaCCOS&fc 1320 AG^SÇTfiCG GCSOaG!8S0G CACCílRTCTC ATCMGCCAC TTCKCTOEC KOTSM 1380 M03C&AG2C GCJSOGCCGG CfiASCOfíGCC TTGSGOSftCS MX&CCGG&C GSSCSCCXAC 1440 GSCSSACCKÍS IfâSCGOSSSC GímSQSCTG GOC^GCAOC I^JCOSCCT CG©W®CCGC 1500 85 ΡΕ0929681 c&cggg£&c£ eGemscGKT efsccxcosc
OCSSKCWC GCSCS3OTX CG^OSGCCTS OKíSâGCÃCC CGC!TG&Cam CSGCGSCGCC ecooQsCTCC qggtc&sooz ggcgccc&ct cemcs&eoA ãcscgccctc çfficmscfce Acsasecese ms&wsxxci ©XCTCmra? CCSCQCÈSCG CMSGCCK CCCGGQTKIP CQSftCCB©Gâ. CCGGGlfâCTC CACATr-SCCT GCm^CTSÍfC CXvCCACCGTC AGCTCCGCCG ACGãCCTC^T ©C^CTGKTC GTÇ^OOSCm CCTACCSCCA CX^fOCOG AGCCT-SCCtGA TQS0CC3SGQC C©GGSSCGC<3 cayastóacc? TOSGGGam: gox*atcgr.€ «TC&EXÃSSA JCOCGCOSGA CSSCGCSXGC a5GCS©30SPO3!P €GACCCOGAC GGGGSSSIJCT QGGTCASDSG GCCGMCGTC ACOSXSGCíSG QSÃJQGQGG». OSSGtQQnc sasxmc? mccasCTG ocgccôgis©
AACOGSSICT CCAC1STSSA Gasrr&CT£C CCiSOT^AACC CC0OTKJ3GC SMSGOOS&S AOSGÍEOSICG· EÊ&CCS&CSC CGCQE&SSCG ΟΚΟΏ33Ϊ3& GCQSCJGMSA OSSCSCDSSÃfi A3C&3£.OSG CC3AGCCCGC CGOSSACSSC TACÍCGamS ©CACGíiCCGG «CGGCCCmQ mucama otoctota TGoccocicc ocktgttcca caseemos GtcoQGGZcA ocístccsssa? cecoasesac GãGGCSAAGA GCTCGÍlCCTl1 «IIC^XGGC
«xmsxasc MK^cssm1 cKmjscos sstcfoseeç gogcsctgcg mgos&stic G^CTAÕQQCA OC&COGaSRC CfOCGGQSCS G2OSA03GCT OGBSCGGCTT ^O3$G0CG ACCGGGCTCG ^QTCCCCGC CÕGCSÃGÍ3M5 ATCCrCGGCT A02ACSjy3AG CCCGa&GíXS COGftCQQSSe ACCTGGOCCíí CCSCGACSAC MGGAACTCA UCASCOGCGG CQ303CGMC 1560 1620 1680 1140 1SOO 1860 1920 1980 2040 2100 2160 22M 2.280 2340 2400 2460 .2520 2580 86 ΡΕ0929681 A^CACDXG ÓSCSGTCCTG CQCACGGl^CG Mt&GCGTOGC GGíCGCGGCC 2640 GICSGCGG^ TQCCeCACGft OUCSCTCSSC G&Gt33SCCGG ^CGQGTM^T CMOCCGGGA .2700 CCGACCOGfT TOSMCCTGe GGCGTK^ÍTC G&SMGTOCC Om&CàfâCT4 <mmccm£ 2760 m&mçzm sccmmccT cmmmscc c&cmtcccc ggaocgcgtc m^smATc- 2820 C®3CQC<3QK; TOP®S® OS&3COCG€& çmm&3££ ã3303£DGA£ a^ÃC&CGÃS 2880
GftftCAGTCCC GGC&CGCCGft, efíãÊSCQGTC: GCOSOSGCGC T^G03053G M*CT0CGGT 2840 1*ft§3ãXS&C CCGCCO&TG CGAGCTCO^ GMGACCfCe t<XX&CCCA OGCGOCCOAC 3000
Gl^OGGQX AXCGG-KÍCC GGÃÕGGQOGT 0®3f»PCSCS MCTCQGCff C&CGTCÚCm 3060 OCamK23SS AXTÓCS3CAR CCGGCTG&CC GMCÂCXCCÚ GGCTCTGGCT GCCCGCCAGC 3120 «ssossçmss M5CÃOCCC&Ç GOXGCGGCG CfGGOCGCCC GOTSCOSGSC TXSàGC^CCfC 3180 088Μ£3£<30 ÊGXO^CGC GGMjCCGGTC G7CG0GGC03 aCOCGGGCGA GCCGS.TCGCG 3240
AfCGSSSQSS. iKSâOTSCOG crWS3G®0®r G®0I3BS33S? CCCXXSGMSk CGSS3S8C0G 3300
CfGSTGSOCG âGQGCGTCGA OXCGTTTCG GftSTTCCCCG GCQACCGCSG CfSGGSCCXS 3360 GMmCCTm TCmCCQQSA ££GGGM2QQC SG03GGÃCGT CSTãCSKSQS CX2SGGGCGÕ& 3420 miCTQC&OS M5SCCGSQS» COTCS32CQOC SOSnCfíOS QS&tCSOQQC OCSKSSeQOC 3480 (TOXXlKflSG ACCCCXmCA íXmfmcm· CTGLWGAC&T CGÍGSS&GGC OT7Cí3MMC 3540 CCCGGftíS3!CG imjSÍSTCGC affSSSSAiSG®: ASCSSO^S 4KJG5ESrt£ÍC OSSOCRSOG 3600 QXC&G33ST .¥:C^3TCCGS CC-CGGÍG3CG CCGSAGCPCG A&3STTTCGT CãCCMKSSSG 3660 GTCGCGIOm GOGSfâGOOtt «SKSCDSSSIG 3tX3J»a3*QC fGGGAC^SGà ASGOOOSSOS 3720 87 ΡΕ0929681 «ecarajGmas âcaccgcg^ ttosscobcô c®ss3bqcga mmccs^oc csoacftoooc 3?so C^GSCãGG GCímíerGCTC Q^TCGCGCíC <3C03GOGGGS Tt»CSG3«&T «saxscsoos 3840 OGCS<55T®3S SCGÃSTXCTC CCGO^SCGG <SCCCTGCC<X COS&CGGGCG CTGCaAGGCC 3900 sioscsgcqs csscxsacsss âBccâeeatae m!Gk3&m tcseco»»» eerccscsas 3%õ CGGCTGm:C' 'TGGCGCGCGA QeGSGGCC&C GGGMSC^ tXJGSTOBSOS TGGC&GOGQG 4020 cmrAACCÃSs mmzmmc cmosggctc m^ocGcom Aceoccit^c gcagcagcqg 40â0 STCAfCCGCC GOSOSCTQGC C<30Q30CGGG CTGGCiyXGT CCSATGTGGR CGÍO^KX^jS 4X40 GOGCÃCGSCà CCQSQàOGM^ ©CTSSSTGM; CCG&2CG&3S CSC&GGCCCT OnSGCG&CC 4200 mKsaccas© agcgsmqca Goosfrefas ctcggí:tcgc *k:aagícgm catcísgccac 4260 ©7CíCAí3GCfâG COQCGQQOO^ TQQGGGCm^ MX^MMGG TOCSiSGCQCT GCGQCAOGAG 4320 acct^^ccgc cgacocigca ccmascTfQ ãgg^gg&ctpg ^rccGOOGG? 43so GCCRTfGÃAC fÊCmC^% GCCCCGrGCG fGOCCGCGCA MSsGCXXS^OG GCGCCGQGCC 4440
GSQeSGSCG? CSÍTGGeCGT CSSCGQGSOC A&OGOCOSC TJSSICER3G» e^eQQGCCâ 450C eCGGâSGÍSC OSSTCGCTGC CCCGGAACTG OOSGTGGTGC CSCTSGTOGS1 GTCGGCGCGG 4560 AQC&CGGftG? CGCTGTCCQ3 aTAGGCCGAiS CíSGCltSGCGT COCTOCTCS3& &33GGACGTC 4820 TCíK-TGACCG ÂGGTQGOCGG GSCGCI^GTG fÕCCGCCmS OSSPGOKSSã CGAXQGGCC 4880 GSCSSOGSGG WS&&BQGC& C58i®S«SQOC G®GfcCC®SSC 2GCGGGD3CT GAftCADSOCC 4740 &22TGSGGGA CGQQ&SGCM. GGTCGTGTOG GTGCTCQCâG GCXfcSGQG&C GOfti^SGGCX 4800 88 ΡΕ0929681 GGG&fGGOCC OTSACSCTGCT GGCa^GTCC CCSGTÍÍTTOG CCSASCXS3MÍ CGCCSAGTGG 4960 OCQSCCGCCT T®a030C®TS SàTCGftCSXaS fCOCKXTTCG ACGKSCSGCG CGGCSAS6GC 4920 <5&Xf®3iSít?C: GSSKGMSt GCSSCSOOOS ©OTGMBCS CGGTG&B&ST OGGSCTGGCT 4980 GCCSTO?eSS .AGHKíCSíQGG S<5TC03âCCG G&CGCOSTOS taaSGCSCTC ©CJkGQSTGAG 5040
MnXSGCTG iCÇTGCíGfm: QS&GGC&TTQ flXCTCGâi^ M3GOSmm& gsífcxjtggq: 5100 CIXSCeCÃSCC AGSCCKTCGC ©XGGMCTG TCCGGCeSCS eossoarosc GK^TOSCe .5160 e^ssca&GS acgacgtcg? ttosOSGCtg gtgg/msgggg scgãggtcgc osccgtcaac 5220 escxmrosr eo7?çmm,f cgxggosa? occcatgccc fceAoscG&e crasssaAKsc 5280 t$STCCâGeG AítâSCJSrCCS GOTTCSSCGS GTG3CG3S3G ÂCTACGCCTC (XKC&CCCGS 5340 ACM&CGCG& CACTCTKSOC GAA&CCT^SSG mSQSATCSG TGCGCAGGCG 5400 CS3GQCTOTGC CGT5E2ftCTC CSCSOGTCM3G JtóCfiftfílSSe I®CGCGa0ÔC OGGQ®3!GC«5 5460 ssoosceocx ACTGST&CCG (StóCCTOO®: AftCC&GCTCC SGmBSRSC ®S00S0SaC6 5520 GCCCTGCTCG ÃSCAGSGCCA CAOGSTCTJJC GTGCGOKJCC- <3GS^\CGGTC 5580 CAGCCCinGft OOSASCTO&C CGCAASiCxXX ATOSSGACAT 43GCGGCCTSA AGACGSTGGC 5640 CSGCGGOGGT 7GCTQQCTTC CA4X3GGTGAG C^PTCGTCC GCSGCMtm CGTGOACTGG 5 700 ACGGCGRTGG 'TGCCOSOGGC CQQC«3SG*C OKXfWOCGfc CCTACOCSÍf €«3ΛΟ»ίΧ©3 5760 CACTmTSGC TO^GCCCSC CQAGCCOSCT IO3GCCGGAQ AOXQCTGC'? GâÔCAGAGTC 5620
GlCÁGCÃCfC CC0®TÍ<SI3GA CCfíACTOACC OXGIÍGGOSC MiTG&rCGCG CCXXXiCGCÂC, 56S0 COCKSGSCSG 2G®CQGCCF QCfTG03GftftC QC0GOCCTQe ICOaOSCOSC Ç&TCOSKCTC 3940 89 ΡΕ0929681 GOOSacemí CCGGCftCCCC CGTGGSCGSC GMCTOSTÔS ^<3&CGOGCC SSFSf^OTG 6000 CCGCGGQGCG QGAGCCGCGA SSÍCCAGeiS ASKCTCGSO® AGCCCGíXGà GCAGOâGCGG 6060 CémmfCG AJSGTCmrrC CrnSAViGOC GAOmGCCIGT GGAO^mSCA OSCGCÍ&GíSC 6120 ACJVCTCGCTC CCSCCGCCGC TGCGQVGC.CA GAACCGXQS OSGOK3SÃSA CGaMCOGRC €180 mcmzmm ccqgoctgos cgacgoss&c casasoaxA tccacoccgc Gc$Gamzm;· 6340 GCXKOOTCC GCACGGTCGT CGGCGaOGAC CTGCTXCQT CGG3JÍM3GAC CGGCGTQTC€ 6300 C®3C$GSCC® CCG6SGCCA£ SQOCGSPSACC GTGACGCCGA COGCOACCOG CCTGCGGCTQ 6360 ACOSAeOCGfâ CCGGGCAGí-C CGTCCTCÍACC GfCS&Aimí amKS3©C&Ç GCCGTTCCTC 6420
Gccoascsaras· gc^caccga. eaiKicm·: cgcgtccaot GscoGaa&KKP occgctgco: 6480 AC0QXG&S& CCGCGGM*TT CXS0SC93STAC GAfiSCSACGT CGGCCGAG8C GACCCTCTCC 6540 GCGCTCGÃfíG CCTGGCTGGC AG&OCCCGCG GAAACC03GC TGGCCGl^T CACCG<3GGAC 6600 aX3CACCS3AAC COOSOSOSSC CSOS&SKffÇS ©SCClGQfQC OSKJQGCQCSA GTCaSAACRC 6660 CC03SXGGA TCSTGCTGGC CGACCTOGSC GACCOCGOG3 TGCTGOCOSC OCTd^PS3CS 6720
SSOSOáMC CGKaM3G?CGCS SSSiaaSCMC: eSCeíOQOCT CGOS&XXSCa CTTflGÃmSGG 67BS GTmnrOCC GGC&SG&CGC GOGQCCGCT0 GACCCCGA3G <3CACOSTC€T ^TCACCGGC 6040 a^AccmcA cgctcggk^ GerSACCGoc cmzMxy?c<i tc&ccwgck cGoc-osccm mm CACCmm^ IGGTCAOCCG CCOCGGPGAG GCTCCCGAíGC IXíCAGGASGA AGBSACCGCÍI 6060 CTGGGGGCAT CCGTOSCC» CG2CGCCTCC G&CGTGXAG &OOSGSÕ3CA GCTCGAAGCC: 7020 90 ΡΕ0929681 GTCmCGCG aaKXXCGQC CGftSeMiXG CTCJMXGCOS Í^TCmCâC CGCGSGGGTC 7080 CTCG&CGACG GCGTCS7CM: OGfcSCJJGSCC CC<mO03GC im»CC5CT GOSGCGtSQGG 7140 MGSSSDG&GG CCQCCCGGCT CCTGG&GG&G CTCÃOCCQSG AG©7CSJlTCT OSCGGCGm: 7700 SKSOSSÍfTCf CC7CGQCGGC GSGSSttGCirG QGCMCDGCS «XSSGCCGG GTM^CGOO: 7280 QQCAKISCG3 JUOTffiffiXGC G^GGOGOX CMm^CA «XÍCGRCCT GXCGCGGTG 7820 TQ2MO3CÂ2' GGGGGTACaíJ GXC^GGTC Í^S3&43?G& CCG&GCSCCT GS3CGA.CGCC 7380 G&0CTC3CGSC GCKP£:CIimG GmmCMG TOCSQSCTK: CCGCCGÃCGA meCMmiQ 7440 CTGCXOSÃiDS CCGUTO CACCGG^GGC .AOSCTO^SCG OGGCCA&GTT CGftCGTCQOC 7500 GCGCTQCSQG Ç<LA£&X&Jh ©GCCSGOSSC CCQG3?í3CC8C CQCfGCÍfSCG TSGCCTSGOC 7560 COXTGCCGC GCCS3GCOSC GSCCMCãàeC mSTCGCTm QCGMCGOC* CeXGGGCTG 7S20 mcmmccG &3C&<SQccse gsccctgctc mcammr ggcggcacsc cgccg&ggtg 7ssõ eiÇGSSÇM^ eCGOCGBGI» KSCCGWCAT TCMSGftGSGa OGXSCMâSft CGQCCGCTTC 7740 m^OGmm. mocommk pr^ocmmz ccxxtcgogg coscg&ccgg gctcaccctg 7§oo
TtemSÕOSã TQATCTTCGA emOCCSASS CCCCCGGCOC TCQGGG&CC& CCTGCGCGCC 7860 PAGCPCZTCS GWGG303GC GMfXGGCCG GCCGMÃTCG GCMXSCCQC GSCOSftGG&G 7920 csqkscgcga tosscgcgbt gscgtgcosc meccGGiG gcgtgcmsg ccccgaggm? 79Sô C^TOSQGGC TGGTCGCCGA aSGCSCOGÃC GCCGTCSCGG AfíCTXCCGC OSSSX5GCSGC 8040
Kmcím âcosGCTCTÃ gcmjgmgãc cgcg&ccsos aãsgcacgèc gtmjgtcosg sioo C&CGGCíXCí 5CCTCGSCGA CGCCQXGGG tTCQ^SCOS CCTfOTTOGG CA7CTCGCOS 8180 91 ΡΕ0929681 ASÍSSSfiGOeC TCGCCA^PGGA CCCGCAGCM OGGCTGCTOC CTGGG&GCTG 8220 $TÕG&3CGGG CCG2&ATCG& CCímCCACG CS3SCCGGCC aSSÃC&fCOG CGTCTTCGCC 8280 GGCGTCAACA GCt&CGàCÍA CSáSCíS^StS ATGC^CGGG COSCfâiSTST CSMSQGOTC 8340 CGGCTC»CC6 GCQ3TTCSSC CÈSO&BSCÍC TCC33GXGCG TCCCCTACCA CTfCGGCGSt 8400 GAA&3"CC<SG CCGOOJSGGT· CCACACOSCC TGCSC^íCSO? ®^SCSmTG 8460 02GGTGC&GG OX33CaM30G 0®@CORSTGC TCCAK3&CGC ÍCGCSGGG3$ CGTGATGSTG 8520 atosgc&cgs ^íSASAasTr cgtcgastk: ^osoggc&sc qogggctsisc occcg&cggc ssso COCTGCAAGG CGÍ"ICSCCm CGG0C3O3G&C OSCÈCOGGCT GGTOCG&GeS CGTOSSGCTG §540 c^coggtgg aacsscTSic o&mígcso&s cgscgcgggc accag^tcct coccctsgk s?ôo C&CG02?CG€ CSOTCAACTC OSSCSGmSS SmâàaSGCS’ 3S&2GS033C OSU^OSSOCCS 8750 TCCOGC&3C GCGTSÃTCCG CàftSGCÃCSG GCOGCCGOCG GKCTGKXaC MmSACGTC 8820 GàCmSOrGG SGGCGCACGG ΟΜΤΟδΟΑΟΟ ADCCTGGGCG MSCGMOSA GGCCGAQGCG 8880 CJGDÍGSCCA CCTACGGCCA QhhCCmQhA ÂGGCCGCTSÍ GGCTCíXGK' saSOSAfetSSCG 8040 M£CT€GGGC AC&CGCAGGC GOCTGDXGT G3GGCAGGCG «GÃffiC&ÈSB® GOTCATGGCC 9000 ATGCGCCAOS GCGltTCSGCC CCSGACGOTG CM^TQGACC QXOGTCGOC CTATCTfiG&C 9080 TOSfCSGOCG SreQSSSCGft GCTGCmACC GAGGCACOCG ACTGGGTG&G CA&CQ5CCAC 9120 COSOQ3C53CG cssecsrssc caecericeesc tcxaaBQGQCh causoGceacA obscbgeoctc siso
GaAOftSSTTS CCGCACCGAT OfâOACGCQO CAGCCTGAGC CGSCCGAffiET CCmíTGCCG 0240 92 ΡΕ0929681 ÍJ3XX3ÇSSC? C£G£GCG£kC GGCÔGCGGGT C7GCGCG3CC AGGOCSGâ.OG GCTC&CCGCG 9300 1TCCTCGGCG ACCGQàGCGA CGTCCGCGTC CCCGA^CCG CCTAGGCAO1 GGCO^OSCG 9360 CGCGCCCltôC TCGSCGÃCCG GQCCGTCGTC CSGGCOfOGG SOSQGQCACA SCTCT3CG0G 9420 GACCTTCC03 CGT^GGCTC CGQCGíCGTG ADCGGMCGC CQGnG&OGG CA&GCTQQCC 9480 esmmcft ccgsccmkg cmxaGsss ocosGGAfGG s^cstgaact cgccgagacg 9540 rmxmsc? tcôscg&pgc ôcsssqgmsg ccg-tgsacac gcacctgcg? ssoo eamSICOSC TGCGCGAGGT OGTGTTCGfcC SIOGOGOSC 1íGCIt!G&CCA eSCSRSStAC 3660 ACCCAGQSCG CCGT^TTCGC COTSGAGACC GCGTTGTTÍC <S3CfCffOG8 GfCCIOGSG? 3720 STiXGGCOGG GTCTCCTXC C©3TCSOCG ATCGGCSGAGC fCSCCGOCGC GCACS1STCC 3760 Í33CGTGCTGG M5CTGGC0GÂ. CGCGGGOSAG CIGSTCGCCG OSCÔCSSCCG GCTGATGCAG 9840 CCCÇ$SCCOS OG3GCS3CGC GÁTGGTCGCC S^CAGGCGà CCGAGG&CGà AGTC'3CGCCC 9800 CTGC^CmCG GCSCGOSOB CCTCGCCGCG G1GMCGGTC CGSSCTCGGT GG^GCTCDX 9960 eSCÈCCGÃÃG CCGCCCãSGCT CGCCGÇOGGG CfGGKGCGG CCSTMiSACC 10020 cssceGcoGG ccePsaeecà oscc®*oc»£ seeccocrcft. ΈβοκκΏοκτ gcscsaosac ioooo fOKCGOgOSS TCGCCimACG CClXlACGTAC CGGGCCGG'!*? GO^fGCCCGT CGTCTCGACG 10140
CtGACC&XÚ A&CIOSCGGC GCTCGACAGC CCGGftCTACT GGGTCGt^CA GG1G0SCA&C 102 Õ0 GCCGTCCGGT SC&SCG&CGC OSICíiCCGCG ClXSJGaXCG JiAGGCOXTC GkCGÍTTCCEC 10260 G&GCT2GOX CSGXGGSGC GCTCC02SCG ASQGCGCTCG GGACGCTCGG OS3SÍZCCQm 10330 t^SAOSCOS TCGCSaOCCT GCGCAAGAAC OGogÇCS&SG T@CC0GI5O3T CKTCACOGCG 103S0 ΡΕ0929681 cTCQzamc i&acgtccg mscsm&c GCCAC8SCGG SCSGGSCOCT CCTGCtXACC ffiçmMS cgtcãjxcxc csecmH&sc agsmxtcct osftGCTGsrc CGGtBMSSCeG GCafímOGA OJK^SCCSS âocsco^cà Mcmxsm c^Giçitsosc
ACfACDX&A C3CCQ930B!1)C GGCS3AGCOCC CSSCCGCGCC GGCCOOGGTG AimrCGGCÃ TS&GCMSXG otcixgggt OTGTCGOGG AGGGACQA&A C&CCGTGTOC <aCGGCCTO' A£CAC£CGGà CCCCGCCCAC raocsscà-os mocmcccA Gmx&coce CKSQCCHSSe ACCCGCftSCft GCGGCTGCTG GCOGGGGTCG M^CCGCTSSEC OACCmXGC CISOaCSflCF ACCTGACíXG GCTGCGOGM ACCGGC&CQ3 CI^CSAGCST GCCGTCQGGC <XGQCGSTC& CCG2.t3tAS.CAC CQCGTGl^rCG CAGSCGCTGC aXAGSGSGA GTCCTCGATG - 93 -
GTCGACKSSA CGACCCTGCT CSftCGMCCG TÃCGCOmJC A<XSCCAGCG COTCSKSfííMaC MOGCOCCGC raSOGORQCC ÓímmSGAC CQSGAGAGCS CCGCGm^GT CCTCGQ3CAC TCCTaSCAAGG ACCACGGC'!!' CGACISGCTC GívCriCACCG GCSTGG&XT GOOCAGCSCC errCGCQSftCC ACOOCGGGC OGAAC1GC1C ACGAGGSSCG TCTCCGAím GXGMCGCG GGCGCOSACA GO&C&WSk Ct^TOSAM GGCTTCCCCC SaSAOOGCGS CTGGG&CCTC GCCGGGftCGA GCTACACGCC ^GGGCOSC gsscs^^-scg GaMcrcsec Gcessassec
COSQGAGftCGT CfíSGSGA&SC CTfGGAOCSC AGOGÃCGTOG GCÕICTKAC CSGGATCGTC CTGCCCGAAS ACCTCCAQGG CTMÍ&DSAIG CGGG1SGCGT A0G1CTTCGG CTXOIAQQGC TOGCfmTGCA CC^IOGCGGCG GCCCTGGCCG GCS3CG0GAC CCTGATOXC 10440 10500 10560 10629 10680 10740 10800 10860 10820 10980 11040 moo meo 112^0 11200 11340 1:1400 11460 94 ΡΕ0929681 ^scrcssÃOS CC$!ECCSGG& OTCTCQC3GC CAGCGOQStX COT30ieGG& CGGCOGSfGC 11520 ÃinescsaM© CGSíWkGGOSC QG&CODCÃPS ©3CTQÍ3GCCG ASS6CG®XG íPosasEom: 11580 OTGMOSQC TO3K8C MffiCMS GSCCACCGSG TQCT^SCGST CCm^GCGGC 11640 «mm jyxÃGOiCSG TOCsrcicaflc Gsccm^ccc COOOGA^XG GOOQTOCMs 11700 C»GCGGS®GA TCDXGGCGC OCTGGCG&SC 3CCGSGCÍB3G CkCCGVQCQÃ 7CTQ^.OSTC 11760 <37^3ΑΟΘΟ£ΧΙ ACSÓGAQCGG aaCCOCGCTG ÔSÍSACSCSA TOSftíSGTCOl GOOQCTCíCI^ na 20 oòacc^ses GÕCAGG£0:Ç SGMC&3CCG TTGSGGCTCSS· íscmascimA ©EGGM^TC 1.18 80 <30OC&eftO3C açsccscgsc oaseaicGfxc íSSCGTSATCA AGATGAtCAT OGeCA^SCGe 11940 CACGGOSTC& ram GCTGC&CCsfC mmmxm. OSfteíOfâGSF C^ACTGGTCG 22000 ddGssascm TCGÃ&3TGTT a^casjwsscsc ÇS03C&333GÍ M>STCCGCGC 12060 1 1 ICTCCTOCTT CGGCSOCftQC aacacca&ce CSC&OOT&fiSt C&TOSAGGAA 12220 S37O7C0CCS AASÃC5GCCGT 3GACGM.-GM GSgGGE&QCS TÍKÍPGOCSCT aeKS3^CJ5C5C moo csaccõc&Gc® <Xa3T3K©C5T 03CC<3GGCAG GCceoecGcc ÍSGOGSCSST CCIOSÁSÃftC 12240 I 1 easssGsm: CSSfGCCCTS GTHG&MX: eOOCSAOGCT GMCõAGCGC 12300 GCQGKCTCÃ 1ÇGC®3GCTC cmxaKxsftG GCCCAfXMK GOcrassoGc: Ara33DXGC 12360 GGCGAGMCG CGCCmSC&l' CGfGftOCGGG AOQSCGGSCA AGCCGGSC&ft (^®03OT3eG 12420 GTcrrcaxe GCCAG-SGCTC GCAGÍKXJRTO OGímTGQGQC QímCCKT.T GcmcTGcrca 12480 CCOSTGTTC3 GCGCS3CSG&r cju^swvtqc SOPOCOOCSC: fQS&BOSSm fflSXSSOESG 12540 TOXTGCI®3 ACSTGCISCG CGGCGACGCC cmCCTGOeS ÃCCGGGissa CGTGSI^CAG 12600 95 ΡΕ0929681 ccggoc&scí' tcgcgsssgat m^iOGcrc ccGmTGcm mzro&scm craca&gggc
CfGTCGCTGG ACt^CGCQSC ^AQSTOTTC eESSOGGSCC GCGGCGSGM? GGCGTCGGTC ctscqccct &:^c.ab?-,cc.c, GOTOcasasTS ASCQOGSGAS ACSCOCftCSSC CCTCSftOGÃA CGSGS03QGC SCKimiOSGT CÁiíi.CmCGCC SÃM.CCCTGG CCMíSACCTT S^CS3®TC TC^rCSTCC TGGGCACGTG GATCGàGCAG ÃftíKTCCQQG AGCSGOTGOG 6TTCGGCCCC
AcxfGwos mi&GMC%3- cgod®xog &&P3ACGQGG TGGTGaCOOS GTCGCTQCGG
acsEW3c©3 a:oMCKim cgtccggggc XGXCGGCT GGGHGGACCT GXmCGTAC G&SOXGftSA GCODCGÊâSC DXCGAGGGC CAG1C0S&TC TGG&l&GCTÍ :GGCCí^GC-rG CTCSSSGÃCCG TCGSGCCCGT XTOSCSCÁG SOGGàOâMC ^GCaaCSCA. QGacaDCJGS (XCGOSGSJGT GGÃOCmiCT OGGQSímCC gasmcgcog coGosasscGr giosqgcgog <3CGS*rG03Cft QXaQGGGM* 03CGGGQG&£ gcáctg&3cg mqagg&dx a&kjqosogg
XCXGCTCA &?-AGCCCGTC CXCGGTOSTC ©scktcsskms CGOTGSCOSG ossmsfsfe
TCCCAC&CCC GGCÃCGTCGA QSCmTCGCC GàCXXGSCÍ TTC08GCG&T TCCCTTCTAT GCCSTCCTCS MíGCGQÕCTÃ CTGCTMXSG TQGGTGGCGG ACCTGXCSS <KrEGG£30CfiC gtcctsspcc agcxsoç&g cgm^ic&x CGGGACOS.es GGOGACTSCG XXCISCX GTGGCCGTGO NtTQÇMXfôC ^CCOSGCCC Gccimcc gossiccficrí ei^içesc AWSGfcCQSCG AGTTCTGGAC GGCGSICGAA CimàGCTGG TQOCGGAGCA QJGCGSGOtSOG Txcassxc: ggcgccx® gcocicsacc <&sxxx&SQ& Asesccaase cgososcgig 12 €60 12120 137B0 12S40 12300 12960 13020 13080 13140 13200 13260 13320 mso 13440 13500 13560 13620 13660 96 ΡΕ0929681
CC©GGCGS3C CGTCGTCCCG C7GACCGSCC âSSS^CTCÒÃ C&^CSTCOSG CTOQOC&àiSC &XTiXGGA& CGTCCTQ3D3
cso^rcfos Accmsxcc c07Oi*£SCG GTOC&QGOCC SSSSOSâCÃC CSÊCACGTCC G^SAACm-S· GC&TmfcSGfe CSfXG.TGACC
0GCCGG3CCG 1O3CC-CT3G& GOXCTCGAC ocgãscgsos cgcscbcgoc tcasoccctg
OjMrJySGTCO CGGTCQSSCG CTOGQOOS^C CCGG&3TCCG CGÍiDS&SCCG GKSSSMOCC GftÃQSHOCS GOCGGCftCGC CTCfâSTCTGG (SXCftCCGSCfc OCSaOQSCGT OS&OGftACTG
GTCGMH*TCT GCGCOSÃC&C CG&CCGSGSC G’ICS£CGCCG TG5TGCACGe CGCOSãCATC
CTSXCmCC fCGÃCSMSST l^^GOOGÇG CTGTTCQAGG K«CCOT og&cgcgttc GGOSGTGGSG SSOKSGSOCC ©SCGSSSGCG ^XSOCÊOOSGG CSCGCOGCCT CãÃGGCG?CG GOCSSCGeCA IGOâCGAOX COXCGCGCC
CCCGGCACCÃ OCG&CQCGCT CCTGAAGmG ctgg&s&pcg Aoaywscm: gcogo^cm GRGCÃCGACC TCSCCSGCST GCTGTCGCT'5 ocasíy^rai ocmsicG&c gctcoxcto
(3CS3CS0SCS3T fíGTGOCTC&C TlOOGSOXS O^ÇSGCCC AC3GCGSXCGT GTGGKSGQeHJC CGGSGGGGOS GCCTSSTGGft. CTTGCCCGCC CTCGGCSSÇC 7GÃÃOGGÇ©C OSCGSGSGRA TÃCCGCAGSC fSSOGGÍCOS CAfeGCCCGTG 000000*030 fCCJGGTGÃC CGCTSSOGOC CfCGCCSCMÍT 0CGSCGCX3G» KWHOlfC JSO9G0OSSSC TQ30CGAGTT CGGGÃCGftCG GOSMOSCGC M5CTQGTGGC GGSCTCGSBG G^SGÃOCA GCTOOÕfOm CGÃCftCCGGC MGG7G&OC& ímOSGTGS© GC7GG&CCAG
GrcGTSfTCT cciessaase cgsckoctgg ©msmxs txctcq&cgc cck^tggm mfcsccr cmsosxcT οε»αο$β&το
OkGCTGGGCC GCCQD3GTCT CHXCC03Ã&S 13740 13800 13860 13820 13580 14040 14100 14160 14220 14280 14340 14400 14480 14520 14580 14840 14700 14750 14É20 ΡΕ0929681
fíOSCOOlGG ?mCG&SCAQ OSC&SÍGGTG GGGGISGCOS ÃCATGGACTG GGCCGCCTTC CJOÍ^STTCS CX^ATCTGCC CGÃQGCGMiS SSJ^QSQSS ACAOCSCGTC GTCíSCTCGCG SâMmm TCCTSCTGÍsA GCSK5Gf3?OOGC f^GCCGMG GCftfCGGOX GCGCCAOGOS GCGSfCSJICC TCCGCAACSG CCTGCACGCG ATc^.m^ci'’ itíoxftceoc GQ^rnscie
GÀGGCCGACG ACÍSGCCWSm OX33CGC5S&A COS^ÚSCCC GGTICÂAGSA GGOGGOCtSTG GGCíCCfíAAC CGSGCftOGGSA CSCCGAGACC
G&acxGrace miChCTom cmarccmi “rSACCíSCCGA TC^CGAACCA ATCGTGÍàftSS GTTSftOQO&C SOCGCGCGTC GCTGAAGGAG CfCSCCSOSG CCQCCSOQSA ^COSTCÊSSG OSSATCOGCS GCCCG3AQSA CTTCTGGCGG G3CTTCCCCG AGOACCGCGG eTQSGACGTC CC^GGCACOA CG^AmiGCíS GGâGGGCGCC - 97 -
{^£0Ο3!2ΪΕ£ CO^CMCSA Ç&âiQGCCmKS
Aimasoest fe&scsoGor ceseaac&sc ajcfflSK; í^gcógcõca ssay^SAOSGc GfterCCOTGC GCGCGGTCCC CG&CGCCG&S GSCCACGCTT CGACGGTGCT CGGCCACAGC TfCCAGGAGG TCOGGT^GA CÍC®:iSÕC€ ísee^ooGGGe tgcqsctgcc cccgrcgctg
GTCGSCTÂCC TGOGC^EXm ACTCOT3CGG (ãSOESA^mCT OGOSÕCããTG CTGG8CACSC ^OCTCOSCX^ COCOS&CWC a^cg&agcgg ccccqgccgc cgrcgacsca C®OG®SCftftC G&^CCTCGG GC&SACGAGC MSMCMSF OCrnSOCGM C&MOáSATC ÃKSTCOGGC TXCAGCfiím GA&CAXGCG AÍO(S®CICCA. raSCGTiXOS CTftOSOSGGC C-awrGTCGG MDGOSCCG&. CGiemCACC GMGGCCTCT ACCAOSXGA CCCCCxACAAC ?TCCTGCà©3 SP3&3SCCC& GTKSSACGCC 14880 14940 15000 15060 15120 15180 15240 15300 15360 15420 15480 15540 15600 15660 15720 13780 15849 15900 98 ΡΕ0929681
qsgttcttcg sc&tctosoc ckxsog&sscg CTOSH3OTGT OZ^mmShC CTTÕSà&CGG H3CSMMX SGSTCTSOSG CGGÕG$OS$S TTCSAMSGCT ICa^GSSCICT QG&C^CSCe m&m&zcr Mi&cGcvcm GCTcmmsc TCGSSQraQS m^G&TTOk OCm3CCGC<3 GCCCTCGCGG S^SCfC^SC OGimTQSCG casosesosr toxcttcga coggcgctgc
SÕG^GGOCG ÃÕCMXsTOSS SSfOCTíXTG esocaceass ^GMeaccsGT CMmxxax Gsorasàccfí cs::coacgg cccogcgc/^í
QOCGGiSGTGà CAfXGl^GOÂ TGTGG&CACC GCCQÃCCCm TCmaOSCCA. GGOGCTGCTG C&4OC0C$8T GGCTGGSCTC SGTCMGTCC GIXXCCGGCG l^TCSAGAT GgFCCÁCTCG cysGGvc.ú&m coaamcsscc
mOQGCCGtm AGTXCíXCG CftftCSSCCftC GCCftGCGGCA COMCSCGCa CATGÃTCGTC <Sâl«3CGCCGG CÓDXãCOGS TGTCGTãCCG
CSXàSCC&TGG ACCDXAGCA GCGGCÃGOÍC GCCS3CMXX ACCOXftMC GSTGC&GQ3C CACCMSSMTf /sCGCCCCCOA CCTCâGCGGG
cmmcAccG csssoggtgt cqcctcssgc ecowemc& ccgtogacãc gãtg^cctcg CA&sxerre ocoorGoasa Gixx^eo&rG ÃCOCCGQQOG GGITCGTCCX CFÍCOCGO^i' A&SXCmeG CCGCGGQXC CG&CGOTCC CTQGàQCQQC fSTCSefGSC GOSGGmÇGC hQCGCGQxc& Accmomm oscí^ccaac casasserc» Tcc^auiSGc sctqscsãgc
STsXÂíSÕGCC ^GGCACCGG £A£C®2CCTC
gcc£CC7&cg xc&gsgccg cs&xcgom GTCOTCGGSC ACÃCGCffiSGC GOCAXCOGT CTGCGGCACG GGC^CfCCC GGCSM*CCS53 T©Stt?-GGCCG GAeCGATCS.^ GCSSC®GGOC C0G0SCG3QS GfiGGCMfCTC SJOB5TOGQG GMSMGCGC CCOAGGACGfi GCÇGGÍEK&JX CmmSJGT COGCGGCG&C CGCTGC-TTCC 15960 1602© 16086 16140 16200 16260 16320 16380 16446 16500 16560 16620 16680 16740 16800 16860 16320 16.980 17040 99 ΡΕ0929681
CÍSSCCOCCC AGQOQOCSTCS GCISGC.GGàG OSGRCíSCTÇG TGTCCGGCCa CmSATfâÇÍC c&cc^gmg ccmmccm gctscggscg
CfffCCSBSC GOTCjCTCGGG GGTCCCGGGC ÚOSGcmom COGCOkSCSfâ
Aamxsftsr oOsãgbgcíic «sctoggqgqs
OGOSQOGftGG CCG&DCTCC? í^CCGGGTC ÃTGGsrasGe Ts^oosccof osggccícc CJC1CSCAGG aXftfí&SOGC (SSCCSCAKSC GC^SGISG TGGCGTTGCG O^CRiSGCfl í^x^cí^cgg ^cacQvmm com^mhc C0O3EGG&SS SCGCOSOOST CÃA.C5S3GCOG <3£0d$a&CS .MGCCCTCG& C-GCGCTCSAC GTGíaCTftCG CS5CC0CÃCSC aSSSOCSTC CTGGGC OGGÃ TCCGCSCSCA GCCGaXGM TGGGECGa&S ÍCGCCGGCGT GCTCOACGGC G^GSSTtCG GCCaSCSGGGT GGCCXí&íKriG GTCM^mm MCCCGTC-C7 GGTTGAfâCCG {mSSSGSMSS TCTCCCT3GC -SGA1>STCí3CC CQGTCGTOST GGCOSGC?XCC cmscccocs GCa%GR0OSC GDCCGGOCTG MfífífCSTCf GS&EGTim: CQSCCíâ^SC CTGG&SJKCf mSAOSTGfT 000090X3000 TOGGTCG&C? GSTCGCTSàC CGACGTGCTG GftCmSOTSC MO0GGÕG&O CFKÍGCCSTG CTCGGCGTCGr ^CCG&SSC CGTCKSTGGGC gtg&ccqkss cmCTS»xcf ©sm^cocg
AKSQCOSCer OGCtOSOCGG CCGGG0O3GC G1GACCGCGC GQCTCSMCC GTGGGCGGGC M;GlvXGSi3G m^TCGCCGG <3GMXC03AG aMXmhGGCG TCCQZkTCCG GCGGKXGGCG mmccGcoc sogacscsct (sscggagatg
GT^CGTTCT Ãí^PCGRGCGf G7COGGCGGC Q3C7&C7GGT ií,CCQGM.CCT CCCXXXTCAG t&CCAGGMjG GCC&EXGQCrr GTTCGXCGAG A’TC?íACGA&C TZSSCG&CGh C%XGAM£C moo 17X60 17220 11280 17340 17400 17460 17520 17580 17640 17700 17760 17820 17880 17940 18000 18060 18120 100 ΡΕ0929681
GSOGSCfiCCG eOÀiCGCÍXSCS SCQCGSGGftC
Gcamoc$CT fcesmaoss cgtgacog^g CGGGTOG^C TSCCGROBm CGOCTTCG&C tcoenaccG ãcgccstctc sctqgsocig
SSCCTCCCGC TGÉX3SCAGTC CSBCQSGCTC CâCCCS^SÈC TSGCCSiSSCA CCCGSIOGGC GlCGACCfGS CQCTGOQQGC CSGCGÃCa**» RTCGAGGCAC CÍ5GTGGTGCT GGSOGA^GC GGGQCG&RC® AGÍ^OOS^CníC ÍJC^COG^ S^mS&CCC GGCXÍGCGAC OQSflOTCCTC TTCGAt^TCÊ CCGCCSGGCC ÔCCGQCOGSS
&z£m,ccrcA cozM^ocm otm^cc^m: *FSSO®SCGO; eBSÃCS&SST CTTC^OCSAS Í3CCíS3CAMJ,T TGgOCCTOCA OCCCeCCC®C scssacccss jycG&Diaecs c&gkttscto
GC€G®SGSGG CGTCGSCGCT GCOCsGTCíCGG TfQCSSSCCG CCGBCQaSSC CGG^GGCCTS mGGTmSSS COQCSSOnGCÍ SGAGftCSGCG CTGGSCK3GA SKSÃGGTeCC CGQGaGCS&S Q^ÒSXTCC ©eCÔCCTGCT ggccicsgcg GàCl^TCCG GTSTGCTGCC âeCGffiCCCGC CÃCCAGC^er ACTGGCTÇCA OaTOS&OGS aXGGDGCÇS ADCACCCGCT GCS&3GOSC& mxrscM^ c®33sctstc gctsmstos
CK5S3TCGTGC ICATTGOSSS CACGGTGTAC crcc^Gcmx gcsoxictgga Aoa&oxs^ GGCGGCG1TC GCSIXSCÃCGT CGCCGTG&3C QiCOTCEOT aaVEGCGSSa AèftCSSCÕSC GGG3CCTCG& CGrCGCOSSA ACCSASCOGC S33S&30CGA ^OSaCSTCCA MÃCOT^AC &SCGGOSCCT TCCA3E3GCÃ.T fíCGGSCfíSTC CTOSCGCTGC CfS&OSâCCA CC&3GA0GAC CtOÊACGCCG CSCTXACfcC eâ&OQXSTC CCSTTCÍíOGf GG&&OGGCCT GGKCTGCAG essaccccss gcggtccgga cgc&gtg^os
GIXKÍTÇACCA ÍSGATSOSCT ÉGTGTCCCGC GCÇSQCGAAG ftSOGOGÃCTC GCTGTfCCAG âOOGCGGCCÃ CCGÃS3CACSC CG&GGrGCTPC 18180 18240 18300 18360 18420 1S48G 18560 18600 1 8660 18220 18780 18840 18800 18960 19Õ20 18080 19140 19200 19260 101 ΡΕ0929681 CWRSOCT35CG GCGÃGGOGC QCCCCÍC^MÍ ^CmCTCG CCC^OGOSQC GGJCGRSSCà GXGA&STGA CQG&CeOQGC· Q3GTGGCGCC GÍ^ACCOGG aSÇG&EC&T CCTCGTCQRC CTGQ0G&3T6 GTG&GCCGCA (XTÇGCCCTS GCCC6GSCC& COGGCG&GGT GCCíSSMSGCe CfOGTCMlCG GOSGCMXSGfô CTCCS^GGGí: c&cggorcc sgcggctsg? gctogocnsc
ÃCOSftSCTSA C0SAGC&003 COOSAOC-STS G&CCAGGTGG COGCS3TOCT GGOCGAM^C csqcií®ssos .«asoasior cc^gccctg
CCCMSGTCG ATíjCCGTCCA QCÃCCTCa-C rossrcGKsr tcicgtccgc agcososctc ozcmcmas cc^tcctcga csocttgatg ÊÍMmGG C^GGGGCC^ GSmS&GC&a AOmCCASG GCCQGAÍFGAG COSCQSOSGC GACASXITTCG ACATCGSCCT GGCmSOSàS CB3CGS&CGC TGOSCSGCCA. GGCCftOCGCC
CTGACCAGCC SSGTGCTSSA QÒODGTGCAG CQGTXGGTCG TGClS3ftCO"G TGGC®XK SSCTGiSQGTT TGOTSGSâSC CGCCCAGGOS ACOGâDSQCG AO^ecaXT âSSKCTOrs CGCGC-CMÔS CSTIOTCeST CCGGCGGOTC Cm3CQGTGT TCAGTCOSGA ASGGftCQGTC
Goacsa&es ccpj&c&cct m^mcccm
CGCCGM3GOG 'rOSCOXGGft. ASACCTCGTC TCCGBáSíGG CTPGCGACGr CTCCGÃCD3C QSCCCGÃCCG GCBaO^PGOl CCTfââGCGâC AACCGcasftGc a3CTOscc«3 ssrsTiKJses G&&CTS&CCC GOGACCTOGG CerOGACGCG ATOGOCTCCG 03GfíaCA03S OÍOKGOS OXmSCGGe GCCAGGCGGG CCKSCC&QGC
GKSGaaascc ^gmxgqgaa cctcmsCgcc gtotgocga. usscaccasc cgaggcdctg CAOGCCCrOG TGGTO20G&£ CÃASCTtSGaC G303GCGA&3 ISCOSCàCCT GCTQCGK3SSC 19320 .13380 1Í440 19500 19560 19620 19680 19740 19800 13860 19920 19980 30040 201OO 20160 20220 20280 20340 102 ΡΕ0929681 crnsmcom cs»gccgccg csmncccoc sTocfccftàsc immsscs mmsccGm O*S0C33SSG OQGCSOSCQGf GCTOSGCS^ SSGTSOHSOS ÃC CICGGCTT CG&CICGGIS SGGGOGjWXG GCCTCM&TT GCCSGCOOÍ
ctc gcccgcc M:mjQ<sosh Mmúcmmi emftDSAccG tcgccgãcgc ssscgãgcos CSSSGQCSQCG tPG3®G&300C ÇG&OG&CÍCTC ATOTOSCCG? TCCCCiSOAGA OXlCOXfGS oagcoxcog «sacnscem osfccgdcm
OftCOCGGSCT fGTSGGGG&T CK5GOC5GDSC CftÇCSSCTCG MGCC350CTG Oa*A<5CCC'Ki ÇG03GTGfc£i5 COSSCGOCST CfTCSCCGSC ascãmssbx ccgcosííGct cgmggctsc
SCG*50CX5S@S TGTCClffiGaC CHOÕGSrrC TGCTCOTQ"'!' CGC2GSTCGC G&TCC&CCStl A03ATGGCCC t^SCCSSCÔS TGTOQCCG^ TOSOSSCÈiSC GCGGCATGGC CG8SGM3GGC GGCMXXSSCC TGfCCGAÃíX CCTOQQC83PC
ApGGCTQCCS ÇGSSSTQGCGG CGGTOSCCTG (mSCAGÍiMiG C0S3®SCTGC1? GSQCAIOSTC jyy^seoxas c^cisorax
accccqgtcg hçcmcm&& CCGGCTGÃGC EKOT*MK3S AC^ACCCGAC GOCGGTCGCG GfcGJOSGÍRàG CQGGTQOGCC GGCC&CGC CG
Mcmxmas Temcwkgc ctcccgcctg TGGOGGMOG fCGXGÃGSG CCGCsmTGGG GACCfGGftCG GCCrentGA CTCGGACCCC ©SOKCTSGC SSCãeG®GSC OSCGCtCTIC G^Gcamx corasóBõce ôc^ascgg GaacGOGosG gckpgs»ccc miíxmatssc
SfCTCCMSX ÃGSM^ACCT CGSGTC.CCIS G3?®DG&XG CC&QSGCGSG C&GCG2CGCC ^GGSOCCQS OSGTCÃCGGÍ GS&CftCGGOS mcmzmci osçcmzmc atcgcsctcgc cgãtcggtgt catcggcatg
CS9S^Ca&©3 OGTTCGCCSÃ CQ039033AC GTCKSCCPCG AftDGGCSTTC GC53S3GCCCQC 264 dÓ 20460 20520 205SS 2Ô648 20700 20760 20020 28S80 20940 21000 21.060 22120 21160 21240 213Õ0 21360 21420 22480 103 ΡΕ0929681 GMCaOSSGC!: ACCSOSfSCT CGCOSTGCTC ÍOaACSeOC I^SQSODSCC CàfiO^TG 0XGGGGOOG GAC1GCAACC GXCGAAGSTG GSGCJOSGOB 8800681088 Mcccasscc AcsoceT^sf GGcreGG&re <k^%gtos eSGGCGGCCG ^TCASfíKT Gfi!KX,%GSGG CMXTGCAGG MtXCACCM SCftS61X(Sâ.C OMmCC3GG AS5SSGCG06 <3&RC0GCC*C ATGASCGGCA CCMCGCGCA CXTCATÉXIX 0C6&8OSEGC CC-SACGGCGT SSIGCCCGIG ÍXGGCXCAQS CCGCAOXC? GXGGGGffie <2C<3GGT6GCC TGCTfJXíSC ccsggcsãcg 5C6GCCGAQG ASGGCQSSiSC EXGGCTSSCC CíHXimxS GT&CCSC&SG GkWCO&SGC MS^fi®KsGQ GQSíXMíSGG CCSGG&íXTC ÍSTGÈíSSaAt CXGC<K3CD3C GCl^C&SCCG CG-KXCGMG GTGAGe^XA TC€QGTCS\C «'kxggctgg ccfxcGtrcTG axrTCGC?rc CSCGGG&GCG CGGIXAACCA gGMXGCGC?
imm^cftGC gggsx&icok cagcgcgctg GACCTCSTOS A&SCGC&CSS CACCGGO^CC C2GCT3GGCA CCTACQGCAA Í3AGCCGCGAG HQim JSCftCCC&C3SC GGCXGCGGGC CT6CGGCAGG ÂCACCeTGCC GCCGACCCTC mSFOGíXGG 0160(30¾¾¾. 6£^3CTSAC€ CCGOSCOGGG CÇGGfGICTC: 61035^X000 OAÂGÈÕOOOC (3OQQO6S03A CKXOOOOC^S G33SK3X30CG QOCGCAGCSC CG3ATCCCTG CTCOÂCOGAG SÓGICCOíXI GACCCGCOTG erSÃDCSRCC GOSCOOfO®^ 0056000000 OCOCTOQDCC GCOOCmOAO COOSÃGCm; MGÃOS3TCT GOíGTGTTCCC CGOCCÃSlSOG CTCtGAAGCGT CCCCGSXGTT CÍXCG&QCGC TC-3MX6&CT GGlXGdSCr QmCGTCCTC
oíxxigc&sc osGosssFfT coxexmiG
GGCOICGIXC <XGÃCQ00ST CCTG3GCCAC 21540 2,1.600 21660 21720 217SD 21040 21000 21060 22020 22000 22140 22200· 2 2 260 22320 22380 22440 22500 22560 104 ΡΕ0929681 tCCCMGGCQ aSRSTGCOQC AftGGfCGfOG G3CTSCQC&G GOOTJSKECC MXnmGCCA ofposasíascs ccísccqtcsr
CTCM2CGBS3G caiTCGÃAGT AceOQQCÃPS <KSSMX2£2& Ç^GGOCTCCG ‘rGG-r-GCCCTT GTCCTOGftCG GQQGQXaCTS GTSSCCGÃSC íGA'PC<3AGCA CíPGSaXâGC CSSmzHÈCQR. &A03GESGGG WQSGWSCT romCTGGG CCACGMOX CMXAGCACT fCTGsXI^&l GGCSCeGftSX ÍSXCGCfGCT STCACCÍECGC ÍSCCXSICSST GCeraSSSPGG MC!f03C03T CISSftOCGTCS MftSSCTSCT SlfôRQCGGCG Í^CGCãCOÍT CGQ&&CGCCA CCQGGCSíCCT
CSCCTSOSJS IJCSGSTGC&G
coseGOGMe qosgoss&ix cg&og&qgtg eeroccosGC OSeSOCeSCC 1S3GGaGSffS& QCTQGSQSSíF CSSCSGGTGS ccfiss^saee ra?osccGft&&
CTACKCADS Í5TC<3CC-SGCG araccosAsc GGGGCA.CGGG QS&ZmGZCQ OSCSCCGKT GC«S5CCTCA GCTGftCC2?CG MGGOOBAC c^axccsoo cxcoscgagc
COCGCCOGIX GTGGCGGACG GSGGGCGGTT cpocoxm:
^OSÃCGCàT CC<H£<X'ffiG GGGGGCCGGf· fiÃOGASfiCOS GGTGCT3CO& GhGP£-C.GGlX?. cms^mhT racACòtG
GltCÍXCACG GCTCOG3CGG imCCOTGOA SSAGGCAS3CC *K??CGCKrCG OSGGGGCAÍFG TCôCGCXGTS GGCGSÊCCOC TCÓCCtSGim CGCCmMCG oggtggío& oscercccA^
CSCTÔ3CCQ3 Í^TCG&CGCG AG^SSMCAC CGffiTSCCGíSS
Mmcoocst essesesax
ÃSígSC&STQC SC'mCCGSZSG CCSXAGGTI1 SCSGCGOSAC ÍQmJGEfCOâ CSGTSTCCCG igcosaocxa côcc^fcss^
OXCOCXGCT CGGCC3S3GCC CQC^GírOOG» OSQOCTQSTS CCG&CGGCGT OCQGSCCGCC GTIOGCCGGT CCTCGCCGSC GÇCfGCQCGT CCMSGfOÃTC MCXCGCCíSA MkkCWSkTC KCSmGtZCW CQM^ChCC 2 asas 226SG 22740 22809 22MS 22S20 22980 2304 0 23100 23160 23220 232SD 23340 23400 23460 23520 23589 23640 23700 ΡΕ0929681
GCCTOSCOGC C^GCOSÓSíGC O^GC&GGSC TSGOXGSGG TCmSCTSCC GGáGímQOTS CmGTGGAOS CSSeCG-liSCA <3fía3GTO?IC Ma^fSSTCC TGCJXGCeSC fiGfí®ecc®os SCCCTCCMG OSSCGG&CSA Att^CGGCGGG CGÕSMCSCf CaGCGGGGM SftfiCCGCGCC GKswxam VMmsmàc. aamxmx. f^SCmCim MOmMXGG ccgsgigcsg tXCG&CGM^ CGCSSGCSSQCKF CGTGGÍIOCC ©CCGGTGCGG COG^TQSGG CCTCGTCCm itcctsatcg .acaa2G0áXG cgagsscccg
GrGOQCGGCG GCiMGTK;^' CGTíXCCCGC
gtowcqscc costc&ss&c .^fsoxmTC
OCCCG-SCCjTC CCâCSGGfíSS
CGAíSACGCOS AQSGCGBSGC SGMX33GTC gc^tsosrcg Tcrcamm; cqxcíxcgs
GCCGTCCTCX' ACACQSCCfX OTÍCAIGOÂC CC5QCTGCCC& O^flSTTCSC QZSGMmTC
- 105 - ^ÍSGCCfCT GGCGGCíXGG CG&CSAG&TC GACGOCGGCS amfôGGCM' CCAGCCCPTC GGSSMmCS AGCAGCCfíGC GGSSTGGOSC OCsa^TOSXS ^GCiTXTGGT aXi^GQOQST CTGGfCCTCA CSSOSGMTC GSTGSCTSGC GS&TCSCTGT ACCÔ3XCGA CTEGKCCSAA mmamae fcemmwc crmgsímm G&GQXGTGC MACC^SC^r CUICI&O^QG CGCGQCaxC TGCaX&GG? Q^DCGâSCOC QOGGCGCAGG CGGÂGAACCC CGGTCGG&TC «XCCTGACCG GTGACGftíXC CGftSSSOSCG srcacrcGGG cggagccgag CG3GGCOGCC TCMGSOÍSOSG GTGCGCTCSG TQGCC^SCTQ OSCSiaSCSCG TGCTGSCGTC CCGGCQCGGC GCCOAXTGQ CO©Ct5SSCG3? SSOCGTOSTG GCGGCCCTGC fOS&CGRGCA CCGGCCGÍCC fiOGGGOGTGA TCO&ACGOT GGÂOGGGGAC GACXCGTGC QSC&CCKm CSSSGCJXSftCC 3 3760 23820 23880 23940 24000 24ÔSÔ 24120 24 ISO 2:4240 24300 24360 24420 24480 24540 24800 24660 24720 24780 106 ΡΕ0929681
OSCGACDGCÔ ACCTCGACGC «XSSGCàSOS GCAGlTfsCGC CGGSOGGCQG gccksccgsg MX3GCCGCOS GÇ3£C£®0S& Miasse: ãsggcgmksj CPGCTSGTSSC CCGCCÂM5CT ^:cn»ncGc fcmm^pscs ^"CACTÔTGG ÃCAROSGGCf ÃOGCT3CTCC ITXÍACePGST
AGCxmarcc ocmoma*c G&Ge*íQQSCà. ACCGCSSGCG OACTMXXm ACCCCCftGGC
CA<3ã:SC03S TGSCCftCÃGC QGS&TGQCSGT GCCGCTSGCC OCCGftSeGCC SOàMJGOOST c^scgacc ccsÃTOcm: CAOsaasscG ^fçrmm.
ATGG&XCGC AT^JSCSGCT mmwctkc mcommh OTCGIC03?C TACTCCTCGG CQDQGCfiAAC GCCTTCCTGG KX^WSãm ODG2GGSQOC GGCCACCCGG QD3CQSATGA CMX3GACCTG OTCGADGCCG CGACCTSCGT GGGGTGCGCG msocimrc CSCGCGQSCC GGCCGGACGiG CjPGGCOGGQC COGGQOGO«3 GTOSCGGCCG GGCCffCftSS Gâ03ODG&e? c^ccqdgãcc Gscrrsaasc
0íimXC'G£S CACCTGCGQí GGCCGCG&AG GCCGACCTCG Gmcommc gccggscccg GTCG&GCTTC CCGMJCGACC cmxmsse mgacctaca Cr^GGOC2rrC rreGGG&ÍCr GCTGCTGGftS GCC-TCCTGGG OSGCAACOAC GTOSGCGKJf TCTCGGOCGT GTTCATGGGC M:Gi3CCTG&T GGCSAACCGC T\G1fô3SA.CCA GftGCACCGGT SCGGO0SCSS TGGCCmG CS22GTC6TC GGCCGAGTCG GOSAOSQOSC £GÇÊGSDSâS GGCCfíCSíSQC CCGCGCQSOG imSCÇGSC GGAQC&SSTC 3ÍGCTOGGGCA CGCCGACGOG TÍ^CTCQGT GAOSGCGGTC ^COSOGàC Í^TCGTCTTC ACGMC^CSS TGGTGCGGCC AOSãGCOSM' C5GCCftTCSrC J»3QÃCCTC®S QCSeCTQSTC ccggctggga CAeccmc&se
CCD5GCAG&3 CQSCTTCCTG cgcc&cscga gscc^icgcc
AGGCC&TGG& ÃS8CGCK33QG GCACCÍ9SCAT GTTCGGCCAG 24840 24800 24S60 2582G 25060 25140 252Ô0 25260 25320 25380 2S440 25500 23560 25620 256$δ 2 57 40 25800 25860 25826 107 ΡΕ0929681
CGfTACGTCS CTCODSGGSÃ CAC®STCG7?C ÍCGCCGGÃSC TtJSMãSKm' CC^GtííX&OS ôscosâíwr csAQT©rccc a^ocssoosc gtotoct^ds txíttcdsgtt csf&sGcccs GCCCTt-AGGA «CGaCTOSGC GíOCTCGTCC TCGCTGGTCG CSMGCftCCT OXCGCOOM3 TCSCUQOSQC ASA3CÍ3AGTS CTOSAT-SSCC ‘rTGGlCGGCG GOSOSSCGSír GAJ^SCOJyC CCCGSCGCA? fCCTSS&JS"? OTCGOSGCAS CGSGÈCCIOG CCS07G&OSG TCSCTGCA.Stâ GGGTSCGCCG OXCG^am. COQCSCCGGC TCS5í3CCG»Qe GOí^GCTGír «320«ΚΤ2Χ; ÇAGCGGCTQT 0G3TGGCGCÍ1 GGÃÃCS3CGGC CACOmàTCC TGm33TS£T CCSCQSCAÕC fâcxsaíca&DC agoacsscx ctgoaãcggc: om^ecGCGc ccm&osoGcc: gicocagcas
CGGCT3ATO:: GCOSKSSOGCT GGTOAGCGCC OGSCTGGCBC C<SfêCCG&.TST GQAOGTCGTC eaGãOGCACG GCÃCCGGGaC CaG<SC.5S3QGT CâDCCOMPCS AGGCGCSAGC TC3SC®ÔSC2? A2C?i£GGCA j&SftOCSCâà GTCGCCGCTG TGGCTCGGCT CSCTG-AAGTC G&ftC&SCGGC CACQCGCRGG CCGCCCCGGG GGTCGCCGGC GTCATCAAGA ^SGTCCAGGC GCTCCGGCAC GISaSKXrBGC CSCCGACGC? GCACGÍCCAAC CGGCCTACCC COS&SGTCGÃ ctggtcqgcc GG7BXSTCG AACTGCTTAC GGM.GCCCGC G&GTSGCCGO GC&AC&32CG CCOSGGCC&S GCCGSSGTCT CCGCenxrOG CGTCAfâCGGC ACGAACGCSl: JOTJGSICCT G^GG&SGCG COOSCeSSAÇ SaSCSeTGCC CACACCCSAíS SGtCCCCTOS TQÍCSSfCGT GGUdJCCGCG 0308336036 CGTOCCTSSC CGSTCASGOC Í^TCGCCfCG CCGGSTSOGT GQCfâGetCSftC QGQKTTTSB CC8GTG5P3GC CCGGGCGCTC GTQàCGMCC QQSXGD3CT CACCOSeOSC 25fge 26040 26100 261S0 26220 26280 26340 26400 26466 26520 26560 26640 26700 26760 26620 26080 2 $340 27000 108 ΡΕ0929681 t&wxmm wmm&ct-c mcGmsmc mvchccGcc
GTCrrCCCCG GCCAGQGCfC GC&GTSSÍKEC CCGGTOTCG CCíaSSCieQfflP OGCCGMTCC: «CSOCÍCfCG JOSFÓCfGOG CeGGGfcfiTttC CCCGCC&SCT TCSCG&tGM1 ÍXIIXGGCCTG CCGSKSGCOS TCGíCGfSCCA CTCÍXAOSGC CmSOSeafâC AG&àCGCCGC «SAGGTGOIT
ctsscggggc gosgcggcbs <kktttccgtg CTS3CGCCGT OGCOIO&CCG GGTOrAGGTG ftrCSCCfíGGG ÂÃfiCCCftBGC CTTCGMX5&3Í CC&GTCC3X C^SlSSCDS^-GGftCTÃCGGG sasa^DGC$aG· ccê&g&cctt g&coxcãtc
3X33SGOCTGÃ TOGGKSBCTG GÃTCCíTK&C
cGGftaceasc gcaacc&ggt cgggtícos^ CACG338TGT TCGTCSACSGT CMSCOCfíCãC IGCGÃCtó&KÍ CSGISOTOAC CGÓGTCGCfiS
Tsecogasci* cfaconscae
CCaCGSSKKG GCOSGOTCGA. CCTGCCC«G
GCOGíPG®CG& iiiSCTSGA&X GCSSQCOCGC ceGGcoserr cgccqsgcm «oottcèsg
GSGATGSGCC QSGÃRClCCt GSÊCTÇTTCG
GccecoGOce WQMcmyG gãtosmtgg gacctgctm accgsgtcga (^tcgtgcag ocsmsgref oscasTCGO® eo^cmxasc GSG&$02CCG OCGCCTOCGf CTOGQQDXG GOCT®SCS3Ca <333K5QCGSr CGCCÂCCGGG GCGTTGAGCG A»fi&M3AD3C 08CCQCG3GG oxseoncA ÍOGCCCB3C ÇIÇCGfGGTG GXCÕtOS&CS aiTTGTCCGS TCAGGMGTC TCCCMACCft ÃCCSSefCGA AGGCAtCGM GAOGCGCAGG CCCOmGGf SDXfTCmC CXCGGGA.TCG TC^CGGCm CTACTíãSTAC CCGGCCtmXS OSSftGCTCGT TCGCCAGGSC CC^OTQS TCCflSGOGCf C»S3PC»ftC*C CGGOGOmÁfi ÃC5SGTO3C5CT OCSCmJCPS 'XTCTCCCGC 15CSftCTGQÃC CGCOÔI^CIG mCÍXCTXCG àCCAa^GGCA emCTGGC^ 21860 27120 271B0 27240 21300 21360 21420 21460 27S40 27600 276SO 27720 27160 21840 21900 27960 28020 28080 28140 109 ΡΕ0929681 cggcccgcos «aKsceoGàc ecmcGcosc:'? ÇSSCT5GGOS os^rcfíimíi a;ix^côc&s
TixmmoGA oscacoos®; isomsccmç oserccsc-se czcmKicm C^GAÓCTGA SOllOSà&SC ÍCCGCTGGTC CTOXGTTGa GCGGCCCGaà CGAG&COSGC SftCíSGCGGCG CmSSAOSfS GÃCGC»ÍCAC CÃSSSMms ÂSTTC®CTT coasserss fíftGACCTfírí AC^Ê&CCT «GC£GW3G3f cmjM.aim tgí^x^x i^cqsogbc
CTGCGCAfeSS ACGCGGSCCG fíraSSSOgXC: CCCGCCSCGG CCGTGGGCGG eSÃCG&SCCC GOCCTGG-HX ISSaiCa^GC CGGC^GSCG CCGGSCACÇC TG30CC5TGGC j^OSCOS&C tosCTGesCT ccccscoesr rae<3sceG&s GÃCGamKt·? Tmx&flCGA c$g»sãcc5gãs
GOGSSGSEGÇ GGATCSiCiVC OSQCG?iC^C DCACD3GT'SG TGSTÇKSGíS MCOSCOSSG
TCSCTí^GCC AGfâCGGOXC CGACCACCCG
Tozmmx mmmcm acocsscra mcGosmcs msoctsmsT omcTCccc
eaiOSCSSÃDS MCmSGGTG CMXGCSXTC ‘STíSCCCSCCC ÃAGQCCC&ST CCGCGTCCfS TCGCGCaCSO TGCíãCCTCSA CTCCCftfíOOC GCCACCGGCG fSCISSESaC GGCCOCCSCT cosccosces a^cg&scg G^ToeàCGTc SG^ACQGCT ACGQGCC<3£K: ímxX^GGGG GTCTTOGQCG ASKPOGCCCX OXCGAQGAC cAfíoosscíGc: f<K^coACGC osescreess
SSTCMSCGG TGCTSSCCSFT OSCCT3G&ÃC QXCTS3CGGG TCCGGCTOK: GCCfiftGCGGG G&aAccGGCc <xttggtcct Gsccaasaea&
CASCTCGQCSS CC3CGOXG& CGGGQSOC&C: CfGOCPGCCG TGCCCGtKSC- Í^ACÍGCCG ®EososGocr rnsassASsa m&z&asch oãftG^occcfô ccctsgcí» Gassracoass 2S2CG 26260 26320 28380 28 4 40 28500' 28SS3 28Ê20 26660 28740 28800 2SSS0 28920 28980 29040 29100 29160 29220 110 ΡΕ0929681 GTGcrceaGA ctggctsscc tmatn GCGiSCGGGGÍ ACOCGCCGGC CCCOOGGICT gqgscctsgt ccggtccgcg
CTG^CÃSXG &Gô'XXÍâãGT 3XX3SCR3GGC αο^ΐΓίΧχο <3asD3AcsTT cttcctsccc
íSCGCGTCCTG CGTTOGBCCC GG&CGGG&OC mcnomm cccoscacct ©m^cecoe cgxagggcc gosacoccoa gógcgcocag βΟθΟΛβίθΤ CCTTCKaPGGC Cft^GMT^ aioesccKr cosieefsãe eofâes$@G®s M^XXKXXX TCAfXCCCOà CGAGCIOSCG ÃlJGC&XTCQ ÃCGMXTCftC CCGCGACCGS GTOCGOSSO ttmTOSGTGG !£fâ3ÍXGTCft& ascacsGCsm ®sgcg&gtos tc^ggcosog
OTCGGGO&AC GCAGCAGCGG CATGGCOSCC ÈÊCOXMOS ACTQmXGG CTGCGG&TQG CCGAG2CGCT ©2TCG5JGCCG ASIACGGTCC CGS^CCTQIT CCGCGGCCK3 íXGlXTCACTG TGGACGGSSG <XTQ3CCOS6
GaXCCGCGT mitóSAfiGG CCGGCTSGTC GCIlíACmCfi C*tCTí3ACCCA CCCG3COSCG O^XGGAAC ACCCGOACCG G^fC0©CCBS íXGSSQCTGG CÒfCCGGTSà QCCKSCaSCSC CGGCSGQCCC GCXCCACCCG GCTCTOGGAC GTGC1SCTCT CG3GCG0CGG AXGCã^GSC CACGGGSTGC GCXGGOTSX ©CT^CAGC groo^gmca caG&serEcac cgocsmogc TCOSATCGX KSCSGGSSSe cgcgctgck: CftCÈCSSGCCS GCCT2TXGÃ. GGICJ3CSTG aaeetÇffi»CS OSGCCAÃS3GT CACaSOCQCG GSSÇKXGCS CGffCGSmr C^m^OCStC GSOGCGT&CG COSCGGCGM CGOCTTCCTG GGCCTQDDSG GCCfGTCCCT G30QTGG3GC.
CftQCKnsos mmeo&ccA aacecGGQce
GCes&GÕOCC OXSGCTCO^TT CGACCTCGGG A^CSftSCSOG TCCfOSCCGC G&TGCGGGCG GTCCCSGOCGA GCCCkG&CCCA GGCGCíSCMX CGGCTCGCCG GGCTGCCGGT GOOCG&GCSS 292S0 29340 29400 29460 29520 29580 29640 29700 29760 29820 29860 29940 30000 30060 30120 30180 30240 30300 30360 111 ΡΕ0929681 GOGGC33SK3C TGGTCmCCT GG3GCGCGGG ccggmjgccg mo&xasGh CMStsctmc CTSG&&CrrGÇ GÇmÈOC^Ge'!' gcgcgssgcs ITCOKTKC CfíMCCCCÍl' GGCCKJPSGCG GQSaCCGCGft ÀCGGCM.CSG GÃ&DGQG&ÁT GCGCTGGOSS Ce^fCGCSSC CSAGGMS3CG QSCGftOGRÍX fOSSCASCT QSOTTOSGe ixsimimM ÃGsrcGTCoa ggcgitgcgg
AÃSCSGÃACC GQO^XTCGC CGàCGCGGCC TGCCGíXTGC O3GG!B3Q0Í3£ C$CC3í3GCCC eecGsctscos- sctcggsstt emposse cco^tcccg i^ckscggg sscGasceras
GCOCTGETCG SGOC^SGCff CfTCGSSATT çmGCOGOSG£ USC5!QCTS(a ôgcstccsgs
GCTTCGTTC-C &GOGCACCGft. COTSSGOGTG GGCQÉSCXStCA CHSSOCCGG» G&£GC*SS£? OCTTCSGGCC G(3G»3TCCTA CGTCTICQSG GC-GS2CTCGT CGTCGCTGGT GGCGSÃTGCÃC
CftGG£CGCGG 2CC£8C$C*3S eTACGÃC^JS MGGACACCG QGfTCGACTC GCTGãCGTCG ACC3GGCTCA J98CTCCCQGC C&CGCTCGTC CGCTAC5CTGG GOSCGCXSQCT <3GimS3S»C GGGGACftGCG ÃÃSSlOSfcCOG ÓCSGCGGCÃC GSGSSíSSÃGC OGTCmTCGC CGACCTGGGC aaosaaresr TsaiocftMT ggtgagtq^g
ASSICÊCSCfí AftS&SKKSSS CAOGCSSã&S GGOG&SCCSA TCGCCATCGT CGGCATGGCC ^SàCCfCT GK3O3GCT0ST GGCCG&aGGC coctqcijsgg ãccxggãcsc ccrõmmc
K:CGÃCC«3G GCGGCTTCCT CCACGACGCG ItGCCGCGCG &3GCGCTGGC CATGGÃCCCG GASGCeCTOS AAGGTGTCOG O^TCGACGOG recàccGoas cGâGCGsasic osscmcssc
TTCGCGGGCA CXGGGCTQGC CTCGSSCGTC-'PlXyGÃGGGAC COGCGCÍim: <&$3G8CS£S CTCGCCfâCSC itíSGCCCTGCG CCASGGCGftC 30420 30480 30540 30660 30660 30720 30786 30840 30900 30S60 31620 31080 31140 31200 31286 31320 31386 31446 112 ΡΕ0929681 TGcrosasG cfispoacosa osocgogsíbs
WCTCCO50C AGCSSSSGCT OXCSCCGRC mcç^ms essesTcmc c®sm£££& oscACcesor ^tcgccstg Gcercasâsee ect^rsácosc cecessesec asseasses assasATosG sccsrccs&r AosM^esee GTOsscecM? cg&sscgcãs GasacoooSF ^t^:GC©3 ctcgcts&sg GCKGTSecas ocsGGMeM,. GGix:araGÃG CTKCÃOSCe SCOÃGeCCAG CT2GOW38I£
Kxae^aox qoqbctsgcc gsoqcg©xsc «4K'^&scg «escassOST çmcc^&c GxsiseeGs. cgtccgcggã caicsmxs cimsossfe josxx&cog mtswcg&g GcecresaxsG ccmGcscúc amscfcom GMG&MSCCC GOJQGGGGCT GGCTSCOOm jkoqsqsoos eoascMSec ée^cMGSfe 2Q3CTSGGGA TGGSCCGGGS. GCTCCTCGSC GAC40XNX'<30 CGQCBCTSG& CC^GTGGACC gsg&rstggs gccccg-sctc eriasim&c Geseesfoes meo&m&c ctcúqgcqcc gtgstcgtgc skkkgcssgct mxssrcGOG GieOSCGGGfc GCSCGSTGM CCS£Ga®SSC cgotcsxwsc smscsrssT ccee.GCCses CTGaecscs ταοΜοοοοΆ csssaceaGG QcavrGcsxae gsrcctãcgs ccmsMxm TCGSRCMCG qgcjo£gc& í^cggccgcg gcqcsgcg®: jeGoesacAT sccgoog&cc sse^s^cos m&gcqcggt qgãscksc^s CGQXSCSSX GSSCaWSP GTOGTCGTT1C í^commi^i ccceessesA gcccgctgcg CÍGSEOSmF CCSCAOSCSG cscgqgttcc ercsAcwx cccTmm^. ecrcsecsôs GSiftOSCGCGG TCGAWACGC CGGfTCGGCe GCfCKGGI^ AWSCCGOGOC OSGCGTCGTG GfCírSGGTGT miCGGGSCà Ç^SGACGCàG eaneCCCGÔ fffiTKímSA ®SÍÍ®1SAG GACKSjÍXGGC TGCTâG&DST eCTO^TfiO? .31500 31S60 31620 31680 31740 31S0Õ 31860 31820 31S8Ô 32040 32100 32160 32220 32280 32340 32400 32450 32520 32530 ΡΕ0929681 113
GACGGTGSCC UQSA.TJCTCT 0^03013 TCTGGG&GTC «GcmmTos ccckoxctg G«^3CCe^SC GC&GCffiftSKK GTOSQGraSA «3SAG®aOGA ÊffiSGtsoms mM^caxc <HMS®eTTS5SG &3GTGCTGGC ^CTCCCÃCA CCOOSOàCGT xscksobosc aggccccsca GMmSSSCG TCCTGGA.CGf3 OGCXCSOCCG TGGCC&4/3^ CACCCCd^X f0a®3CãOT: CSQOSCGÃCG ACSSCSQCCf GÍ-K3TTCGCG TSSâCSSSGCeccsraccacsc mxms&xt? GQzamcm osgcgs&gca GOCCTGSÍCT TCACCSOSCO A-TCGGOSGCG TCGISsCTGTT
CG&GGTGCPS CãSOGOGCST GGÇQGIS3OTC COGtmSACã PS^CSjeGC íGCGCICM^C GMOQCGGCG CGOCK^TG Í3GCGAACGCA CGGCTGGGfl1 CGCCTCCaTG GÍOGMCSOSS Cm3OA03iSC OTOSSaSfCC CXÍA.amCMC CGCGACACCC cG'íOcesm: csxice&co® D^TMrrOG TACCí^ACC cocoyscAG &xraeGGGS Gft3K2Rs0eG3S CTCA3?SÃ.CG GCGCCQODBl C3EBCGTCG& CA€ocm?m casernsoíse C^GSCTCCSS CCGGCCGCGC cccscmr-rc socGcamiG GCTGTCGCTG CGG^OliyrC CCCCGGCACC GGGCTGGltX
gcttcgco^ mmamSGG CCGTCGTCGG CCAerCGCAG TCGACGACGC C5CGAA3GTC GCGO53GCG0 GATGGCGTCG TfsmsGsoQG ccmRToam QSGfiDSOCCA AGCCCICGAC GQCAS^DCGC ggtcg&ctm: ‘ÍCGCCGAGAC GCTOGCÒS3G TEâOPSOCGG CmSSTGGGQ TGCGCAACCÃ. ÇtGTCCGGTTC TGTTcaTG&z* mTcmcgcc CGGTCGTCAC CGGGfiCGCÍG ^GGCCGíVSCT GT1CGTCCGC SCSSOSAOCl* CCOGftOSESC MSOSGaCQC <XTCfOGCTC TCOGOCTOCC GCM$CG£&C a^rm^GGc csftccaocc AACK5GCCGT GCGGGCCGGC 32S40 327» 327 60 32820 32880 32940 33000 33080 33120 33180 33240 33300 3336Ò 33420 33480 33S40 33600 33660· 114 ΡΕ0929681
GAaiAGGCCG GGTCCCCGG? CClGSãCG&ft CfCGTSaDX AGGGGCCGCT G-GTGíãtGCCC WSGM3GK3C8 CCMGTCACG GTCAíXWTC QSG&OC&SM CGGCTTCCCíC
.SOSGlfôSMÃ 5JCCÃC3COCA GeOCGACOAC G333S©3ftCCC GSGM33CGÁC e©3AM333TC imSDGaCCC coscaao^fí COXGGCTXC GMlTimCCO CG^GCQSC GCCGGRCOSSG CSiQOSOGSCS AGKPCSGCGÃ. CTWSSCGCC GÃCCfCSCCS AGCOCGSGTA GGOTAOGGG COCOTOTCC AGGSCOTSCG QGCGGSSIBSS caGCQOQSCSS MíSATOX^CT CGCCGftSÉKEC GOQCSBCOCS ÀfcSACCQGCG GC5AGG&CGCC GCCCOSmiS G£<^^ACCC ©3C&TfSC£G G^SCGGGCC TGCSGaWJCOlS fi&CGMOSCC <93SGCC«2GT 0O3SICAS0C GGGCA&STCC GTGASSCCGI* fCffiOGSGSftA CCGGCTGGCG CTQCfiSSCXXS ÍCGGQGOOGC fâGSCC3!CC06 G^SOSTOS CCCCC©SCC« ACaSGACSGâ CTO&C03TCG àmXGCCGK CQàmCC&SC
mcccaircc TCA<xmma cstscosãic crosa tcckcctcga ccagctcgac ÍOBCGCGOG CCSSCfCGCS CERCOOaSSG GBCaPGGftCGC CACSCCOCSC TGSGSaC»!» SGGSESOCGG CTSKSGGGGC CQftGGTGClG GMGCTflSG GCGâjSGAGCC CCTGGACOIG ACCSGCCGGG «3CX03CCGC CCTGOASGCG TGGCmCCG AC5GCGGCGGA fâSà^SCCCGC CT00TD3JGÔ ΊβΚΧΧββΟΰ VQOQ&IGCGC QOQ&ShSlICQ <m5»3G®3ftG CG&ECCSGCS GG^SCCGCôG TCTSQGGCCT QSrOOGGGCC GEGCÀGGCQG ÃGAàCCOGGÃ CCGGTTCGTC CTGCT0C3ACA CQCaCGGCGA GGTGXGCÍG GfiAGCGGTGC 1QQCG&2GG3 TGSGCCSCSG CGGGCSCTGC GOSàCâCG&C GPrCTCGGtG CCCCGGCTCG CCCGCSECSC GGR&CCGGCG GAaecoaoa bsscgwpco? tccggaoqos AosGFccfQe sctccgscgc (ssosaoecas 33720 33780 33840 33900 33960 34020 34080 34140 34200 34260 34320 34380 34440 34500 34560 34620 34680 34740 34W0 115 ΡΕ0929681 ggugcgctcg
M3CCGGCGCG GCCGGGC03C ©3CGCCGAAG UG&OGGfOSC ClC&fcG&ÁaC S£GOSCTGftC ACCGGCGO0C UGSCCCGGSA MCCACCUCG iiCSftÕ^QftC GXTCCTOSft KTTCATQSG gãcggcctga tggccgoxg
COS7OG3AGC AGC300CG3 AGCOGOaSQG MmC'£££GQ ffCOACGCCG CGC7CGCGGC G&GS7GOSGG CCGÃCGCG^ CGCGCGSGOC GGCAGSCGGC CTSGCCS3X TQCCGTGGC GUCGOOSSCG TGCTOSGGCA GACGCCGQGT ^CGÃCTCGD? GGCCTGàMC lOTCGCM CACCTGCGGG eGGAMTSCGC
CCTCGTCACC CGGC&CGGCG OGÃGGGCKEC GftCG&CCTCG CGCCTGCGAC GUCTCOSft.CC CGCGSTGGTG CACM^GG GCG3CTGGCC MGGUCTUCG CCGCGACOS mCCTZGACS CGCGGmmc gcscgggtãcg GOGCQCGGes G^CUGCÕÕG C&TGGCCGAC AíXAKJGftOG GGGCGTCCGC GCGCUCGGCT CGGGCASXG CTGCTGGTOG CGGCGGCGGC AOSfiTOCCGC GCGGA03QCG GCCACCGAGG
osftKaasaft gcqcusctsc CGCCGftCAGC TCOSGOGTCC GACGTOSGTG GftGCfGSQCA GCTGGUCTTC: GACCMCCGft CGUCaftCGfiG GCAUCCCCQG
UCCGGCCGCf CGÍGCTGGOC UCGCCaRGCT GACCGGGCftC GCGftCCAGGT GGCGQD3CTG
ecauííFicaft ceccoeKSSC
CQCCCMGCT GS&CSCGGCe CGTTCATCGT CTACTCGUCC OSGCGGCGftA CGCCmiCUC Gge^fOGCf GGCCUGGGGC ftCCTCAOCCT GSCCCC-GATG CCGCCGACGG CAfGGftGCTS CGATCGAGCT CGSCCTGCGC ACCmGUGOS CGGGCTGGTC ACGGCQGCCT GGAAC0CCO3 TCGACCUCGT CCGCGSICSG GGGC0GAO3C SGK3Gm»»G JM3CGGCTGCG OSSGftCGACC ACCCGCTG3C ACTGGÍXD3G CCGftUGCGGT GCUGGCCGGG 34860 34020 3498Ô 35060 35100 35160 35220 35260 35340 35400 35460 35520 35580 35640 35700 35780 35820 35880 116 ΡΕ0929681 CTC<àCGGGGC TGGâGQOíSSC CKESGCGGCC GCGCGGCTCC <S3Gft*CTSCr CSAGGCCGCC GQCGRTC3XJG ACACQGCCM5 COACG&GGM Í££{X£W?G ICKEOCGGGG CTTQQGCACC TTCTQTQAG? mGTSCftGT G>3CJ)SACGàG ATCGCCGÃCa CCCGCQ&CGC OCSCftCGCGG ODC&2GGCCA TCGTOTCCAT GGCOTQCC5G cromsr: &3f36%ca&£
IS^OSACGTCG AOSOSCTOST C3ACCCGG&C CA0SS7GGCT TCCTGCADSft GGCCGGOCTC OSGi^eOCOG TCQSG&?8Cà& CCCGCÃGCM3 *®3S»JKSC& CCGGC?^CX5A CCCGCTTfCG G30G7O3CGA GCMQSGTTA CSTCGCCGGjf flCGfCGGCA CCGSTGCGSC GCCGTQCATC TXCGAftSGCC CQSOSSTCAC CGfCSACftCC CfCSXGCGC AflGC<XrK5C£Í OCS33GGITGÃÍ5 GmM^Gsece agcc^ggitc sttcgtítkx rnseocmcA kCMTmrm c^kcmc^cc GKTATCGCGC TGSBBOGSOT GfCGGTOGCC GCCSa^CC CXSSACGSOSA CXaSGftSCRCC SAGG033CCG AGGCCCGGCC GSQCACGJCC CTCTTCGCCC ®0®EC<SÃCGG GCTCGA.CKSA CGGG-GCGCÍJA MMCMGCA C&OSTGÃG&S CX3ACMCTCC GCG&CT&OCT CMímSQCC CISOGOSASG TCSAGGMÍCA GGOSCGGG&S mCQCGGGOG G®B3fCCTG OX^AGÓftC GoeffiflsaccG osttcoccgg asaccoessc OTGMTCGOC OGGGCACSSAC GSBOJ33G»C raCS&DGOGG GGTTCTjm? GATCTGSCCS a^CTGCEQC ctggc^gcc
CTCJftAGGGCA GCGÃCAfCQS CGK^mOC SGCG3CC?K3G TCGCGCCOGA GCTGaAGGGT GCGICCGGCC GGGTGTO3TA CGTC CTC QGC GOSTKrrCGr CGTCGCTGGT «GCGAIÍSCAC TC£TCGMSG CKnÇGCGGCi CSGmSCG&K; TTCtOSCGGC MO30GQGCT CGCCCTGGAC G&CGGGRTGG G&^GGCCSA (^GCS®SQÓC CGTG&G03TG <3GCA0CGGGT GCTGSCCG^S 35940 36000 3606Ô 36120 3S16Q 36240 36300 36360 36420 36480 36540 36600 36660 36720 36780 36840 36900 36960 37020 117 ΡΕ0929681 CTGCGOSSm tcgossossa CCâ&SSEGGC GOGKXm&QS asfTGacQGC CCO3AA03GC 37880 COGWXXawaC A^GGSTGftS1 ccqogoosos 02000038783 OOGGGCTKrC GCCGTCOSAT 37140 TCSMGQSCA ogggscgggc ÃDQ&BCTGS <3CGM£CG&T CGMGCGCAa 37200 SÊaSTSGTrSG ccmcTmm CMSSGGOCQS GMÕODQS&Gà âGOTGOcws o^egqqcsos 37260 J^CTCQSGCA CAQSOftSSOG GOSfíCGSGeQ TOSCC&G033? GftíPCÃAGASG 37320 ^TSCAGGCeC TGCGCCACQG CGf^esGooe CCSACSCTGC %£mas££cs sccgktcacc 37380 sftâfiíQeftCT 03TCGCCCC-G tOCQGfCTCS CfGS^GM^ fiGGCTCGSGã Sm30O3O3C 37440 m&SGGOGGC OSCGCaãSGC cmsCTCTec 7£ϊ3ΜΟΘ33& TGJMSOGSeftC ea^DSOGcac 37500 CECB3KX3SGS AG3MSCQÍC CG&SGftSGftG cnscocasacs cesfeBeoscc Tmascassà 37560 G3X3G7SCC03 KKTGGTGfC <3®5Κ3®Β®3<$ occgt^sgcsg GSCSGQOQSS coascnsGcc 37820 gootkctog AGGGossxsà CGAfíCOSTO fí®SÈDCGTCG C^GGGGOSCT GÃ^^GCXSGC 37680 cggtcocggt TCQQtS3ft3CG ©SCC5G!KOTG GTGGOSGGCA OSCSOCCAGA GGCCÂCGGCC 37740 GSGCTGSOOS CGCJXSGOOOO OCTGCCGMS TCGTGàQÒSO OM3GSTCGCG 3780G SCCfC®SC0 fGCCGGGCftA GC^GTOEGG GTGTTCO^S GCC&33GTTC SOySTQQSfG 37860 oxotgggcx: GCíGAGerC:CT aSMSOCTOí CCGCfPTxTá; ccgcscjsg&t CâCGGAOTGG 37320 Gc.Q&omzcc TCGaftCCSTG QVÍSSftClSSS 1?CGCTSCIÇG ÈCfífccrccG TGGCG&SísGC 37380 g&cctcgm:c OaGTC&ACG? GGTGCftíSCn: CGGt<SîaGT CGQCCfGGCC 38040 eCG^SXSTGGf CGTCCG3?0GS ©SÍGGÍEQCCC sacaxssrsc tcosgcíoo 03M£3GGG&G 38.100 ΡΕ0929681 118
AfCGCSSCGG OSfâGGCSmS TTGCGCÃGCC AGGCG&TOGC GGCGAAGCTG CTGaecGaee mmmmt m^OMm ÇCQGfCMCA G^Cí^fCSK' Q^TGGTCsâlC CZCG&mSC TGACCGGOCA GGMMCCGG CACftCCCSGGC AeX3TCS»ftfía attCCN3®t} GOSCADSCSC: CS&XCTPGCC OSÇfTCTCG GGC^^GEGG ACGéCGGCTA O^PACCOS SCG30!GGGCG AfíCTGCTCQG CCTCm^AC GISCTOTCC .ASOCSATOiS CGCOAavTGCC CTGCGSCGCG M33AGGGOGS CCTGCGSCSG CTOGacmjG ACQTQOACTS G0CCACGA7G ACCACCS3CA CTaCfSSC^G GCTCOG05GG ^CGOCTGCC ÍSCAGftCGGSC asstcsosísc cmmcmsc comcMsa: QO^TOmCG ASCTGSX® GCõGGCnSQT CTCGTCàTCG AGACGCCCCT GSTCG3XSCCG STGJ&CSQftO CGGACGftOGG CACACÍ5GSCC
m*Cm&GG «CGCSQCG&A GSTGSTCGCG GXGGCCGCG <3CXSGC»GQC «600S*0Q0G OSGOCTÍSSÔ OSSftCCSQGT CG&GmSGOC GCCGSDSMía OCGMSCrCT OCMCCAfíGO: ©Q3GXCK3G ®QGOGG®GG& CiTCSCCTCG CCCCaECSCCS AGGCACim: csgoot^as ACOGTCACGG GIGASTQSST TCGCGAftGCQ AACCSiSCCKm Í83CAS3QTCGG SSTCSGXCG CGGC^Gm^ TCGftGGTCAG CGGGC&OXC GACG?CÃCCG ACGXGTCGT CAD2GGCTC6 «CMC®' CGATGGCOGA OCrTGTTCSTC GISGCCGCCM CGC&33XCGA TriGCCGACC CSGTACSiCG ASACCGOS&C «S&OSCOGCC
GG0C?!P3GTCf TCÁCCÁCCGA GSXSGSCQCTG CTGGA&G&eC TCKSTCGTCG? DGCCGSCGCG èACGAGGCCS OGfcCCCOSS? SCTQQSCQWV S&&QGCSGCG CGMCCSGST ©GAGGTC&OG CTGGAftGTGC A^TCCCAGCC CGWtóACGOC
ACCGSCGAAT GGÂOOCSGCA CGCCACCGSC AOQC1X5TCGG ÇG&CCCCGGK CC^AASCAGC
Mim 38220 38280 38349 3B4Q0 38460 38S20 3S580 38640 38700 38760 38820 .38080 38940 39000 39060 39120 39180 39240 119 ΡΕ0929681
GGGÍTCGSCT ICMÍGGCCTG OXOCCCCCG AfooeisoGfís <m3os&CG& «mT^soscc GASSCIOTCG OCATCCÃCCC CGCGCTCCTG £\TQieQ3íÇ TGACGCÃGGC CM\X*MTGG SCSftCGCTGC OGGSmSSKP ÔQSPGOOOGGC A&CCIGGTCG IX^SSGCSBA G&SjQGffGCG: axÃOcaxc gag&ctcsscx ísttccagcto STGGCOGCGG CmCACOACAC Í^AXTGCIS íXGACCXCCC 6ΒΟ!ΟΤΪ«Κ& GCGSCTOCAG CTOSSCGTCG TCÃCOCGCQ3 OSCOGfGCCC: ÕCGGCGGCGG TCTGC-GGCCT OSTCCSOfCC CTGCTCGACA CCV&CÚQCm ASfCCCGCTC GTCGG3g£GC XSQCAOSSC GCKlfAQGfC GmTOSSK: TAC&TGGGAC QSTCCTCGfe GCXXGSCACC TCGTCACCCG CCàCGGCGTG CTGGMX3CCG ACGGCGCGM GGACCKIGGC *K5CQ3X3Sscg (xwxxêmx® Gmxmrcrn CGCCCGGCm âS^lATOCà CACGGCGGGC gqcgoxogc agctcgícsg cgttccggcg G&8Gi3!C$eOC TGCCOSSOGA SSSCGS&OSCe saosoGsecc tgcsoícqgc CTscsassc
CGTGGCCmA CGCIlXJiCOC CGC03GGGOG GGGÍHÍOGG MGC5E3i3a3Sâ CGQDSQOGSe CfCCGCCCGG fG&3Gfi203C: S0S31SG0SC MCSGG&K33 AGCTXOGG& ^GEtSGm OAGGSGCCCG CmSCQm^ GXGCTGGCG CCGMSCCCGh GGCQSMCAG OCCGGGSACR C5CCCS®R3ftC OSâCCCGGCC GÍ^ÍMSCGG mAACCCGGA CCGGATCGTC GGfGCGGÍGC 'TGGCCGGGGG OGAGCCGCM; CCGCGOC35BG CmXGCOGft CGCGGCCCCG TCCG3K5CCG Gl^T&CtCGG GiAGATCGTC ÍSCiaaXfQG ÍEGCTCGCCâG CDSOCGCSSC ACCGACC7CA CCGGCG&3GG CGCGOAO^S AAGCAOGTQG fímTO GGCCGACCAC GlGCTCmCS KSGCGSPQM' OGSÕACSCfS 39300 39360 39430 39480 39540 39600 3966G 59720 59780 39840 3S90Õ 39960 40020 40080 40140 40200 40260 40320 120 ΡΕ0929681 ÃCCCCGSÃGC GGCK3GCCM S 1 eCCMGSÍOS liOGOHGÍTCCG ccjm:TCGM.i 40380 (sSGCTS&CXC GCGACaSCGA CCTCGACGCG mWTQSTGS ícsçcmsia CÍOCâGCGTG 4 044 S 'TSCSQTOGC csGGocaeoG «mas GOGOm&GG OSITCCJÍGGà amSQSBÍft-í 40S0Õ ííOGÃScem: GOXGSeQSCÍ irfTca^T C^TGGQSCCS? GTÍ^âGÃÃCMS 40560 SCCMXSSGC& fsmccGoecÃ. oo^ssooso AcesaccfieG CCOSGMfâftG CCGGGGCGGG 4 0620 GOKSOGGOCGà 3X3yD3COOG& QSASfiGCATG (KKOKsfTCG MaCQSCfcCf G33TGCSCÁÕ 40S8C 1 1 IKKTGÇOSGT omgctgqm: eíGOGQSl^ ©SCGSGCOGG aSSSGCOSTG 4074 a OCOCMCTGC imxGQser GGSCCGGÕCt GOGmàma: AÔGCCC&WX CGCGTCCACA 40600 GTQSACMCC &C^3CTGGG ooGGCseacc âGGCTSSGCG £3®20OS8P3^ GG&3QDSCTG 40860 CfCSÍÒGftCC TCGTGCGCC^ CCkGGTCGCG G0X1GCTCG mmsGcass <2XGGS.€GOG 4GS20 GSXGCGCCG ãCÃC^OíCT CÃ&GGftCeOC SGGT®CÍ»CT? αοακΜΟκ GSK3GS.CCTG 40880 CGGMeeSGC: TGCGíKâG&3 C&CCGQGCm ÂMCTGCCCG CCàCSCTC&Z C^CGACTAC 41840 CCS&CCCCGC ft^SOCTCGC CCOGCÃCC1G COTGftOSSáSe TCG©3GCCGG CGÃCâÃCGOG 41180 otjcs^ss fSOCGCSCG (SCTOGifeSGSC mcGãmcGC SGCmSGOGS GGTGCGGCTC 41160 asoGMTOa CSMSkCOGG ictcacccb: OS3=f!3^SG GCCTGGTCGC CSSKfíSCMC 41520 ®X33TSSACG ÍSCAGÂCCGG OSàCG&fiaEG eT&SOQS&X GGCTC<3S$3C CGCCJfCCGCC 41280 C^GMGTCC TmKTSC&t CCKCÍs&ÍSCsAÊS ctgsgixscã cçimacccoG GTTCGMACC 41340 GÍ.CGTTCCAG CMCCCTrGT GBGGSCCCGà GMTGGCCÃC 1 1 1 CSCCJCâA&T 41480 1 1 CGTCÃCGGCG GSGCTGCfcCft GCCEGOSaA GC&QG&TGX CGGCACGGCS 41460 ΡΕ0929681 121
AOSMlCCOCf CK300SSC6SC iSOmiXKSCCf AMSSOCTGTS <SOC<3GOS®3CÍ GSGSCSSSGGa. GOGGRCGSS CEGTTOS&Ge ccagccaggg cgqctscctc qsxg<xgccg CGCCÍSCXSCGS, ÍM3CCSOGTC ATCK&CCOGC agctcctcga mècsccmz CTCSACCOX ICTCCGGCGT CTTCACCCÃG GGCTAOX5CG TCGCGGGCAT CGSGÍXGtGOG ^CGAGCGTOS SOSMOÍàftCC Q^^SOiCC J?SCCGí!OieOG ícocoaoQc» GOcxxsGcec wQ3(xmm 'lXmmÇÚAC GCCCâGCACC TTCCT3GC5^T GCCGGTCDiA GGOMt^CC TO^mSSG sfôcueímxn* Cf3^£G<3crr tcgctqgg®; tQCQOSSCSiG CSCC^fCSAC CAíSIAIOGCS CT1OSC&3C& gcggctgmc oso^ggcgc TC^CGXCGT GGfcQQCXSCftC <X^£GSG£& CQSFGCTiâQC a^CCTÃCGGC: CftGGGCOGTG 5SMCT.rCÇK5 GCÃCMXàCísG fíCGGOKSGCG
(SXG^fCaC GfâGTGGGOTG T0CTCGCCO3 XSGftCSDSCT TXOSOÁCm COCGftCG&CC CGGàOCCCGh CC&CCCCGGG ftGSTCGTACA ©XfSnSXA GGCGGGCCT3 ^QGGCSSCT J^GCSSC?? GCTCCTGGfs-G M^TCGTGOG T¥®0SCTGA& GQGCÃSCSAC C^GSOGTCT CGSGSSSCG&ir OSCSCCGíSSe CSCSSGGCGT CGTO83GC0e GGl^TCCTâC GSCTTCGGGC OGTGTFCmV S1X3<3CTS3TS SJCRTOCSCC QPICQATSGC &CTCSCCGGC Q3Q3CGZCGG TC^iOGSCÃ SÇGGSSGCTg SCTSOQ3SCG m^acAccm CTOesccona ggcgccosgg
A^IAOCGCGG COWaOSGM?T CTCGCCG^SC CCTCCMCGG CCTGfíCGGCG CCGAACSGGC TCGCGGSCGC CSGSCTÊGÍTC GOGSPCCÊafiK* CCGCGCT3GK CGACCCCuATC ®MSCGCAQG AGCmTCSCT GTGCCÍSGGG SCGGTCAAGr GGGTCmSGG CSTG&XtARS ATGGTOCftGG 41520 41580 41640 41700 41760 41810 4X880 4X940 42000 42080 42120 42X80 42240 42300 42360 42420· 42480 42540 ΡΕ0929681 122
CCCTGCGGCA CGSCGCCâ^ ACTOGTOSGC CGGTfXSSTG GQCOSCeCCG GGCCiSSSSTG 3S33ASQ&S3C GCCCCCGXC CGC^QSECGÍF CX0GO3G3C AGGTCCTGGC GIÍJCJGCTGG^ gggcsojgct cggtsxcgc «xír^çGm· gctggcccgc ACOGCMOSS1 C^CTACGTC ASCTCTAQSA OCâG®ACCCS ACGICTGÍCT e^XtXCCGT cosceeaMc oqsgctqcxg A£Sft.<3Cac<3GT ^ITCCSQCfC AC2GCS2CQ3 GGS&SCM2C CCCGGATCGr COXGCGCGC SCSCOSStSX CSXCTKS33M. ccGccercAA cgqccctcg CQ3CCGCCCG CM^OGOGM TCCAC^XíSC GCfíGMSGCG easccoMCt m^rnsoc Gmzmysoh CO^GXÇCG TCCXGTrCG- GGATGAXQG &4O30S3OT3 OSGMSMDC ΜΚ&ΗΧΑΊ CJfSSSOSGe GTGTCCCG-GG CCCâSC^SC GCOSfíCGÍâS SCSOSGS&AC SXSACCGCG CXCOSSOST TTCOCCGGCC &ÍXGí9£eC& G1SSTTCK3CGA CSGCSfSCGà.
smssscaee Go&mxasm AiCOíSftCfíG TOTCfcCCCA <S:CQftATCCT: (XGGTCsTeOS GCCGCGl^TG CCGCGGGCSf SSSCSOTGA TGCS0G9GCT GCCGAGCTQG CCGAACTOX (XGGTAGKX: TXCCGGGGA OK-GGGCACà AGftCCMGCA CmATGCTGG CGGAGTTCGC CGAGCCGfCG CCGGAGG1OG OSAGTQSre GCÍCSGIXSMC clmxtcatcc aeasTfcyfâ GOGecímse TCASGCOSGC CGGCTCGCGG OMSCGGSraG CgJG^C^CC GGMSGaSGSC SCG5TGGCCG QCTSACCÍÍOr 3ÇGCXCMGC GCGGCTCGC5G AWSGGCCGOS CS&GGCWSC 0503íiGCE3S CGTCSTSCTC GGCGSAG!K5C ÃQCOGGSCTG TOXCC4£FSG GecGSSÕESOS fíKSCTOSGCC CTTCTCíXTG CCGGACOCD3 GGOGCCGGGC GGGXGMGG 03GCGACGGC Gm^ACTCG OSCGGACGCG GTCGTCGCSG âCTCMGQTf TCGCAD3CC.T CGOCG&GCTG GCCGGCGfGà 43600 43650 43720 43780 43840 42900 42960 43030 430SQ 43140 43200 43260 43320 43300 43440 43300 43360 43629 43689 123 ΡΕ0929681
CGISSQQQOSà QCOGGÃiGftax: CCíjCTQGTCT CCaftOGSSGftC CGGCOGGTTC GCOSMÍCCCQ «GQtfCTGÃC CGASCCGSGC TP^SQSCQG ÃÍ3CACG1XÍCG ®33GÍ£GCTG Q3QTTCGKXG jy3Gi3Ç®3?e<X GGCCíX&fcCG GAGimSGCS GCTQQCIQTf CfíTGG&XTC GSGeC&SGGG OGGCSCSGftC CSCeC*3£G®C GAGGàGMJGG CCSAOSTCAC CPGCGID3CG GPXTQOS3G A£GaOOfíCCC ÕÕ3Cíi?Sa®CÃ. CCGCGGTCQC OS&fíCKÍFrC GTCCGCÍSGGG
'Fsscmrccà Tir^csGcc cm?mxm cgg^icaccgg OTcsrcoc CTGCcmssf jmnrn ccaGCsscac mTTGSCtee jmsccjcssccgc Gms^ecacG groscggccs* OEScroseecÃ. os^pxsscc g&ocaoccgc tcctoqgcqc qgtgoecd^í ctgccgcagt OGGâDSGeOT GGTCTTCACC TCGCGQCSST C&JfGÃÃ&fC GaACCCGTGG £^300Ξ®£ε 2XS3TCATCGG CGSSSSGSTG CTCGTCGCGS CX7CCGGGCT CSICGASCTG GÇCGTCCÔX cósgsgaoga gcccggctsc co^cctcs m^aci^gt catosaggct ccoCTSGfos TÍXmSftiQCA CGSCSSGGTC OGSÃSCCÃGS SCSTQSSPGGS GGCACCGGGG GASIOGGSK CGCGCSCGST CGAGõTGf^C ITCCTGCGCG hS&MXãOCm TGCCGMGTG TGGGCCCGGC ACGC£?,cco; gttcctíjgc^ gc^gccg? cotjtmpCM. ocasms&gi TTCM^GCCT G3CCGCCGCC CGffiGGTCGÃG OSCGTCGACG TC&ftSG&CT? CTACGâCGGC CK&TCGãCC GOSGCTACGC CTACG9SC0S TCGÍfCCG3(3 OXSÇÓSââC ÔGTGTGGCGG CSCSOOSSCe MaTGrrcGc cssísgtcgo: ctggccg&qs mmeoscGc go^.ccko^c oesnessa fOCÃCOXSG CCTGCGSSííC GC-CSCCCTO-2 ÃCSCGQSC&T ggccgstgcc accaocacgg 43740 4Mm 43SÊO 43S2G 43980 44040 44100 44160 44220 44280 44340 44400 44460 44S20 44500 44640 44700 44760 124 ΡΕ0929681 AAGSSCCCGG CCSGCCGGflG GGGC®1CC<3C GCTGCG3QTC CCGCGG&CGA GOXGGCGCT CGGCCGAaCA GCS5GSQCGCS m»3TJCC£C GseoxsGaG&c
AGSATCCCC'? GSãACKíACC CAGCCG&CGft. COCrCSCOTS CaiCCGGTOC OSCGCTGTCG ^'racmrx ggjokjcgsc oco&iyffiàâe e$¥OOSAGGc cggasgcacc ggcãctsso:
OSnoCOGC CCQGCSCÍ?B3 GeSOSGGCCC C0M3SCCGM: 0CSSSI33?DSC CGI^GTÒSCT CCSaGCfiCCG CCC3AÃ.COCC ΑΕΪΌΟ*Β32£ GCGOSftSOGG ÃCCKSÃCSR OT£AQ20SC CCGGGGTCT? COSCÍCOXC COSTGS3J0QC CA.%XíXC(K: ogccgttcg a^&moss cmcmoccc cs&gcgstcc CTOSSSGSGfc, CGOSOGACTC OCOGOMISíCC KmSGCSTT GTTCCGGCGG MXMlQfCC& GSGCGG&TCC KSGAíSGCCCT CTOSTGCTGA CCGGCGGCGC «soa^easroc osGossasim
QCTSMGIQC CQCTM&CCG (xmca:fS5· 2aícecm33 GGCGGGACCfâ ItXTGMGTC GTCGCCCGGC MXmffiJm» GGCATGGCCG ^^FGãCCGC TGCGaCCTCG CCÍGGCCGGGA GTCJSTQCffiOk CGGCCGCTGT CTGGCCAAGG TCTJCQOGCC GAACIGGfiTC TS^-CGCGST GGGCMGGCA ACTACGCCGC QC.CGC.mQCC TO0CO3SG8C
CCT3GTGCTG CACGCGGCCG GGACGCCCTG TCGGTC<3&GG GCTGSSGEee CGQCOSQfST GTTCCQCSIG GAGTGGftOCG £G1GCl©3â& G033T0GGCS GOfcG&COTSS CTOSCCG&OS coTceaceas GSG&cmàcc GQ05GMMG D3G8&CCGG& GGSGCTGGOC: MXS5GOSSGC GCTGíSCCCGC GCOSãSSGDS GGGGGCCGGC TOGCSQQGCG GCG3CK®\" OT333GASCC £Ga&£TCft$C GCTCÃGGSCG CCAGí^íCCGG GWCTGCIGG TCTCGSÕS&C GQCGÍCTfCG CM&GTTIsCT OTGCCA&TC CGTCGTGTIC TOCTCOGOCT 2GCSGARCGCC TMXTBSGàCG MtSCfSSCC SGSGGCCfS?!' 44820 44886 44846 45000 45060 45120 45166 45240 45300 45360 45420: 45480 45540: 45600 45660 4:5720 45 7 80 45840 45900 «960 «960 125 ΡΕ0929681
GGG&IOíGRC CGftOSGG&US ACCGCSC&CC 0CO3OS30CT Cd^GCCMt TCÃCCCGCCG ACGGGXCST CGTCCCSSTC &AGCT3S&CG Q<SC$€CT<SCT GOGOSQOTS GTCGCXCOSG T0SaCft&3QG MGGOCQDS CGÃCfCOXG tGGtOSBCfflP CGTCOSmOS CAGGTC<SCGC im3C5S03G& CAD3GCSTTC Afl^GSCAOCG msMxmey ocgcg&sscg· jysemscim
COACGCCQST OSGSCSSGCC CfíCffiftCC»SC erccâsxâec caocogggx Q£mzmm&
CGTCCCí3Q"T eCCGG?XG©3 GTCACCGATC GGCTCSAGG GCTGTCrCGC TTCaXGAGG m^kccAccc otacoCT^i >msm COXCCTGTT CGACGGSX-C T3JCTTCGCSG& c^israocs «ctgci^sctc o&seoGGCcf· cgcxcícgtt ísaaosacm: gacgtcgggg wsmmsosc gg&tcdsscc smct®sogg
SOSKSKiGGG CCGftGGCTX mcâKTTCG tcggcgacgc cg&cokssôs ãMseG&m aaqxmgsa ammG&c cxagcgccgs
m:GC»ÃGftC CCGCGCCGGC GSSftCQGTGC r^cxxAGCA GGcccercai GOSKxmcse ©XTOGCQCC (XCGSAGCAG raCTGCTCSS GCACGCCGGG CCQGAGGCCG GGm.GA.CTC GOTSACGTCG GKKMCTGC tacBKcxxa gnkckjgic m©Mx%oc
GttS&OGAAO? CGG06&C&CG GTGGCAACM. CCGXGÁGCC G&TOGCC&TC mSGCATGG COSMCGCCS G^CGCClG GTCCGCOfiGG ACCGGGGC/flG CímílDlxmG MCC^ITCG MLACCAOOGG GGGCGOGTO CTCGAGGGCS OTCGGCGDG CG^GGCOCTG QCCâSGQACC GGGÃAíXCCT CGMSCXACC GGIX^CG&CC TCTÍCOCCOG GGIGfOCA&C CAGQSCmG GSEftOGCSftG CACG3CGG3C GOTDSftGCG GSWSMSS ACCOXOSTC ÂCGâSOG&CA 46020 46080 46140 46200 46260 46320 463SO 46440 46500 46560 46620 46680 46740 46800 46860 46920 46980 126 ΡΕ0929681 c^cmcsc GTOSTCGCK ggoxtggcc immà 0CJO33D33C; CSfíí‘£GGCAC GGGC$333Ce CGCGCGM5CG CGGGOVCOX GCGCOfCCAÃ CGXCTGãGC ccctqgccqs cgcc&scck:
G^rCGOGCT GGGCGâCCCG gCOâCCCG® GÃOGCCGraS CQSCGGCCGS CGTXTGCCQGG CGCCCãCCCT GCMÍGTCfôftiC MG3!QC3?SSC CGM5GOCGG CeiCOTCGG GSKaS£3GGC-CAC&TCTTGC C03a03*COS GCCCCGSTGC CC7OSCOSG7 *m^OQft.C«!T CGCCGGTGCG TGGCGGÃ.TTC GQCOK&GGAft CGCCGGGCCT GGTCCSCGGC
GTSICtSATCC lyXTíJC-CCGG GSTSSSOSKm CGGTG&TOX» CT3GCCSX G ADSSCCGSBS G&SGX'í?rCG 8θ@ϊ£αϊΟΙ3Γ CTGCrGGCCG $QC$SOSSQG CXCCCCAÂCG GGCOSTíIGCA GAMX&IGseG M^OSACSE AT-CGAGGCGC ^SQCOCPQCS? TGGCTCsGGGT CSSim^OIC GSXmTCARíSA 7GG7SCAGGC CGOCCCAGCft GCC&3GTCS& GRGTGGCOSC GGA&Í335C0S AGGMCGCCC AOCTGA2CM Ce&G&CGGCG GTGaS£3®SCC CMGCGCGTKr GGC TGGCCÃC CfG&CG&GCC GCGCCCTGTl' GCCCGCGCCG g^ctgggcoc GGGGTGCCCG CmGCGGCCT
GCafíGOGCEG CGGC&GGGCS GAOGCOGÔSC ACGITCGTGC cMsoocfae gccoaasgcg GCTGGAGCtSG CHX^OGGIÍGG CaSCGCSSTG .AACtCCGACG GCAACGGCÍTC ATCCGGCQ3G CG7GG&&&3G CAOSGCACm GGCCAOCTAC GGCMGG&CC macm:GGc d^acgcagt
OCtRSCGCCAC GGCGTCATGC CTGGTOXCG QGGGCOGSCG
fOOGCGOCGG GCCGG®3®G® aSMGMGCA CGGGCCGAGC (xijocmjsirc «oescroaca. gttcctcgo" g&psggosgc
CGGCGAGOSC GCGG-ICGTCG ÂCK&COCGC GGCGfiAGACG GCCGGGCAAG CTCGTGTGGG 47040 47100 47160 47220 47280 47340 47400 47463 47520 47580 47040 47700 47760 47820 47880 47840 48000 48060
TGTXCCmàG SCmsGGG&CG CAGTGGKTGCí GCATGGGCCG CGMCTOTTC GAMAGTCíC 48123 127 ΡΕ0929681 C-GGTGTT'C©: CGftÓÕGGÃTe GCOS&SÍ&rG CGGCOGCGCT (K^GXGTSG ATOXCIOGT 48180 CSCTSTTOSà CGTCXGrCCGT ©3C®CGGTG ftXXCGftTOG GGTCS&TGSG CTGCaGCOCG 4 8240 OGTGCTTGC OGTGAmiTC GOCfTGOCCG CGGfGTGSTC CTCGQCCQGG GTO0TCGCCG 48300 atscggigct o^xcAeice Càòissmeà 'bggcgsco.ic ©ix^gtotcg ggtgdsttgt 483 ês Tc^.c^mm smtm&xc fsgoscísam ©xcatcgoc azopmcscT 48-420 CCGSCCGOSG OSGG&IGSCT ITGSSCQCCf ©SXCSMííC CGM'GTO3TG TCXXCTGG 484§0 49200
CGG^GGG? CG&SSaSGCf ôODSTCAACG GTOGGOGEC CGIGGTGAGC ©©SGGSGã^G 48540 CCCÃGSCCm OSaOS&AâOG C$GG&âGCGC TSTCC3GTCC <^mATCCÍ5G {XI©GC5©SGG 4SéÕ0 TGGCQGTQSà CT&C-GCCtCG CACÃCCCGSC ACGTCSAASA CRTCGA&S&C âQCCTCGCCG 48660 â8ÊÕí5CSSSC CGGGATCGÃC GCCCGSGCGC CíXfGSfGCC ^ICCTCTCC ACCCTCACCG 48720 GCG&©K3GaS* CCSSGRCG&G ÔSCSTCG^SS ,S.CQGCC3GCm CfQ3T80SGG AMTfGOKJG. 48780 GCCGGGTGCG GTOXGCCOG GCCGTCGAÚG CGCTGCT3GC O^&SGSGCftC eSESSCTflOS 4S840 TCC^ÍCTOG C&2CCMXCG, ©KÍCltSGTCC &OXG&TCM: CmZCTCmC O&CSÃÃÃOCG 48800 CCGCD3TCGT CGjCCwGTTCG CTÇÇGCCGGG Κ-<3δΡ30Φ32 CCTGCGCCGG ©ÇiQCTGPsCCf 48860 CG&TGG!Xa& GOOTCGTC CGTGG3GTCG MGTGGSCTS GÍCGTCGCÍG GfGCCGCCGG 48020 CQOBBGCCSGk CCSCGOSSC© mjQCCTTCS ICCftCSReCA dSCTOSC^C OSQGQOGCGG 48080 ΜΟΧαΧΏΟ CGftCGXGlG TCGCTGGGGC IXXCCGGGX GCmCCACCCG CTGCTCSGCG 43140 C<XTÇí3»SCA QCTi^CQ^M; TC<^8GG3CC IGGTGTTCÂC “XTCOCGGTrC TCCCTGOSCT 128 ΡΕ0929681
CGO&CCCm GOfGGCCGAC ISGTC.GAQCT GGCCúmCG2 TGATC.G&mc Gcc&cm&m Gcascocccc csacoaosGT
AOiSCTGSCT CCGGCAOStX ceoosmm craoscosoc
OCÍACSSftOCT GCTCGCGG&C a^GSGT^JCG GCGCGGCK5C AfcSMXSCCÕS oxornaccc TQC&CTCS&C
isscoenm: ^s&wsssg ecGJsaccwi Gcecsasoss TOGsssjrGÃC asGCGsíssa: ggcq^occ
ÍSGACACTTC ©^CQGG-TS CGerGXC^A. Ca^CGTCCTC CCG2CSC0G& CGáí^^FKX: GOIGGCTCGC CSXQ30S3S KKmaCCGG CS&CQGCCTS C&CGOGGTCC GS2ÃCGTCGT fô^OSCSTOACa AMSOCGQCm otqccccgcc qcgsosgggt
TamS&OàG TGGACíSKf·? jRcesxCTQc TOtmmm ^sgccgcc ac cc&múcmk GXO3GGTA0S 0CmoSSS3CC <^3M£ÃC!C&. ex3£&e&0OT GÍX-CGGTKKJ GmíOC&OOC GCC0GGG033· ACMTOSMSTC C3OTSGCTX ACGDk^SCCGí; GAC^GTCTGT CGCISSASSC CTGGTtrQGSC ^DCGGTGTC ÔXTOGCTST AGCGOGfflSSA eesmsGo: iscecscírcGc jCCGGCCCím cqgrqscgcc
GTGCrSGCGC ICfiDOSSCCS CTOSA0GGGJÍ CGMGCTCGC
croocsaoc cs^xigcósc íSAOS^fCCCC GamCCGGGC çoçssiwrc GACG&GCTQS Cm33$SCSS «DCGSCTCG efD2CTQCSC CMâftOQC&S GAftCCGGCCG C&SSGG&CCG QOCOSfSSMÍ Cl€âC0í3GTC CaC£34*EOCGS 00335X30860 CGCCG&S&TC 60CC3X3CCC6 CGOSt^TGCTS SÃDSCS30CC ctacggcga: Gàseisoooc OGCCTCGSStí CTGCGGSTGC CSSCGAOGftS ^OC&SCGSCC 6&A06&CCAG CTSfcCGftOGG CTQSACGccà teg®dctc&s camsassa». e^aafOscfiA:
i^OSG^GGCC GimJSSSSG Q3T0CTSG&C SPSSTCCaST S3OTCG35G3MX· CSCGOCGCOG C03GS3X3T6G GGSCTGGECC 49260 49320 49380 49440 49500 49S6Ô 49620 49680 49740 498Q0 49860 49920 49980 50040 50100 50 ISO 50320 50280 50340· 129 ΡΕ0929681
S330CO33CÃ GXSGAGAAC CC<KmCCGG&. MX&ACCOCC «^GCfSQ^P TCXKmQCTCG SMSCÃCGCT G53CCMCCOC CGOSOSGCC TCM.C,ÃCCCS OsGMmím ÇrGOTC&CDS CCmOCCf QSSCaSSSSG CACGSKTEOC fí^csccofe wscmssftM (aocTGGTCa. COGSC'Í50CSX mCS&OSTC GCQG&XGGG GGCCsSTCXí: O^SGma.C ACOSCCC5GCG COCCSSÃCCG ÉKJSQ3XQMS GTGTTCGCGC mzm&acos cxsmseGac ctcgacagtt ramasem: osgo^ggc a&gtacgccg
CCC&CCGGCG CQCG3CC0GC CTsXCGSGOC CaiCCGGOX CAmSCQSCC: GGãftDCSãCG GCGGCCfQST Ce03M!GA6& CCOGCCGCGG CCQSCGÃSCC GCTSCTGGTCi CDXCCCAGC cgggcgqck: cgí^-gtgccg gadctgctgc OCCGTGCOGC GTCC&CTGfG G&GGSOt&CT COSftSOGGQG CCÃGGStCTC CTQGAftCTGG ltS3?DCTGCf CmCGttQS&ã CD3G&&SCCS CCG.XGGCGJ'. OCCGCMSfC GCCCÍGC5SCS GC©GwG320G GOCCGAD3CG GCCGCCGGGT GO^OAOOGG GTCGC1CGGC GGCCi^OGTCG GXAGGTGGT GCTOGOGM5T QGCCGGGSCC QQGPCCKM: CGCACIX^GG QOCQMXirCG âCCâSSSGSC GSODCTSCfS MXSSftiGÇ&CC secGGKacGC oasíQ^sisec <3sg»D3GT$a CCMSePOSG ÇGCS3COC&5 OWXfCG&X TGGTCStCTA CTCCTCGGTT 10000003503? CGGCâAÃCGC «PACCTGGIkC GOSC1>3í®3G AGTCGCl^GC GfGGâGGCTG ‘ISGGACCSSft. afíGCCQSCCG <S3CCCGGÃ2?G axcggcgcg GSCTGGACCr errCGACQCT <KSCa30SSS3!r TCGACCTQJG <3G3CCTGCGC GCCGAftGCGG GCGS1CTGGT COGCGCCGGR CX^CAGCAGG OSGCOSGOGG CXXGGCCGGG CTCGftGCCGa TCascGCóm -mmscmsG gtcctgggct 5D4Ô0 504 m 50520 50580 50640 507SÕ 50740 5082O 50880 50840 51000 51060 51120 51180 51240 51300 51360 51420 ΡΕ0929681 &C.CWQCCQZ CmXAGGTC GftCCeQGftCC ‘íçpccGcmr ca«ysciscoc mccqxtgc οφθϊώεμκτϊ· cG^xaatcc âcoccmccc çjmmmsr· gtgaaccítsj? tc^cgisga. sg&aaccggc esam mãcgctosc
CCCSTACàSC AOCCTCÔCCT ACGStACTCCG
c^x^ísa^ TOCcsmecà gcíí^cgc-cga CCGGCKJTTC CÃlXGGCTOC 3X^0GMCÍ C&COSCCGM. ®3C CQ3Q&G& CCtTCGSCAC ccsçaAp&sc &oom^mo smssses?
ACíGSCSG^C TCGCCCQCGG SGOÕSCCCA GíSÃMCCSGT TATGCSCK5C MCGCCGGSG GI^CACGACS CMZÇQC&IC AGTOGRSSfôA CCTCGÍGGGÇ GACACCACOC «mCCGÃCAC SMCGGCCM1 GTCTKCTGC GSCASC5G0CG GGK3CfâC&C5S ATCSvCOGACG ACGACaftGTT CG&CC&CGGC SmACfSSCG AAAGGCACGA ASrrCGCCGG CC1CTGCAAA ACCGCCT&Ca TCTACSGCGG os^&cctc CACcmCGGCA 130 - ASSSCGfGff COP^SQSG <m£&C®SGC QCGCCAGGftC CG&ACQGftftG AÍCÍCGOCCG SSCTCGCCGC GCAGTTSAAC 6&£CTQGTCC GACmCCTC CAGÔSGATCG GCfOCGGCGG GRASCTQCitô MGAGCCADw mmQGShT GG&OGOGGfG A&OSfOCTCG ACCTCC1ACG& ASSSCAGSSC GGCGCCTGCT &XAOCTSM CSGCTSeGAC: GTGAE:qXGC T05CP3GCAC* CGM5G3XmG CMmGÍ^CA AOCTGGlOiC CGSCfMCCC C^CCCCMXT ACG*K5SfSGCC C5TACGGGÃGC CAGT^XGGT S^TOSASCR. mssGTCMx: qsctggasqg '^'fctacac C3SGAAQGAÈ. CSGSRGGAO& ACT^iCCSSGC gcaggaamic ctgtgcsgcc gcqcotosc ctèqcugsos gtcgasams gxgcss^a
CaSGCfíCM GTGKXIOSCG TGCTCTCCGS
cmimcosh M&mcossc cr&m^cGA AGCACCACTft. CA1X>CC0TAC CTGCAt^TTCf SCOGCOSCST GTCCDSGSK GCGGACCT&" S148S 51540 51.600 51660 51720 snso 51840 S18Ô0 51960 52020 52080 52140 52200 522£6 52320 £2380 52440 52500 52560 ΡΕ0929681 131 CGTâCGXG&C OGXCCCGGàG· ccfoscssui cssTceimos GGTC'3TCOX CGQCmSGCG Q2TGCCCSGC ACCG3C01O3 0^GCTÍKr M&CT3í3ftiSS C^D31CGTí3 ίΠΓΪΟΙΤΟΧ GC^TGTACCK: CSGGGQ3TCS coccfeGcsTc msmmGh mícmscm CCCAGCQCGG SâkGCíi^cis miçQcarcú gosgggsosc TOGCfâooc®a CâGOCâOSAC GàGQQGG&Cã gc^dsoktc o&Gâ^eGcm CWOGGTCETC' Í&CSGCQGGC CGJscaccsc gccssegtcc cccogcggíbs· ctcstcosgc c&tccisgcc gggccsco® C5GSCGWCCIIG GACCGeATG·:;
OOGCGGMSâ. AGGCGCCÍ3TG cooooeosse CGRsaossac cessaescsre
^J^XCTGCT GCTOG^SOS A»£tfG$SCGS TGRíSfTCiSeG
ocfiGCQQcac ahccmmM:. cc^mGTCCA cosmos CC<3CGGSQa& CCTÕCOGSOS fGCwrsõm càcsíSBCmc GÔGaSMSGC CCGC3IGCSAC AGCAmmC QG/XHOOSta CCÇGCC03CG ÇC607TGCfC cnsGciraooc camascckc
T-SSCCGGCO: 0C1€<SGCC0C aXACTACGS CCTGCCQQX AG®kfSS5^0C<3 GGè^CAmMG GCGC03AGCÒÍ 03TGftGCQS£: CCCGCGÃCÃG CCIGGMMC m3&mas& TccoasircG
QEBOSGaCGG OSefQOCQSa SCSGCOSÕSG CGÕSSiSftCíriS cíissíoãsãs Ãjsxsasom sfcsfosesc ^^q^gcco: irxrsscT<ís ccg»í2?jcs& GÕCmasaasSC TCG3DKS33C cm*£Gàcec tgcogqggcg TTtJtTOSSCG OGCOGGaOCT KSCCfCMSS CXX3GC&TCCT AftCSBOSecr jCa03C3?GGS Cm&OQOiaG ixmjasoGS aÍasmam camexxjQk ©cgotxccg o^íacgtcga
Q33ÃTCAC0G GGCtOGCCTT GTKOCGGCGC CGGTCGTCAC OS3G®30GGà CGACGGM.GC 52620 52680 5.2740 52800 53860 S2S2Q 52380 53040 53100 53160 53220 53280 53340 53400 53460 53S20 53580 53640 132 ΡΕ0929681 GGCS3CJGC0G TCM.GOGOa (XXCGGACTTC GCSGGCCMJS ©0D3GQO3GT CGAOSSSGTG 53700 csi3Cé®3ce oeesssscsc G®sasGaec 03Gcm*e03 cscsoc^cc qggctsgooq smo OàCGCKSmGC G^GGCCOA &7ÃGÃVTTC S37S9 (2) INFORMAÇÃO PARA A SEQ ID NO: 4: (i) CARACTERÍSTICAS DA SEQUÊNCIA: (A) COMPRIMENTO: 4572 aminoácidos (B) TIPO: aminoácido (C) TIPO DE CADEIA: simples (D) TOPOLOGIA: linear (ii) TIPO DE MOLÉCULA: péptido (xi) DESCRIÇÃO DA SEQUÊNCIA: SEQ ID NO: 4:
Ket Phs Tyr Thr Ser Gly Thr Thr Gly Arf Pro Lys Gly Vai Vai Ser 1 5 20 15
Thr eln Arg Asa Cys Leu Trp ser ¥al Ala Ser Cys Tyr Vai Pr© Phs 20 25 30
Pr© 61y Leu Ser Asp Gin Asp Arg Vai Leu Trp Pr© Lev £*©· Leu Pha 35 40 45
Bis Ser Leu Ser Bis 21« Ala Çys Vai Leu Ser Ais Thr Vai Vai «ly §0 53 60
Ala Ser Vai Arg Xle Ala Asp Gly Ser Ser Ala A&jp Mp Vai Met Arg 65 70 75 80 133 ΡΕ0929681
Leu XJ* 61» Ala Glu Ser Ser 9Ssr Fhe Lett Ma Gly Vai Pr© 'Phr Thr 8S 90 9$ tyr lis His Leu v«l Arg Ma Ma Mg· SLn Arg Gly £he Ser Me Pro loe los no
Ser Leu Arg II© Gly Lm? Me Gly Gly Ma Vai Leu Gly Ma Gly Leu Π5 no 128
Arg Ser ©1» Phe 61« 61« ©ut Pfte Gly Vai Pre L©« íle &sp Ma $yr 130 135 140
Gly Ser Thr Glu ©ir Cys Oly Ala ile Thr H©t Asa Pro Pro Asp Gly 145 150 155 1€0 .Sis Jteg Vai Gl» Gly Ser Cye Gly Leu Ala Vai Pr© Gly vai As© Vai 165 170 175
.&rg Vai Vai Asp Pro &©p Thr Gly Leu Asp Vai Pr© Ala Giy Glu Glu ISO· 18S ISO
Gly Glu Vai Trp Vai Ser Giy Pro ASrt Vai Mefc Leti Gly fyr Bis &S£? 395 200 205
Ser Pxa Glu Ala Thr Ma Ala Ala Met Arg Asp Gly Trp Fh® Mg Utr 210 215 220
Gly Asp Lee Ala Arg Arg Asp Asp Ma Gly Tyr Phs Thr Lie Gys Gly 225 230 235 240
Arg Ila Lys Glu Leu Ilè lie Arg Gly Gly Ais Asa lie Hi© FtO Gly 245 250 255
Glu Vai Glu Ala Vai Leu Mg íhr Vai Asp Gly Vai Ala Asp Ma Ais 260 265 270 134 ΡΕ0929681
Vai Gly Gly Vai Fr© Bis Asp Thr Leu Gly Slu Vai Fr© Vai Ma Tyr 275 280 28$
Vai 12® Fr© Giy Fr© Shr Gly Fte Asp Fr© Ma Ma Leu XI© <&» Lys 290 285 300
Cys Arg Giu Glu Leu Ser Ala Tyr Lys Vai Pro Asp Arg lie Leu Glu 30S 310 315 320
Vai. Ma Bis tl& Pro Arg Thr Ma Suar Gly Lys 11« Arg Arg Gly La© 325 330: 335
Leu Thr ASp Glu Pro Ma Gin Leu Arg Tyr Ala Ala Thr Glu Bis GIu 340 343 350 GIu Gin Ser Arg Bis Ma Asp Glu Ser Vai Ala Ala Ma Leu Arg Ala 355 360 36$
Arg Leu Ser Gly Leu. Mp Giu Arg Ma Gin Cys Mu X*eu Leu Glu Asp 370 375 360 hm Vai Arg Thr Gin ÂLa Ma Asp Vai Leu Gly Gin Pr© Vai Fr© Asp 385 390 395 400
Gly Arg Ala Fte Arg Asp Leu Gly Fhe Thr Ser Leu Me Xle Vai Glu 405 410 415
Leu Arg Asn Arg Leu Thr Glu Hts Thr Gly Leu Trp Leu Pr© Ala Ser 420 425 430
Ma Vai Fhe Asp His Fr© TI» Pro Ala Ma Leu. Ala Ala Arg Vai Arg 435 440 443
Ala Siu Leu hm Gly Xle Thr Gin Ma Vai Ma St© Pr© Vai Vai Ma 450 455 460
Ma Asp Fro Gly Giu Fr© II© Ala Ile Vai Gly Met Ma Cys Arg Leu 135 ΡΕ0929681
465 470 475 4SQ
Pfo SXy Gly Vai Ala Ser iro Glu Asp Aasu frp Arg leu Vai Ma Glu 485 490 4§5
Mg Vai Asp Ma Vai Ser Glu Pha Pro Gly Ssp &rg Gly Trp Ssp Leu 500 505 510
Asp Ser Lau £le Asp Pro Asp &rg Glu Arg Ala Gly fhr Ser fyr Vai 515 520 525
Gly Gin. Gly Gly Pbe Leu. Bis Asp Ala Giy Glu Phe Asp Ais Gly Fhe
530 535 54S
Hws Gly He Ser Pro Arg Gl« Ala Vai Ala M£t Asp Fro Gin Gin Arg 545 5S0 553 560 leu leu Leu 61« !lbr Ser Trp Glu Ala Leu Glu San Ala Gly Vai tep 565 570 575
Pro He Ala Leu Lys Gly Thr Mp Thr Gly Vai Pisa Ser Gly Leu Ket 580 555 390
Gly Gin Gly $yr Gly 8er Gly Ala Vai Ala Fr© Glu Leu Glu Gly Phe 393 800 605
Vai ffcr Tfer Giy Vai Ma Sàr Ser Vai Ala Ser Gly Arg Vai Ser fyr 610 615 520
Vai leu Gly Leu Glu Gly Pro Ma Vai fhr Vai Mp Thr Ala Cy» Ser 625 630· 635 640
Ser Ser Leu Vai Ma MM. ais Leu Ma Ala Gin Ma Im Arg Gin Gly 645 630 655
Glu Cyã Sér Hôt Má láu Ala Gly Gly Vai ®iU Vai mt Ma fhr Pr© 660 665 670 136 ΡΕ0929681
Gly Ser lhe Vai Glu Ph© Ser Arg Gin ârq Ala Leu Ma Pm Asp Gly 615 680 SS5
Arg cys Lys Ma Phe Ma Ma Ma Ma Asp Gly ©ir Gly Ιχρ Ser Glu 650 695 7W
Gly Vai Gly Vai Vai Vai Leu Glu Arg Leu Ser Vai Ma Mg Glu Arg 705 710 715 720
Gly Bis Mg 21a hm Ma Vai Lsa Arg Gly S®r Ma Vai Mn Gin Mg 725 730 735
Gly Ma Ser Mn Gly hm thr Ma Pm Mm Gly Leu Ser Gin Gin Mg 740 745 750
Vai Ile Mg Arg Ma Leu Ma Ma Ma Gly hm Ma Pm Ser Mg Vai 7S5 760 765
Asp Vai Vai Glu Ala His Gly fhr Gly Thr ©ar hm- Gly Mg Ess 21e 770 775
Glu Ma Gin Ala Leu teu Aia ®jr Tgs Gly Gin Gltt Arg Lyu Gin Pré 185 750 755 800 teu Trp Leu Gly Ser teu Lys Ser Asn Ile Gly His Ma Gin Ma Ma 805 810 815
Ma Gly Vai Ma Gly Vai lia lys Met Vâi Gin Ma Leu Arg Kis Glu 820 825 339
Thr Leu Pro Pm $fer teu Bis Vai Mp Lys to fhr teu Gin Vai Mg 835 840 845 !rp Ser Ala Gly Ma Ile Glu Le« Lsa Thr Slu Ma Arg Ma Trp Fro 850 853 860 137 ΡΕ0929681
Arg Asn Gly Mg Pro Arg Arg Ma Gly Vai Ser Ser Gly Vai Ser 865 870 875 880
Gly Thr Asn Ma Mis Leu Ile Leu Glu Glu Ma Pró Ala Glu Glu Prô 885 890 895 V&l Ma Ma Pro Glu Leu Pro Vai Vai Pr» Leu Vâl Vai Ser Ma Arg 9Õ0 §QS 91.0
Ser Thr Glu Ser Leu Ser Gly Gin Ma Glu Arg Le» Ma Ser Lee. Leu §15 920 925
Glu Gly Asp Vai Ser Leu §*br Glu Vai. Ma Gly Ma Lea Vai Ser Arg 930 935 940
Mg Ma Vai Leu Asp Glu Arg Ma Vai. Vai Vai Ma Gly Ser Arg ©la 945 950 955 960 ela Ma Vai “Thr Gly Lea Arg Ma Lea Asn Thr Ma Gly Ser Gly Thr §65 970 §75
Pró Gly Lys Vãl Vai Trp Vai Pite Pro Gly Gin Gly Thr Gin Trp Ala 980 985 990
Gly t$a£ Gly Arg Glu Lea..Leu Ala Glu Ser Pro Vai Pha Ma Glu &rg 995 1000 1005
Lie Ma Glu Cys Ma Ma Ma leu Ma Pro Trp Ile Mp Trp Ser Leu 1010 1015 1020
Vai Me Vai Leu Mg Gly Glu Gly Mg Leu Gly Arg Vai Asp Vai Leu 1025 1030 1035 1040
Gin Pro Ma Cys Phe Ma Vai Mst Vai Gly Leu Ma Ma Vai Xrp Glu 1045 1050 1055
Ser Vai Gly Vai Arg Pro Asp Ma Vai Vai Gly His Ser Gin Gly Glu 138 ΡΕ0929681 1060 1065 1070
He Ha Ma Ma Cys Vai Ser Gly Ale Leu Ser leu Slu ASp Ale Ale 1Õ7S 1080 1085
Lys Vai Vai Ala Leu Arg Ser Gin Ala He Me Me Siu Leu Ser Gly 1050 1055 1100
Arg Gly Gly Het Ala Ser Vai Ala Lee Gly Gl« As» Ásp Vai Vai. Ser 1105 1110 1115 1120
Arg Leu Vai Asp Gly Vai Gle Vai Alâ Ale Vai Ase Sly Pro Ser Ser 1125 1130 2X35
Vai Vai lie Ala Gly Asp Ala His Ala Leu Ase Ala Vhr Leu Gle He 1140 1145 1150
Leu Ser Gly Glu Gly Ile Afg Vai Mg Arg Vai Ala Vai Asp Tyr Ala 1155 IMO 1155
Ser Sis fhr Arg Sis Vai Glu Mp Ile Arg Asp Tbr Leu Ala Glu Shr 1170 1175 1180
Leu Ma Gly Ile Ser .Ala Gin Ala Pro Ale Vai Fro Pi&a Tgv Ser Tfer 1185 1190 095 . 1200
Vai Thr Ser Glu Trp Vai Arg Asp Ala Gly Vai .Leu Asp Sly Sly Tyr 1205 1210 015 !frp Tyr Arg Mn Leu Arg Mn Sis Vai Arg Sfee Gly Ala Ala Ma. Tfer 1220 1225 1230
Ala Leu Leu Glu Gin Gly Bi» Thr Vai Pise Vai Glu Vai Ser Ala Sis .1235 .1240 1245
Pro Vai fhr Vai Çln Pro Leu Ser Glu leu Thr Gly Asp Ala Ile Sly 1250 12S5 1260 139 ΡΕ0929681 $0r Leu Arg Acg Glu Asp Gly Gly Leu Arg Arg leu leu Ala Ser Met X3W5 1270 1275 12S0
Gly Glu leu Mie Vai Arg Gly Il.e Asp Vai Asp Trp líhr Ml «st Vãl
1285 1250 129S
Pro Ma Ma Gly $rp Vai Àsp Leu Fro SÈbr Tyr Ala Ph© Glfâ Sis Arg 1300 1335 1310 Eís fyx Trp hm Glu Fr© Ala Glu ®ro Ma Ser Ala Gly Asp ao Leu 1315 1320 2325
Lee Gly Ihr Vai Vai Ser thr Pr© Gly Ser Aap Arg Leu 2hr Ma Vai 1330 1335 1340
Ala Gin Urp Ser Arg Arg Ala -Glu Ιϊό Vrp Ala Vai Asp Gly Leu Vai 1345 1350 1355 1360
Pro ãsr Ma Ma La» Vai Glu Ala Ala lie Arg Leu Gly Asp Leu Ala 1365 1370 1375
Gly *hr Fr© Vai Vai Glv Glu Leu Vàl Vai Asp Ala Pr© Vai Vai Leu 1330 1385 1390
Pro Mg Arg Glv Ser Arg Glu Vai Gin Leu Xle Vai Gly Glu Fr© Gly 1395 1400 1405
Glu Gin Mg Arg Arg Pr© He gíu Vai pis© Ser Arg Glu Ma Asp Glu 1*10 1415 1420
Fro Trp Thr Arg Ais Ma His Gly T&r Leu Ala Fr© Ma Ma Ma Ma 2435 1430 1435 1440
Vai Fr© Glu. Pr© Ais Mâ Ala Gly Mp Ais, Vfcr ASp Vai TJsr Vai Ala
IMS 1450 1455 140 ΡΕ0929681
Gly tos Arg Asp Mi Αβρ Arg Tyr Gly II® lis Rc® Ala leu 1®« A»p 1460 1465 1470 lia Ala Wal Arg Shr Vai Vai Gly Asp A8$> to to Pr® Ser Vai *κρ 1475 1480 1485
Thr Gly Vai Bar to to Ala Ser Gly Ma «hr Ala Vai Mor Vai Shr 1480 1485 1500
Fm Shr Ma Tfor Gly tot Arg Leu Thr As® Fro Ala Gly Gin Pr® Vai mm ίδιο 1515 1520 to Thr Vai Gin Ser Vai Arg Gly Thr Prt> Ph® Vai fia Glu Gin Gly 1525 1530 1535 fhr thr Asp Ala to Phe Arg VaX Mp Trp Pro Glu 11® FxO to Pro 1540 1545 1550 rnt Ma Gin «Piur Ma Asp Phe to Pro 3yr Gin Ala «fcr Ser Ala Giti 1555 3560 3515
Ma Thr to Ser Ma to Gin Ma Trp to Ma Asp Pre Ma Gl® Mar 1570 1575 ISSO
Arg to Ma Vai Vai Thr .Gly Mp €ys Thr Glu Pro Gly Ma Ma Ma 1555 1590 1535 1600 n« Trp Gly to vai Atg Ser Ala Gin Bar Gin Sis Pr® Gly Arg Xle 1605 1610 U15
Vai to Ma Mp to Asp Asp Pro Ma Vai to Fro Ma vai Vai Ala 1620 1625 3630
Ser Gly Gly Fro Gin Vai Mg Vai Arg Asn Gly Vai Ala Ser Vai Pr® 1635 1640 3545
Arg tos TM Arg Vai Thr· Pro Arg Gin Asp AI.® Arg Pts» toi Asp Fr® 141 ΡΕ0929681 1650 1655 1660
Glo Gly shr Vai Leu ile 3hr Gly Gly Thr Gly Tfer Leu Gly Ma hm
1665 1670 1675 X6SQ
Star Ma Mg Sis hm vai «te· Ma 'eis Gly Vfel Arg His Leu Vai Leu um um i«95
Vai Ser Mg Mg Gly Glu Ale Mo Glu Leu Gin Glu Glu. Leu Tkr Ma 1700 1705 1710 hm Gly Ala Ser Vai Ma lie Ma Ala Cyê Asp vai Ma Asp Mg Ala 1715 1720 1725
Gl« Leu Glu Ma vai Leu Mg Ma lia Pro Ala Gla His Pr© loa Thr 1730 1735 1740
Ala Vai lie Bis TM Ala Gly Vai leu Asp Asp Gly Vai Vai Thr Glu 2745 1750 1755 1760
Leu Thr pro Asp Mg Leu Ala Thr Vai Mg Arg Pro Lys Vai Asp Ma 2765 1770 1775
Ala Mg Leu hm Aso Glu Leu TM1 Mg Glu Ma Âsp Lea Ala Ma Phs 1780 1785 1790
Vai Leu Phe Ser Ser Ma Ala Gly V&l leu Gly Asa Pro Gly Gin. Ata 1795 1800 . 1805
Gly Tyr Ma Ala. Ala As». Ala Glu Leu Asp Ala Lea Ala Arg Gin Mg 1810 1815 1820
As» Ser Leu ASf> Leu Pro Ma Vai Ser lie Alã Ptp Gly fyr ®rp Ma 1825 1830 1835 1840 TM Vai Ser Gly «et Thr Glu His Leu Gly Aso Ala Mp Leu Mg Arg 1845 1850 1855 142 ΡΕ0929681 mvt Gla Arg 11« Gly Met Ser Gly to Pr© Má Mp Glu Gly «et Ma 1MÔ 1855 1870 to to *gp Ala Ala. 11« Ala Thr Gly Gly Thr hm VAI Ala Ala JLys 1875 1880 1885
Phe As» vai Ais Ala to Arg Ala Thr Ala Lys Ala Gly Gly Pro vai 1890 189.5 1300
Fro Pro :to toa Arg Gly Leu Ala Pa» Xe* Pro Irg Arg Ma Ala Ala 1905 1910 1915 1920
Lys fhr Ala Ser Leu Thr 61«. Mg to Ala Gly to Ais Gla Thr Gla 1425 1930 1925
Gin Ala Ala Ma to Lea ASp .to Vai Mg M§ ííis Ma Ma Gltt Vai 1940 1945 1950 to Gly Bis Ser Gly AlA Gla Ser Vai His Sm Gly Arg Thr Phe hyB 1955 1950 1965
Asp Ala Gly pfee tep Ser Leu Thr Ala Vai Gla to Arg AS» Arg toa 1970 1975 1980
Al® Ala Ala Thr Gly Leu Thr Leu Ser Pro Ala Hat lie Fhe Asp Tyr 1995 1990 1995 2000
Pro :Lvs Pro Pro Al.a Leu Ala Asp Bis Leu Arg Ala Lys toi Phe Gly 2005 .2010 2015
Ser Ala Ma As» Arg Pro Ala 61» lie Gly Thr Ala Ala Ma Gla Gla 2020 2025 2030
PtO Xle Ala lie Vai Ala Met Ale Cys Arg Ahe Pro Gly Gly Vai Bis 2035 2040 2049 143 ΡΕ0929681
Ser Pm Glu Asp Leu Trp Arg Leu Vai Ma Asp Gly Ma Asp Ma Vai 2050 2055 2GS0
Thr Glu Lhe Pro Ma Asp Arg Gly frp Asp fhr Asp Arg Lesa fyr Bis 2065 2070 2075 2080
Glu Asp Pro Asp Bis Glu Gly fhr Shr Vai Arg Bis Gly Ma Phá 2085 2000 2095
Leu Asp Asp Ala Ala Giy PM Asp Ma Ala Phe Pfee Gly Ile Ser Pr» 2100 2105 2110
Ae» Glu Ma Leu Ala M»t Asp Pro Gin Gin Arg Leu Leu Léu Glu fhr 2115 2120 2125
Ser frp Gin Leu P&e Gin Arg Ala Ala Ile Asp Pre fhr fhr Lssj .Alá 2130 2135 2140
Gly Gin Asp Xle Gly Vai Fhe Ala Giy Vai Asn Ser Bis Asp fyr Ser 2145 2150 2155 2160
Hat Arg Met Bis Arg Ma Ala Gly Vai Glu Gly Fhe Arg Lên ffcr Gly 21€S 2170 2175
Gly Ser Ala Ser Vai Leu Ser Gly Arg vai Ma fyr lis Phe Gly Vai 2180 2185 2190
Glu Gly sro Ala vai fhr Vai Asp fhr Ma Cvs Ser Ser Ser Lau Vai 2136 2200 2205
Ma Leu Bis Met Ala Vai sír Ala leu Gin Arg Gly Gin cy» Ser Met 2210 2315 2220
Ala Leu Ma Gly Gly Vai Met Vai Met Gly fhr Vai Giu Thr Lha Vai 2225 2230 2235 224Ô
Glu Lhe Ser Arg G.ln Arg Gly Leu Ala Pro Asp Gly Arg Cys Lys Ma 144 ΡΕ0929681 2245 22S0 2255
Fhe Ãla Mp Gly Ma Asp Gly Thr Gly Trp Ser Glu Gly Vai Gly Leu 2260 2265 2210
Leu leu Vai Gin Arg Leu Ser Glií Ma <Sln Mg Axg Gly Bis Gin Vai .2275 2200 22S5 teu Ma Vai Vai Arg Gly Ser Ma Vâl Mn Ser Mp Gly Ma Ser Asn. 2290 229$ 2300
Gly Leu Thr Ma iJro Má Gly Pr© ser Gin Gin Mg Vai Ile Mg Lys 2305 2310 231$ 2320
Alá Láu Ma Ma Ma Gly im Ser Thr Ser Asp Vai Asp Ma vai Gin 232.5 .2330 233$
Ma Bis Gly Thr Gly Thr Thr La» Gly Mp Pto Ile Glu Ma Glu Ma 2340 234$ 2350
Leu teu Ma Thr Tyr Gly Gin Má Ãrg Gin Thr Pro Leu Trp Leu Gly 2353 2365 2365
Ser Vai Lys Ser Asm Leu Gly His Thr Gin Má Ala Ala Gly Vai Ma 1370 2375 2380
Gly Vai ile Lys Met Vai Met Ma Met Arg His Gly Vai Leu Pr© Arg 23ÊS 2390 2395 2400 ffir Leu His Vai Asp Arg Pro Ser Ser Tyr Vai Asp Trp Ser Ala Gly 240$ 2410 241$
Me Vai Glu Leu Leu Tkr Glu Ma Arg Asp Trp Vai Ser Asn Gly His 2.420 242$ 2430
Pr© Mg Arg Ms Gly Vai Ser Ser phe Gly Ile Gly Gly Thr Mn Ma 24.33 2440 3445 145 ΡΕ0929681
Eis Vai. val Leu Cia Glu Vai Ma Ma Fro Xle 15te *fer Pro Gin Pro 2450 245S 2«0
Glu Pro Ala Glm PM Leu Vai Pro Vâl Le» Vai Ser Ma Arg ®sr Al& 2465 2470 2475 2480
Ma Gly Leu Arg Gly Gin Ma Gly Arg ΙΛΙ Ms Ma Wm IAU <5ly Asp
2455 2450 24fS
Arg Thr Asp Vai Arg Vai Pro Asp Ala Ma Tyr Ala Lau Alá Thr Thr 2S0S 2SCS 2510
Arg Al.a. Gin Leu As» Bis Arg Alá Vai Vai L6U Ala Ser Asp Arg Ala 2515 2520 2525
Gin im çye Ma as» Leu Ala Ala PM Gly Ser Gly Val v&l. Thr Gly 2550 2535 2540
Thr Pro Val Asp Gly Lys Len Ala Vai Leu Phe Tfer Gly Gin Gly Ser 2545 2550 2555 2560
Gin Trp Ala Gly Met Gly Arg 61« Lee Ma Glu ffcsr FM Fro Vai Pha 2565 2570 2575
Arg Asp Ma Fbe Glv Ma Ma Cy» Gl» Ma Val Asp fhr Hls Lea Arg 25S0 2585 2590
Glu Arg Pr© Leu Arg 61« Val val PM Mp Mp Ser Ma Leu Leu Asp 2595 2600 2605
Gin Tftr Mat lyr 53sc Gin Gly Ma Leu Fhe Ma Val Gin 3*hr Ma Lee 2610 2615 2620 FM Arg Leu Phe Gin Ser ΊΧρ Gly Val Arg Pro Gly Lá» Lea Ma Gly 2625 2620 2635 2640 146 ΡΕ0929681
Bis Ser Um Gly &m Lmu Ma Ma Ma Bis Vai Ser Gly Vai Leu Asp 2645 2550 2655
Lee âla &sp Ma Gly Glu Leu Vai Ma Ala Arg Gly &rg Leu &et Gin 2660 26G5 MW
Ma Leu Wm Ma Gly Gly Ma Met Vai Ala Vai Gin Ma Thr Gin Asg 2575 2580 2685 GX« Vai Ma iro Leu Leu Asp Gly Thr Vai Cys Vai Ma Ala Vai Asn 2680 2695 2700
Gly Pre Asp Ser Vai Vai Leu Ser Gly Thr Gin Ala Ma Vai Leu Ala 2705 2710 2715 2720
Vai Ma Asp Gin Lee Ala Gly Arg Gly tóç Lys Thr Arg Mg Leu Ala 2725 2730 2735
Vai Bar Bis Ma Phe Bis Ser Pro Leu Mefc Glu Pr© Met Leu âsp Asp 2740 2745 2750
Phe Arg Ala Vai Ala Gla Arg Loa Thr Tyr Arg Ma Gly Ser Len Pr© 2755 " 2760 2765
Vai Vai Ser Thr Leu Thr Gly Gin leu Ma Ma Leu top Ser Pro Asp 2770 2775 2780
Tyr Trp Vai Gly Gin Vai Arg Asa Ala Vai Arg ffee Ser Aep Ala vai 2785 2790 2795 2800
Thr Ma Le« Gly Ala Gin Gly Ma Ser Thr Phe Leu. Glu Leu Gly Fr©· 2805 281.0 2815
Gly Gly Ma Leu Ala Ala Mafc Me Leu Gly Thr Leu Gly Gly Pro Gin 2820 2825 2838
Gin Ser Cys Vai Ala Thr Leu Arg Ly$ Asm Gly Ala Gla Vai Pxo Asp 147 ΡΕ0929681 2835 2840 2845
Vai 'Leu Thr Mia Leu Ala Glu Lea Ris Vai Arg Gly Vai Gly Vai Asp 2958 2855 2868
Trp TIht «*r Vai Leu Asp Glu Sr» Ala «ir Ala Vai Gly Sf*r Vai .Leu 2BBS 28?0 2875 2880 5¾¾} TSir Tyr Ala Phe Gin Bis Glã Arg PAe Trp Vai Asp Vai Asp Glu 2815 285Õ 28m
Tt*r Ala Ms Vai Ser y&X Pr» Pm Pm Ma Glu Pm lia Vai &sp 2800 2805 2010
Arg Pr» Vai Glu Asp V&l Leu Gl» Leu ¥&I Arg Glu Ser Ma Ma Vai 2.815 2920 2925
Vai Leu Gly Pis Arg Asp Ala Gly Ser Phs Asp lèu &sp Arg Ser Phe 2930 2933 3940
Lys Asp Eia Gly Phe Aap Ser Leu Ser Ala Vai Lys X^eu Arg Asa Arg - 2945 2950 3953 2M0
Leu Arg Asp Phe Vhr Gly Vai Glu Leu Pro Ser ILr Lesa Ile Pha Asp 2965 2970 2973
Tyr Pr» Asa Pro Ma Vai Leu Ala Asp Eis Leu Arg Ala Glu Leu Leu 2980 2985 2990
Gly Glu Arg Pro Ala Ala Pro Ala Pr» Vai Thr Arg Asp Vai Sar Asp 2955 3888 3005
Glu Pro lie Ms lie Vai Gly Hat Ser Thr Arg Leu Pro Gly Glv Ala 3010 3815 3028 ASP Ser Pro Glu Glu Leu Trp Lys Leu Vai Ma Glu Gly Arg ASp Ala 3025 3030 3035 3040 148 ΡΕ0929681
Vai Ser Gly Phe Pro Vai Asp Arg Gly Trp A*p Leu Aep Gly Leu Tyr 3045 3050 3055
Eis Pro Asp Pro Ma Bis Mâ Gly Thr ser tyx Mg Ser Gly Gly 3060 3065 3070
Phe Leu eis Asp Ma Ma Gin Phe Asp Ma Gly Leu Phe Gly Xle Ser .3075 3080 3085
Pro Arg GLu Ma Leu Ma Ket Asp Pro Gin Gin. Arg Leu Leu leu Gtu 30-50 3095 3100 fhr Ser Trp Glu Ma Leu Glu Arg Ma Gly Vai Asp Pro Lou ser Ala 3105 3 Π0 3115 3120
Arf Gly Ser A% Vai Gly Vai Phe Thr Gly Xle Vai ais- aia Asp Tyr 3125 3130 3133
Vai Thr Arg leu Arg GIu Vai Pro Glu Asp Vai Sln Gly Tyr Thr Mefc 3140 3145 3150
Thr Gly Thr Ma Ser Ser Vai Ala Ser Gly Arg Vai Ala Tyr Vai Fhe
3153 3150 31SS
Gly Fhe Gl« Gly Pro Ala Vai Thr Vai Asp Thr Ala Cys Ser Ser Ser 3170 3175 318Ô
Leu V.al Ala Ket His Leu Ala .Ala Gin Ala teu Arg Gin Gly GIu ¢3¾ 3185 31*0 3153 3200 ser t-fct Ma Leu Ma Gly Gly Ma Thr Vai 3&st Ala Ser Pro Asp Ale 3305 3210 3215 í%s Leu. Glu Phe Ser Arg Gl« Arg Gly Leu Ser Ma Asp gly Arg Cys 3230 3220 3225 149 ΡΕ0929681
Lys Ala Tyr Ma da Sly Ma Asp Gly Thr Gly frp Ma Glu Gly Vai 3235 324S 3245
Gly V&l Vai Vai I*eu Glu Arg Leu Ser V®1 Ma Arg Glu Arg Gly His 3250 3255 3250
Mg Vai Leu Ma Vai Xeu Mg Gly Ser Ala Vai 1®δ Gin Âsp Gly .Ala S2êS 322Ô 3275 3280
Ser Asm Gly Leu Thr Ma prs m Gly Mo Se? da Gin Arg v&l XX& 3283 3290 3295
Arg Gly Ma Leu Ma Ser Ma Gly i©u Ma Pre Ser Asp Vai &sp Vai 3300 3305 3310
Vai Glu Gly Me Gly Thr Gly Thr Ma lm Gly Mp KM» 11« Glu Vai 3313 3320 3325
Gin Ala leu Leu Ma Thr Tyr Gly Gin Glu Arg Glu Gin. Pr© Leu Trp 3330 3335 3310
Leu Gly Ser Leu Lys Ser Asa Leu Gly Sis Thr Glu Ale. Ma Ma Gly 3345 3350 3355 3360
Vai Y&l Gly Vai Ile Lys «et 11« Sst Ma Mei Arg His Gly Vai «et 3355 3370 3375
Pm Ala Thr Leu His Vai Glu Arg Thr Ser Gin Vai Mp Trp Ser 3380 3385 3390
Ma Gly Ma II® Gin V&l Leu Thr Glu Ma Arg Glu Tep Pr© Arg Thr 3395 3400 3405
Gly Arg Pr© Arg Arg Ala Gly Vai Ser Ser Phe Gly Ala Ser Gly Thr 341C 3415 3420
Asn Ala His Leu Ile Ile Glu Glu Gly Pro Ala Glu Glu Ala Vai Asp 150 ΡΕ0929681 3435 3430 3435 3440
Glu 61¾ vsi Ma Ser Vai Vai Bro hm vai Vai ser Ma Mg Ser Ma 3445 3450 3455
Gly Ser Lee Ma Gly Gin Ma Gly Mg Le« Ma Ma Vai Lee 61« Ma 3460 3455 3430
Glu Ser Léu Ma Giy Vai Ma Gly Ma Lm Vai Ser Gly Mg Ma Vhr 347S 3480 34SS
Lee te Giu Arg Ma Vai Vai lie Ma Gly Ser Mg Asp Glu Ma. Gin 3450 3435 350Ô
Asp Gly Lee Ma Ma Le« Ma Mg Gly Glu Mn Ma Pro Gly Vai Vai 3505 3510 3S1S 3530
Tftr Gly Thr Ma Giy Lys ím Giy Lys Vai Vai Trp VM Phe Fro Gly 3525 3530 3535
Gin Gly Ser Girs Trp Met Giy Met Gly Arg Mp Lm Lee Asp Ser Ser 3540 3545 3550
Pre Vai Phe Ma Ma ârg Ile Lys Gl« Cys Ala Ma Ma Leu Glu Gin 3553 3350 3505
Trp Tfcr Asp Trp Ser Lea Leu ASp Vai Lee Mg Gly Asp Mã Μφ Leu 3570 3575 3550
Leu Asp Arg Vai Asp Vai Vai Gin Pro Me Ser Fhe Ma Met. Mst Vai 3385 3590 3555 3600
Gly teu Me Ma Vai Trp Thr Ser Lee Gly Vai Thr Pro Mp Me vai 3505 3610 3615 teu Gly Hís Ser Gin Gly Glu He Ma Ma Ma Cys Vai Ser Gly Ma 3620 3625 . 3630 151 ΡΕ0929681
Leu Ser Lm Asp Asp Ms Ma Ly» Vai Vai Ala Leu Arg Ser Sln Ala MM MM 3645 lie Ala Gly Gl« Le« M.s Gly Ârg Gly Gly Met. Ala Bar Vai Ala Leu 3650 3655· 3S60
Ser 61 u Glu Asp Alt Vai Ala Arg Leu Thr Fro frp Ala Mn Arg Vai 3665 3670 3675 3600 <31« Vsl Ala Ma Vai Mn Bar Fre Bar Ser Vai Vfcl lie Ma Gly Asp 3695 3699 3695
Ala Gin Ala leu Asp Gi» Ma Seu 61« Ala Imi Ma Gly Asp Gly Vai 3700 3705 3710
Arg Vai Arg Arg Vai Ala Vai Mp Tyr Ma Ser His Shr Acg 8ÍS Vâl 3715 3720 3725 61a Ala Ile Ala 61% Thr Leu Ala Lys 3fcr Mu Ala Gly Ile Asp Ma 3730 3735 3740
Arg Vei Fro Ma XI* Fro Fhe 7yr Ser Tfer Vai Leu Gly Fhr Frp Ile 3745 3750 3755 3760
Glu Gin Ala Vai Vai Asp Ala Gly 7¾¾1 Trp Tyr Arg Asn Leu Arg Gin 3765 3770 3775
Gin Vai Mg FM Gly Fre Ser Vai Ala Asp leu Ala Gly Leu Gly His 3390 3785 3790 ISxt Vai Phs Vai Slu II* Ser Ma lis F*o Vâl Leu Vai Gin Fro Leu 3795 3800 3805 ser 61« Ile Ser Asp Asp Ala Vai Vai shr Gly Ber Leu Arg Arg Asp 3810 3815 3820 152 ΡΕ0929681
Asp 6iy «ly Leu Arg Arg te» Le» Ma Ser Ala Ma 61» Xe» Tyr Vai 3825 3830 3835 3840
Arg Gly Vai Ala Vai Asp Trp Tfrr Ala Ala Vai Fr© Ma Ala Gly Trp 384S 3850 3855
Vai Asp Lsu Pr© Thr Tyr Ala Pfe© Asp Mg Arg Sis Fhs Trp Leu His 3860 3805 3810 <Ela Ma Glu Thr Sis Gl« Ala Ala Gla Gly Msfc Asp Gly Glu Phe Trp 3875 3880 3885
Thr Ma Ile Glu Gin Sar Asp Vai Asp Ser hm Ma Gl» tem Leu GLu 3830 3885 3900 te» Vai Fr© Glw 61» Arg Gly Ma Leu Ser Tfer Vai Vai Pr© Vai Leu 3905 3910 3S15 39.20
Ala 61» Trp Mg Me Arç Mg Arg Glu Arg Ser Thr Ma Glu Lys Leu 3923 3930 3935
Arg Tyr 61» Vai *hr Trp Gin sxo teu Glu Mg 61» Ma Ma 6Xy Vai 3940 3945 3950
Pr© Gly Gly Arg Trp %m Ala Vai Vãl Pr© Ma Gly Thr Thr Asp Ma 3955 .3960 3 955
Leu Leu Lys eic Lee Thr G.iy Gin Gly t*tt Asp Ile Vsl Arg Leu 61» 3970 3975 3380 lie Sltt 61» Ala Ser Arg Ala Gin im Ma 61» 6in Leu Mg Mn Vai 3985 3990 3995 4000 teu Ma Glu Sis Âsp Leu Thr Gly Vai Leu Ser Leu hm Ma Leu Asp 4005 4010 4015
Gly Gly Pr© Ma Asp Ma Ma Glu tle Thr Ma Ser Thr leu A1.& Leu 153 ΡΕ0929681 4020 4023 4030
Vai Gin M* .Leu Gly Asp Tfer TM TM Ser Ma Pro Leu Trp Cys Leu 4035 4040 4045
Thr Ser Gly Ma Vai Asn Ile Giy Ik Gin Asp Ma Vai TM Ma Pm 4050 4055 40ê0
Ma Gin Ma Ma Vai Trp Giy Leu Gly Arg Ma Vai Ma Leu GIu Arg 4065 4070 4075 4080
Leu Asp Arg Trp Gly Gly Leu Vai Asp Leu Pro Ala Ma Ile Aáp Ala 4085 4080 4095
Arg Thr Ma Gin Ma Leu Leu Gly Vhl Leu Ae» Gly Ma Ma Gly Glu 4100 4105 4110 Ãsp Gin Leu Ala Vai Arg Arg Ser Gly Vai Tyx mg Arg Arg Leu Vai 4115 4120 4125
Arg Lys Pxo Vai. Pro Glu Ser Ma Thr fier Arg Trp Glw Pro Arg Gly 4130 4135 4140
Thr Vai Leu Vai Thr Gly Gly Ala Gla Gly Leu Gly Arg Ris Ma Ser 4145 4150 4155 4160
Vai Trp Leu Ma Gin Ser Gly Ala Gin Arg Leu lie Vai Thr Gly Thr 41S5 4110 4115
Asp Giy Vai Asp Giu Leu Thr Ala Glu Leu Ala Glu Pha Gly Thr Thr
4Ϊ80 4185 4 ISO V«l Gin The Cys Ma Asp Thr Asp Arg Asp Ma tle Ma Gin Leu Vai 4195 4200 4205
Ala Asp Ser Glu Vai Thr Ma v&l vai Hl* Ma Ma Aap lie Ma Gin 4220 4210 4215 154 ΡΕ0929681
Thr Ser Ser Vai Asp Asp T&r Gly Vai Ma Asp Leu Asp SI» Vai Phe 4225 4230 4235 4240
Ala Ala Lya vai 3&r Thr Ala Vai frp Leu Asp Gin Leu Phe Giu Asp 4245 4250 4255
Thr Pro Lem Asp Alâ Phe Vai Vai Ph© Ser Ser Xlé Ala Gly He Trç» 4200 4205 4270
Sly Gly Gly Gly GI» Gly Pro Ala Gly Ma Ala &m Ala Vai Ls» Asp 4275 4260 4265
Ma leu Vai Glu Trp Arg Arg Ma Arg Gly Imz bys Ala Tfer Ser Ile 4290 4295 4300
Ma 3â$> Gly Ala Lss Asp Gin 11« Gly He Gly Mefc Asp Glu Ma Ala 4305 4310 4.315 4320 hm Ala Gla Leu Arg Arg Arg Gly Vai lie Pro Het Ala Prõ Pr© Lea 4325 4330 4335
Ala Vai Thr Ala Hst Vai Gin Ala Vai Ma Gly ísn Glti Lys Me Vai 4340 4345 4350
Ma Vai Ma .Asp Ket Asp Trp Ala Ma Phe He Bro Ma Phe Thr Ser 4355 4360 4355
Vai Arg Pr» Ser pro Leu. P&e Ala Asp leu Pro Slv Ala lys Ma lie 4370 4375 4380 leu Arg Ma. Ma Gls Asp Mp Oly Glu Asp Gly Asp Thr Ma Ser Ser 4365 4.390 4395 4400
Leu Ala Asp Ser Leu Arg Ala Vai Pr© Asp Ala Glu Gla Asn Arg 11« 4405 4410 4415 155 ΡΕ0929681 feu Leu Lys Le&a Vàl Arg Gly lis Mi. Ser for \%I Leu Gly Sis Ser 442® 4428 4430
ilf Mâ €<iu Sly lia Gly Mo Arg Gin M» Pàe Gin C*lm ?4l €tf 4435 444® U4B 3Γ MU Ali "ή 1 Asa 4455 MA Ser Lee SM Ma Ma 4%r leu Ma AM f&r leu 11a f&a Asp fyr fro fAr Mo Gio 4468 44?0 4475 4480
Ala. X,#u Vai í?2.y fyr ku Mg Vai Glu Leu fóu Arg Glu Ms fep Mp 4485 4490 4455
Mn isc Gly
GM
Vsí léu Alá Alá Vai
Oro fSa Ala fôg Phe Bjp Gls Ala Cly Vai Leu Mp fkr Imu Leu Gly 4515 4520 4538
Leó AM Ààp ®u Gly lAr Gin :te> Gly Thr Asp Me Glu TAr Sr Glu 4836 4535 4540 Mã Ma Pro Ala Ala Asp Asp Ala Glu Im Lie Asp Ala Leu Asp 11® 4548 «Si® 4555 4566
Ser Gly Leu Vai ©In Mg Ala Leu Gly GM flír Ser 4548 4576 (2) INFORMAÇÃO PARA A SEQ ID NO: 5: (i) CARACTERÍSTICAS DA SEQUÊNCIA: (A) COMPRIMENTO: 5069 aminoácidos (B) TIPO: aminoácido (C) TIPO DE CADEIA: simples (D) TOPOLOGIA: linear ΡΕ0929681 156 (ii) TIPO DE MOLÉCULA: péptido (xi) DESCRIÇÃO DA SEQUÊNCIA: SEQ ID NO: 5:
Met Ma Mn Gin Ser Arg Lys Asn. Met Ser Me Pro Asn Mu 61a 1 S 10 15 II® val Mn Me Leu Mg Me Ser Lee Lys Glu Mn Vai Arg Leu Gla 20 25 30 Gin Slu Mn Ser Ma Lee Me Ma Ala Ala. Ma Slu Aro Vai Ma Ile 35 40 45 Vai Ser Msfc Ale Cys Arg Tyr Sla Gly Gly Ile Arg Gly Fro Slu &sp 50 55 ¢0 Phe Trp Mg Vãl Vel Ser Glu Gly Ala Asp Vai fyr Thr Gly Pba J?ro 55 70 75 80
Slu Aap Arg Gly Txp Asp V&l Glu Gly I#u íyr Bis ftfo Asp Fro Mp 85 80 95 Mjí Uao Gly Thr Tyr Vai Arg Glu Gly Ma .Pbe Leu Gin Asp Ale 100 105 110
Ala Gin Fés 115
Ala Gly Fte Ffea Gly Ile Ser Fro Arg Slu Ma Leu 120 125
Ma Hát Asp Pro Gin Gin Arg Gin Leu X 130 135 s Glu Vai Ser Erp Glu 140
Leu Glu Arg Ala Gly lie Asp Bro Bis ser vai Arg Gly Ser Asp II® 145 ISO 155 160 155 157 ΡΕ0929681
Gly Vai Tyx Ala Gly Vai Vai Sis Gin. Asp Tyx Ma Bro Asp Leu S«r 165 170 175
Sly Abe 61« Gly J?h» Mefc Ser Leu Gin Acg Ala Lav Gly TBX Ala Gly 180 185 190
Gly Vai Ala Ser Gly Arg Vai Ala Tyr Shr Leu Gly Leu Gltt Gly £»0 135 300 205
Ala yal ifcx Vai Asp Thx Met Çys Ser Ser Ser leu Vai Ala Ile Bis 210 215 220
Laus Ala Mâ Gin Ala Lao Arg Jfcrç Gly Glu Cy» Ser Hat Ma L«u Ala 225 230 2:35 240
Gly Gly Ser Thr Vai .Hat Ms ®har Pxxt Gly Gly She Vai Gly Fha Ala 245 250 255
Jteg Gin Arg Ma Lea Ma Phe Asp Gly Arg Çys ly» Ser 3yr Ala Ala 280 2S5 270
Ala Ma tóp: Gly Ser Gly Irp Ma Glu Gly Vai Gly Vai Leu I,ea Jjeu 375- 280 285
Glu Arg La.«. Sex Vai Ala Arg Glu Arg Gly ais Gin Vai leu Ala Vai 290 295 300
He Arg Gly Ser Ala Vai. Ur Gin Asp Gly Ma Ser Asa Gly Leu Tftr 305 310 315 320
Ma 7zo Mu Gly Fr* Ala Gin Gin Arg Vai Ile Arg Lys Ma Leu. Ala 325 330 335
Ser Ale Gly Leu Tkt Pxò Ser Asp Vai Aap Shr Vai Glu Gly Bis Gly 340 345 350 158 ΡΕ0929681 fhr dy Shr Vai Ιλι dy Asp Fco 11« Glc vai Gin ftla Leu Leu Àla 355 360 385
Thr Tyr Gly Gin Gly Arg Asp Fro Gin Gin Fro Leu Trp Lev? Giy Ser 370 375 380
Vai Lys Ser Vai Vai Gly Sis fc Gin Ma Ma S&z Gly Vai Ala Giy 385 330 305 400 VM lis iys Hat Vãl. Gin Ser Leu Arg lis Giy Gin Leu Fro Ala Hir 405 410 415
Gin Bis vai Asp Ala Pro S&r Fro Gle Vai Asp $rp Ser Ala Sly Ala 430 425 430
Tle Giu Lsa Leu Ala Gia Gly Arg Gle ITp Pr» Arg Asn Gly His Fro 435 440 445
Arg Arg Gly Gly Jle Ser Ser Phe Gly Ala Ser Gly T&r Mo Ma His 450 455 400
Het li© lesa Gin Gin Ala Pro Gin Asp Gin Fro Vai Thr du Ãla Fro 465 470 475 480
Ma Pro Dhr Gly vai Vai pro Leu Vai Vai Ser Ma Ma fhr Ma Ma 485 430 435
Ser Leu Ma Ma Gin Ala Gly Mg Len Ma Glat Vai Gly Asp Vai Ser 500 505 510 leu Ma Asp Vai Ma Gly ihr leu Vai Ser Gly Arg Ma Met Leu Ser 515 520 525
Gin Arg Ma Vai Vai Vai Ala Gly Ser His G.lu Glu Ma Vai ®tsr Giy 530 S3S 540 leu Arg Me Leu Ma Arg Gly Glu Ser Ma Fro Gly Leu Leu Ser Gly 159 ΡΕ0929681 545 SSO 553 560
Arg Oiy Ser Gly Vai Pro Gly Lya Vai Vai Trp Vai Phe Pr® Gly Sln
Sm 570 s?s
Gly ffcr 01« ©Φ Ala Gly Ifefc Gly Arg 01« Leu Leu Mp Ser Ser Glu 580 585 590
Vai Phe Ala Ma Arg lie Ala Giu Cya 01« Thr Ma Leu Gly Arg fsrp 595 600 605
Vai Asp ©et» Ser La» Asp Vai Leu Arg Gly Glu Ale Aep Leu Leu ¢10 615 620
Asp Arg Vai Asp Vai Vai Gin Ero Ala Ser Pfee Ma Vai Met Vai Gly 625 630 635 640
Leu Ala Ma Vai Tsp Ala Ser Leu Gly Vai GI« Rro Glu Ala vai Vâl $45 65Õ 655
Gly fíls Ser Gi» Gly 61« Π® Ma Ala Ala Cys Vai Ser Gly Ala Leu 660: §65 670
Ser Leu Glu Asp Ala Ma Lys Vfel Vai Ala Leu Arg Ser Oln Ala Ha 675 600 SS5
Ala Ms Ser Leu Ma 61y Arg Gly Gly M®fc Ma Ssr Vai Ma Leu Ser 690 695 700
Sis Gl.a Mp Ala Sfer Ala Arg l&n 01« Pm Trp Ala Gly Arg Vai Glu 705 710 715 720 vai Ma Ala Vai Asn Gly Pro fhr Ser Vai Vai He Ala Gly Asp Ala 725 730 735 01« Ma Leu Asp 01« Ala Leu Asp Ma Leu Asp Asp Gin Gly Vai Arg 740 745 750 745 160 ΡΕ0929681
Ile Mg Mg Vai Ala Vai Asp Ala Ser Bi© fhr Arg Bis Vai Gin 755 760 75$
Ala Ma Arg &a.p Ala Las Ala Glu Mefe lati Gly Gly Ile Arg Ala Gin 770 775 im
Ala £ro 61« Vai pro p&e syr Ser Thr vai Tísr Gly Gly Txp Vai Gin 785 750 755 800
Asc Ma Gly Vai Leu Asp Gly Gly Τ'/r irp Tyx Arg Asn. Leu Arg Arg
SOS 810 SIS
Gls Vai Arg Phe Gly Pr© Ala Vai Ma du leu Ile Glu Gin Gly Bis 826 825 830
Arg Vai Phe Vai Slu Vai Ser Ala Bis Fr© Vai Leu Vai Gin Fr© Ile 835 840 845
Asa Gin Leu Vai As» Asp *fer dtt Ma Vai Vai Ssr Gly $hr Leu Atg S50 855 BêÚ
Arg Glu Aso Gly Gly Leu Arg Arg leu Leu. Ma Ser Ma Ala Gin Leu 855 876 875 880
Phe Vai Arg Gly Vai íDfer Vai Asp *sp Ser dy Vai leu Aro Pso Ser 885 890 895
Mg Arg Vai Gin len Fr© ΤίϊΤ fyr Ma Pb® Asp Bis Gls Bis Tyr txp 800 995 910
Leu Gin «et Gljr Gly Ser Ala $hr Asp Ala Vai Ser leu Gly Leu Ala §15 520 925
Gly Ala Asp Bis Pro Leu Leu Gly Ala Vâl Vel Pr© Leu. Fro Gin Ser 935 940 530 161 ΡΕ0929681
Asp GXy Lee VàX Fhe 2br Ser Arg Leu Ser LâU Lys Ser ais Fr© TKp MS 950 9S5 960
Leu Ala Gly Eis Ais He Gly Gly Vai Vai leu 11« Ero Gly Xhr Vai 965 970 975
Tyr VaX As» Leu Ala Leu Arg Ma Gly Asp Slu La« Mv Ehe Gly Vai 980 985 990
Leu Mu Ma Leu vai Xle Glu Ala Pro Leu Vai Leu Gly Glu &g Gly 995 IQÔO 1005
Gly Vâl Arg Vai Glu Vai Ala VAI ser Gly Fx© Asu Glu f&r Gly ser 1010 1015 1020
Arg Ala Vai Asp Vai í-he Ser Hst Arg Glu Assp Gly Asp Giu $rp TAr 102:5 1030 1035 1040
Arg His Ala 3?hr Gly Leu Leu Gly Ala Ser T!hr Ser Arg Glu Fro Ser 1045 1050 1055
Arg Bis Asp Fhe Ala Ma Sfcp Fe» F«© Ala Gly Ala Gl« Fe» 11* Asj> 1060 1065 1070
Vai GXu Ass. Ph© pyr 53» Asp Leu ?hr Glu Arg Gly Tyr Ala Tye Ser 107:5 1080 1085
Gly Ala Pire Gin Gly Hat Arf Ala Vai Tsp Arg Arg Gly Asp Glu vai 1090 1095 Π09 phe Ala Glu Vai Ala Leu Fr© Asp Asp Sis Arg Glu Asp Ala Gly Lys U05 1120 Π15 1120 2fce Gly Leu Hús Ps© Ais Leu Leu Asp Ala Ala Leu Eis $hr As» Ala
1125 1130 H3S
Phe Ala Mn Mo Asp As© Asp Arg Ser Vai Leu Pr© Fhe Ala Trp AS» 162 ΡΕ0929681
1140 H4S USO
Gly L«n Vai Leu Hi© Ms Vai Gly Ma Ser Ua Leu Axg Vai Arg Vai 1155 Π60 H05
Ala Pro Gly Gly Pro Asp Ala Leu Thx fba Gin Ala Ala Asp Glu T&r 1X70 1175 USO
Gly Gly Leu Vai Vai Thr Hat Asp Ser Leú Vai Ser Arg Gl« Vai Ser 11®5 1190 1195 1200
Ala Ala Glu Leu Giu Thr A1& Ala Gly Glu Gle Arg Asp Ser x^u »he nos mo ms
Gin Vai tep Trp lie Qlu Vai Pro· Ale Sa: Sl« ttn; .Ala Ma Sí*r Glv 1220 1225 1230 ai© Ma Glu Vai im Gltt Ala Phe Gly Glu Ala Ala Pro Leu Gl» Leu 1235 1240 1245
Ha? Ser Aeg Vai Leu Glu Ma Vsi Gin Ser 5sp tos Ala Asp Ala Μ.& 1250 1255 1260
Asp Glv Ala &rg Leu Vai Vai Vai Thr Arg Gly Ala Vai Arg S&u Vai 1265 Kl 1275 1280
Thr Asp Fr© Ala Gly Ala Ala Vai Trp Gly Leu. Vai Arg Ala Ala Gin 1285 1290 1295
Ais Glu Asm Pro Gly Arg Ile Xle Leu Vai Asp Thr Asp Gly Asp Vai 1300 1305 1310
Pro Leu Gly Ala Vai Lè\l Ala Ser Gly Glu Pro Gin Leu Me Vsl Arg 1315 1320 1325
Gly Asn Ma. Fhe Ser Vai Pro Arg Leu Ala Arg Ma Thr Gly Qlu Vai 1330 1335 1340 163 ΡΕ0929681
Sr© Glu Ma Fro Ala Vai Ffee Ser Sr© Glu Giy Shr Vai Leu Leu ffcr 1345 13S0 1355 1.363 61y Gly Xte Gly Ser Leu Gly Gly Leu Vai Ma Lys Si® Leu. Vai Ala 1365 1370 1313
Arg Bis Gly vai Ar® A«g Leu vai Leu Ma ser Arg Ar® Glv Vai. Ma 1380 1385 1380
Ala Glv As© Leu Vai Thr Glv Leu Thr Giu Qln Gly Ma Thr Vai Ser 1395 1400 1405
Vai V&i Ma Cyã A$p vai Ser Mp Arg Asp Gin Vai tta Ma Leu Leu 1410 1415 1420
Ala Glv Bis Arg Pm "Thr Gly Lie Vai- Bis Leu Ala Gly leu Leu Aap 1425 1430 1435 1440
Abc Gly Vai lie Gly Ala. Leu Asa Arg Giu Arg Leu Ma Gly Vai Pise 1445 1450 1455
Ala Sr© Lys Vai tep Ma. Vai Gin Eis Leu Asp Glu leu íChr Arg Asp 1460 1465 1470
Leu Gly Leu Asp Ala Phe Vâl Vai phe ser Ser Ale Ala Ale Leu Met 1475 1480 1485
Gly Ser Ala Gly Gin Gly Aso Ίγε Ala Ale Ala Aen Ais Fhe Leu .Asp 1400 14S5 1500
Gly l#u set Ma Gly Arg Mg Ala Ma Gly Leu pro Gly Vai Ser Leu 1505 1510· 1515 1520 1530
Ala Srp Gly Leu Trp Glu Glu Ala Asp Gly Leu 23ir Ala AAft Leu Sôr 1525 1530 1535 164 ΡΕ0929681
Ma tep <&» Ma Mg Hat ter Arg Gly <&y Vsl teu £*» Hat Titr 1540 1545 1550 VX& Ma Glu Ma teta Asp Xle Phe Asp He Gly tesa Ma Ma Glu Gla 1555 IMO 1565
Ma teu teu Vai Pro lie lys teu Asp Leu &rg Thr teu teg Gly Gin 1570 1575 1550
Ma fhr Ma Gly Gly Glu Vai Vro Sis Leu teu Arg Gly leu Vai Arg 1535 1590 1595 1660
Ma. Sm Arg Arg Vai 3&r Mg 5hr Ma Ma Ma Ser Gly Gly Gly Gly
1605 161Q 1Ê1S teu vai Eis Lys Leu Ma Gly Mg Mo Ma Glu (Sln Sis Glu Ma Vai 1620 1625 1630 teu teu Gly Xle Vai Gla Ma Glu Ala Ma Âiâ Vai teu Gly Fhe Asn 1635 164Ô 1645
Ma Pr© Glu teu Ma Glu Gly Tfer Arg Gly Fhe Bar Aep teu Gly Phe 1660 1655 1660
Asp Sm teu tfhr Ma Vai Glu teu Mg A®& Arg teu ter Ma Ala Thr
1S65 1670 1675 ISSO
Gly Vai Lys teu Pro Ala Thr hm Vai Fte Asp $yr Sr© Thr Pr© Vai 1685 1690 1605
Ma teu Ala Arg Eia teu Arg Glu siu Leu Gly Glu Thr Vai Ma Gly 1700 1705 Π10
Ma Prv Ala Thr Pro Vai Thr Thr Vsl Ma Asp Ala Gly Giu Ero Xle 1715 1720 1725
Ala Xle Vai Gly Mufc Ma Cys Arg teu Pxo Gly Gly Vai Mfât. Ser Pro 165 ΡΕ0929681 173D 1735 1740 Μψ top Leu Trp Arg Met Vai Ma Glu Gly Mg Aap Gly Het Ssr Pr© 1745 I7S8 1755 17fi0
Fhe Pr® Gly Mp Arg Gly & Mp Lm Asp Gly Leu 2h» ASp S«r ASp 1765 1770 1775
Sro Glu Mg Pr© Gly Thr Ma tyr Ilé Mg <3X» «ly Gly Ffc» Leu Bi» 1780 17S5 1790
Glu Ala Ala Lea Eh® Mp Pr© dy St» Pfce Gly lie Ser Pr© Mg Glu 1705 1800 1805
Ma im Ala Hat Mp Pr© 61» G.1» Mg Leu Im tosa 61» Ala Ser ISIS 1815 1820 dtt Ala Ler» Glu Arg Ala Gly He Asp Pr© ffi&r Lys Ala Mg Gly .Asp 1815 1830 1835 1840
Ala Vai Gly Vai PP» Ser Gly Vai Ser II* Bis Mp Tyr Leu 61» Ser 1845 1850 1855
Leu Ser to Met Pr® Ala Gla Leu Glu Sly Bhe Vai Thr TM Ala 3hr 1860 1865 1870
Ala Gly Ser Vai Ala Ser Gly Ãrg vai Ser fyr ftir Phs Gly Fite Glu 1875 1880 1885
Gly 'Fr© Ala Vai Sfcr Vai Asp fhr Ma Cys Ser Ser Ser Leu Vai Ala 1880 1895 1800
He Má Leu Ãlâ Alá Gin Ala Leu Arg Gin Gly QlV Cy» Thr «tet Alá IMS 1910 1915 1920
Leu Ala Gly Gly Vai Ala Vai Ktet Gly Ser Fr© He Gly Vai lie Gly 1935 1925 1930 166 ΡΕ0929681
Wet Ser Arg Gin Arg Gly .Met Ala Glu Asp Gly ârg Vai Lys Ala Phe 1§40 IMS 1950
Ala Asp Sly Ala Asp Gly Tkr Vai teu Ser Glu Gly Vai Gly Ile Vai 1955 1960 1965
Vai Lea 61a tef Leu Ser Vai Ala Arg Glu Arg Gly Bis Arg Vai Leu 1970 1975 ISSO
Ala Vai Lm Arg Gly ser Ala Vai As π Gin Asp Gly Ala Ser Mii Gly 1985 1990 1995 2000
Lee Thr Ma Ftú Mn Gly Pro Ser Gin Sln &cg V&l xis Arg Ser Ala 1905 2010 2015
Leu Me Gly Ala Gly Leu Gin Pr© fie* Glu Vai &®p vai Vai Glu Ala 3020 2025 2030
Sis Gly çhr Gly Thr Ala Leu. Gly Glu ®ro Me Glu Ala <&n Ais teu 2035 2040 2045
Leu Ala Thr lyr Gly Lys Ser Arg Glu ffee Pr© Leu trp Leu Gly Ser 2050 2055 2060
Leu Ly» Ser tóe Me Gly Bis ®hr Gin Ala Ma Ala Gly Vai Ala Ala 2065 2070 2075 2080
Vai Ile Lys Met Vai Gin M& Lee Arg Gin Asp *Thjr Leu Pro Pro Thr 2:085: 2090 2095
Leu Sis Vai Gin. Glu Pro Thr Lys Gin Vai Ãap 2rp Ser Ma Giy Ala 2109 2105 2110
Vai Glu Leu teu yhr Glu Gly Arg Glu ΐτρ Ala Jfcrg Asn Gly His Pro 2115 2120 2125 167 ΡΕ0929681
Arg Arg Ala ôly Vai ser Ser Phe Gly Ile Ser Gly ®te Mm Ala 8ie 21âÓ 2135 2140
Leu Ile Leu Glu Giu Ala Pro Ala Asp A&p Thr Ala GX» Ala Asp Vai 2145 2150 2155 2150
Pro Asp Ala Vai Vai Pro Vai Vai Sis Ser Ma Arg Set Tfer Gly Set 2155 2170 2175
Leu Ma Gly Gla Ala Gly Axg Leu Ala Ala. IStoe Leu Asp Gly Asp V&l
2180 2185 2 ISO p*o Leu Thr Arg Vai Ala Gly Ala Leu Leu Ser Thr Arg Ala Thr Leu 2195 2200 2205
Thr As» Arg Ala Vai Vai Vai Ala Gly Ser M® <31tt Glu Ala Arg Ala 2210 2215 2220
Gly Leu Tbx Ma Lee Ala &rg Gly Glu Ser Ala Ser Gly Lao Vai Thr 222$ 2230 2235 2240
Gly çhr Ala Gly Met Pro Gly Lys Thr Vai Lrp Vai Fhe Pro Gly Gli> 2245 2250 2235
Gly 3$tr Gio íírp .Ala Gly itefc Gly Arg $lu Leu Leu Glu Ma Sex Pro 2250 2285 2270
Vai Phe Ale Slu Arg lie Glu Oiti Cys Ala Ala Ala Leu Gin Pro Ttp 2215 2280 2285 lis .Asp Ttp Set Leu Leu Asp Vai Leu Arg Gly Gl» Gly Glu Leu Asp 229Õ 2255 2300
Arg Vai Asp Vai Loa Gin Pro Ma Cy» Phe Ma Vai Hat Vai Gly Leu 2305 2310 2315 2320
Ms Ala vai frp Ala Ser Vai Gly Vai Vai Pro Asp Ala Vai Leu Gly 168 ΡΕ0929681 2323 2330 2315
Sis Ser Gin Gly Gl» Me Ma Ma Ma Cys Vai Ser Gly Ala Lsu Ser 2340 2343 2350
Leu Glu Mg» Ma Ma Lys vai Vai Ma Lôu Mg Ser Gin Ma Ila Ma 2355 2360 2365
Ma Gle Leu Ser Gly Arg Gly Gly Met. Ala Sar Ile Glu Leu Ser sis 2370 2375 2380
Asp Gia Vai Ma Ma Arg Leu Ala Pra Trp Ma Gly Mg vai Glu Ile 2185 2390 2195 2400
Ma Ms Vai As» Gly Pro Ma Ser Vai Vai lie Ma Gly Asp Ma Glu
2495 2410 24IS
Ma Leu Thr Gl» Ma Vai Glu Vai Leu Gly Gly Arg &rg Vai Ala vai 2420 2425 2430
Asp Tyr Ala Ser Ris Thr Arg His Vai Glu Asp Lie Glu Asp Thr Leu 2435 2440 2445
Ala Glu Thr Leu Ma Gly 11« Asp Ala Glu Ala Pro Vai Vai. Pro Fba 2450 245$ 2460 tyr Ser tfcr vai Ala Gly Glu trp Ile thr Asp Ala Gly Vai v&l oap 2465 .2470 2475 2480
Gly Gly Tyr Srp tyr Àrg Asn Leu Arg Asa Gin Vai Gly Sfc» Gly Pro 24S5 2490 2495
Ala Vai Ala Gin Leu lie Glu Gin Gly Hia Gly Vai Ftoe Vai Glu, Vai 2500 2505 2510
Ser Ala Sis Fro Vai Leu. Vai 61& Fro Ile Ser Glu Leu Thr Asp Ala 2515 .2520 2525 169 ΡΕ0929681 Vâl ¥al Tfcr Gly Thr Leu Ârg Arg Asp Asp Gly Gly Vai Mg Arg Leu 2530 2S3S 2540
Leu *hr Ser mt Ala Glts Leu Phe Vai Arg Oly Vai Vxo Vai Asp Srp 2545 2550 2555 2560
Ala Tfer Met Ma Pro Pr© Ma teg Vel £31» Leu fs» 1!hr Syr Ala Sh» 2565 2570 2575
Asp Eis <§&n. «is Phe $rp Leu Ser Pr© Rco Ala Vãl Ala Aap Ala fir© 2580 2585 2580
Ala Leu Gly Leu Ma Gly Ala Asp Mis Pr© Leu Leu Gly Ma Vai Leu 25§5 2600 2605
Bro Leu Pro <&b Ser Asp Gly Leu Vai The ffer Ser Ãrg Leu Ser Vai 2610 2615 2620
Arg Thr Ele Pr© T*p Leu Ala Asp Gly Vai $*© Ala Ala Ala Leu Vai 2625 2630 2635 2640
Glu Leu Ala Vai Arg Ala Oly Asp Glu Ala Gly Cys Pr© VaX Leu Ma
2645 2650 2Ê5S
Asp Leu Thr Vai Giu Lys Leu Leu. Vai Leu firo Giu Ser Gly Gly Leu 2660 2665 2670
Arg val Gin Vai Ile Vai Sar Gly Gla Arg TAr Vai Glu Vai Tyr Ser 2675 2680 2685 GIb Leu Glu. Gly Ala GXu Asp frp Ha Arç Asc Ala Tfcr Gly Hle Leu 26S0 2635 2700
Ser Ala Thr Ala Pro Ala His Glu Ala phs Asp Phe Thr .Ala Trp Pr© 2703 2710 2715 2720 170 ΡΕ0929681
Pro Mi Gly Ala Gin Gin Vai Asp Gly Leu frp Arg Arg Gly Asp Glu 275:5 2730 2735
Xln Phe Ma Glu Vai Alá Lsa Pr© 6lu Glu Leu Mp Ala Gly Ma Phe 2740 2745 2750
Gly lie Bis Fr© Fhe L®u Leu Mp Ale Ala Vel Glé p*i> Vâl Leu Ma 2755 2750 2765
Mp Mp Glu Gin Pr® Ma Gin Srp ATf Ser Leu VM Leu 8is Ma Ma 2170 277S 2780
Gly Ma Ser Ma l«u Arg VaX Mg Mu Vai Fr·© Gly Gly Ala Leu Gin 270S 2790 2795 2800
Ma Ma Aap Glu $far Gly Gly Leu Vai Leu $hr Ala Asp Ser Vai Ala 2805 2810 2815
Gly Arg Glu Leu Ser Ma Gly Lys Thr Arg Ala Gly Ser Lee Tyr Arg 2820 2825 2S3C
Vai Mp Trp Thr Glu Vai Ser lie Ma Mp Ser Alá Vsl Pr© Ma Asa 2835 2840 2845 II» Glu Vai Vai Glu Ala Phe Gly Glu Gin Pr® Leu Glu Leu Thr Gly 2850 2855 2860
Arg Vai leu Glu Ma Vai Gin Thr Trp Lsu Vai T&r Ala Ma Mp Mp 2865 2870 2875 2880 Má Arg Leu Vai Vai Vai Tíir Arg Gly Ma Vai Arg Glu Vai Thr Mp 2885 2880 28S5
Pro Ma Gly Ma Ma Vai Trp Gly Leu VM Arg Ma Ala Glu Ala Glu 2900 2905 2910 &sa Pr® Gly Arg II® Phe L&u il® Asp Tbr tep Gly Glu xi» Pr© Ma 171 ΡΕ0929681 2925 2320 2325
Leu Thr Gly Asp Glu Pr© Slu Hs Ma Vai Arg Gly Gly Lys Phs Põe 2330 2335 2940
Vai Pr© Mg 21« Tõr Arg Ma Glu Pr© Ser Gly Ma Ma Vai Ph« Arg 2945 2950 2355 2960
Pró Asp Gly Tbr Vai Leu Ile Ser Gly Ala Gly Ma leu Gly Gly Leu 2905 2970 2975
Vai Ala Arg Arg Leu Vai Glu Mg His Gly Vai Arg Lvs leu Vai Leu 2380 29S5 2990
Ma Ser Arg Arg Gly Mg Asp Ala Asp Gly Vai Ala Aap leu. Vai Ma 2935 3000 IMS
Asp Leu Ala Ala Mp v&l Ser Vai Vai Ma Çys Asp Vai Ser Asp &rg 3010 3015 3020
Ala Gin Vai Ala Ma Leat Leu Asp Glu ais Arg Pr© Thr Ala Vai Vai 3025 3030 3035 3Õ4Ó
Eis sfcr Ma Gly Vai Ile Asp Ma Gly Vai ile Gla ftor leu Asp Arg 3045 3050 3055
Asp Arg Leu Ala fiar Vai Fhe Ma Pr© Lys Vai Asp Ala Vai Arg Hls 3000 3065 3070
Leu Asp Glu Leu fhr Arg Asp Arg Asp Leu .Asp Ma Põe V«1 Vai fjaf 3075 3080 3085
Ser Ser Vai Ser Ma Vai Phe Met Gly Ma Gly Ser Gly Ser Tyx Ais mm avos nos
Ala Ala Mn Ala Phe Leu Asp Gly tsu Met Ala Asn Arg Arg Ms Ma 3105 3110 3115 3120 172 ΡΕ0929681
Gly Leu Pro Gly Ls-u Ser Leu Mâ Trp Gly Leu Trp Asp Gin Ser Thr 3125 3130 3135
Gly Hat Ma Ma Gly Thr top Gl« Ma Thr Mg Ma Arg Het Ser Arg 314Õ 3145 3159
Arg Gly Gly Leu Glá xie Met thr Gin Ma. Glu Gly Mefc Asp Leu Hm» 3155 3ISO 3155
Asp Ma Ma Lee Ser Ser Ma Glu Ser Lea Leu Vai Vm Me Lys Leu :3170 3175 3150
Ase Leu Arg Gly vai Arg Ma tep Ma Ma Ma Gly Gly Vai Vai Pro 3185 3 ISO 3195 3200
Mis m Leu Arg Gly Leu Vai Arg Ala Gly Arg M& Glu M.& Mg Ala 3205 3310 3215
Ala Ser Thr Vai Asp Asa Gly Leu Ala Gly Arg Leu Ma Gly Leu Ala 3220 3225 3230
Pro Ma Aep Sln leu Thr x»eu Leu Leu Asp Lsu vai &rg Ma Gin Vai 3235 32:49 3245
Ma Ma Vai Leu Gly His Ma te Ala Ser Ma Vai Arg Vai Asp Thr 3259 3255 3260
Ala Pfea hys Asp Ala Gly £b» Asp Ser Leu Thr Ala Vai Glu Leu Arg 3265 3270 3275 32S0
Ma Arg Ket Arg Thr Ma Thr Gly Leu Lys Leu ϊϊ© Me Thr Leu vai 2283 3239 32$5
Phe Asp Tyr Pro As» Fro Gin Ale Leu Ma Mg His Leu Arg Asp Glu 3300 3395 3310 173 ΡΕ0929681
Leu Gly Gly Ma Ma Gin Thr Pro Vai Thr Thr Ma Ma 'Ma tys Ma 33X5 3320 3325
Asp Leu Asp GIu pro 2 la Ma lie Vai Gly Met Ma Cys .Mg leu Pr© 33.30 33.35 3340
Gly Gly· ml Ala Gly Pm Glu Asp Leu xrp Arg L©u Vai Ma Glu Gly 3345 3350 3355 3360
Arg Mp Ala Vai Ser Ser Phe Fm Sfer Asp &Ff Gly %r» Asp ®hr Asp 3365 3370 3375
Ser Leu Tyr Asp Fro Asp Pro Ala Arg Pro Gly Lys Thr Tyr Tter Arg 3380 3385 3350
His Gly Gly Fhe Leu His 61« Ala Gly Leu. ?h» Asp Ma Gly Fhe Fhe 339.5 3400 3405
Gly Ile Ser Fm Mg Glu Ala Vai. Ma Kat Asp Fr© Gin Gin Asrg Leu 3410 3415 3420
Leu leu Glu Ala Ser Trp Glu Ma Hat Glu Asp Ma Gly Vai &sp Pro 3425 3430 3435 3440
Leu Ser x.au Lys Gly A&n Asp Vai Gly Vil Phe 4âir Gly Met Phe Gly 3445 3450 3455
Gin Gly Tyr Vai Ma Pm Gly Asp Ser Vai vai 5&r Pm Glu Leu Glu 3460 3463 3470
Gly Phe Ala Gly Thr Gly Gly Ser Ser Ser Vai Ma Ser Gly Arg Vai 3475 3480 3485
Ser Tyr Vai Phe Gly £>he Glu Gly Pro Ala Vai Tfcr Ile Asp Ser Ala 3490 3495 3500
Cys Ser Ser Ser Leu Vai Ala Met J3is leu Ma Ma Gin Ser Leu Arg 174 ΡΕ0929681 3SOS 3510 3515 3520
Gin Giy 6lu Cys Ser mt Ala Leu Ma Gly Gly Ma. Thr Vai Mst Ma 3525 3530 3535
Mn Frc eiy Ma Phe Vai Gin Fhe Ser Mg Gin Mg Gly leu Ma Vai 3540 3545 3550
Ase Gly Arg Cys Lys Ma Phe Ala Ma Ma Ma Asp Gly Thr Gly Trp 3S5S 3560 3565
Ma Gin Giy vai Gly Vai Vai Ile Leu Gin Mg Lee mt VM Ma Arg .3570 3513 3580
Glia Arq (Sly Eis Mg Ile Leu Ma Vai Leu &rg 6Iy Ser Ma Vai Asn 3585 3590 3S§3 3600
Gin Mp Gly Ala Ser Aen Gly Leu Ttur Ma Pr© AM* Giy Pr© Ser 61« 3605 3610 3615
Gin Mg Vai Ile Mg Mg Ma Leu Vai Ser Ma Giy Leu Ma Pro Ser 3620 3€25 3530
As$> Vai Asp Vai Vai Gin Ala Eis 6ly ffcr Gly Thr Thr Leu Giy Asp 3635 3640 3645
Pr© LI© Glà Ma GXn Ma. Leu Le» Ala Thr Tyr Gly Lya tep Mg Glu 3650 3655 3660
Ser Pr© Leu Trp Leu Gly Ser Leu Lys Ser Mn lie Gly Bis Ma Gin.
3665 3670 3675 36SO
Ala Ma Ala Gly vai Ma Gly vai lie Lys M»t Vai Sln Ma Lm Arg 3685 3690 3635 371.0 3705
Si» Glu Vai Leu Pr© Pr© Thr Leu Eis Vai &sp Arg Pro Thr Pr© 61© 3700 175 ΡΕ0929681
Vai Asp Txp Ser Ma Gly Ma val ©la Leu Leu TSur GIu Ma Jtirg Glu 3715 3730 3725
Trp Pro Arg Asn Gly Mg Pro Arg Arg Ma Gly Vai Ser Ma S*he Gly 3730 3735 3740
Vai Ser Gly TMr Mn Ma His Leu lie Leu Glu Glu Ma Pro Ala Glu 3745 3750 3255 3760
Gin wzq Val Pro Tftr "Bxo Glu Val Pro Leu vai Pro ¥al Vai Vai Ser 3763 3770 3375
Ma Mg Sesr Arg Ala Ser Leu Ma Gly Glu Ma Gly Arg Leu Ala Gly 3710 37S5 3790
Phe Val Ala Gly Asp Ma. Ser Len Ala Gly Val Ala Arg Ma Leu Vai 379$ 3800 3805
Thr Asn Arg Ma Ma Lsa fisr Glu àrg Ma Val Hefc Val val Gly Ser 3810 3815 3820
Arg Gin. Glu .Ala val Thr Asa .Leu Glu Má Leu Ma Arg Gly Giu Asp 3825 3830 3835 3840
Pró Má Ma Val Vai Ttar Gly Arg Ala Gly Ser Pro Gly Ly# Leu Val 3845 3850 385:5 frp Val phe Pro Gly Gia Gly Ser ©Ir 2fcp Ils Sly Met Gly Arg Glu 38Ê0 3885 3870
Leu Leu Asp Ser Ser Pr© Val Pb© Ala Glu Arg Val. Ala Glu Cjr* Ala 3875 3830 3885
Ala Ala Les* Glu s*o Trp Ile Asp Trp Ser Leu Leu Asp Vai Leu Arg 3896 3895 3900 176 ΡΕ0929681
Gly ¢1¾ Ser &sp Leu lau Asp Mg Vai Mp Vai Vai Gin Pro Ma Ser 3305 3fl0 3315 333-0
Phe Ala itet Het VAI Gly leu Alâ Ala Vai Try Gin Ser Vai Gly Vai 3325 3330 3935
Arg Pre Mp Ala Vai Vai Gly Kl® Ser Gin Gly Glu II* Ma Ala Ala 3940 3345 3950
Cys Vai Ser Gly Ala Leu Ser Leu Gin Asp Ala Alá LyS Υ&Ι Vai .Ale 3555 MSÚ 3555
Leu Arg Ser Gin ,tts lie- Ala Thr Arg leu Ala Gly Gly Gly Hat 3570 3975 3§§0
Ala Ser Vai Alá leu Ser Glu Glu Mp Ala Thr Ale frp Leu Ala Pro 3985 3990 3995 4000
Trp Ala Mp Kg Vai Gin Vai Ala Ala Vai Mn Ser Pro Ala Ser Vai 4005 4010 40X5 vai Ile Ale Gly Gla Alá Gin Ala leu Mp Gla Vai Vai Asp Ala Leu 4020 4025 4030
Ser Gly Gin Glu Vai Arg vai Arg Arg Vai Ãla Vai Μρ tyr Gly Ser 4035 4040 4045
Hia Thr Mn Glc Vai Glu Ala Ile Glu &sp leu leu Ala Glu fhr 'Leu 4050 4055 4050
Ala Gly Ile Glu Ala Gin Ala Pro Lys Vai Pro phe Tyr Ser yhr Lsu 4065 4070 4075 4080
He Gly Mp Trp He Arg Asa Ala Gly Ile Vai Junp Gly Gly Tyr Trp 4085 4090 4095 iyr Arg A»n Lea Arg Asa Gin Vai Gly Phe Gly pro Ala Vai Ala Glu 177 ΡΕ0929681 4100 4185 4110
Leu Vai Acg Gin Giy His Gly Vai Phe Vai Glu V«1 Ser Ma His Pr© 4115 4120 4125
Vai Leu V&l Gin Pro Leu Ser Glu Xsu Ser J&p Asp Ma Vai Vai 2hr 4138 4135- 4X40
Gly Ser Leu &rg &g Glu Asp Gly Gly Leu Arg Arg Leu leu fhr ser 414B 4150 4155 4150
Kefc Má Giu Leu ?yr Vai Gin Gly Vai Pr© Leu Asp TEp Thr Ma Vai 4165 4170 4175
Leu Pr© Ara *Lhr Gly Arg Vai Asp Leu Pm Lys fyr Ma Pite Asp His 4180 4185 4180
Arg Eis 5?yr Trp Leu Arg: Pr© Ma Glu Ser Ma Tfcr ASp Ma Ala Ser 4195 4200 4205
Leu. Gly Gl» Ma Ma Ala Aap His Fro Leu Leu Gly Ma Vai Vai Glu 4210 4215 4220
Leu Pr» Glu Ser ftap Gly Leu Vai 5&e tfar Ser Arg Leu Ser Vai Mg 4225 4230 4235 4240
Thr Bis Sr» Srp Leu Ma Asp His Ma Vai Gly Gly Vai V&l .11® Leu 4245 4250 4255
Pro Gly Ser Gly Leu Ala. Glu. Leu Ala Vai Arg Má Gly Mp Glu Ma 4260 4265 4270
Gly Cys 7*hr Ma Léu Asp Glu Leu Lie Ile Gl» Ma Pro Leu Vai Vai 4275 4280 4285
Pro Ma Gin Gly Ma Vai Arg Vai Gin Vai Ala Leu Ser Gly Pr© Asp 4290 4205 4300 178 ΡΕ0929681
Glu Tiur <*.ly Ser Arg Thr Vai Asp Lee fyr Ser Gin Arg Asp Ciy dy 4305 431Õ 4315 4330
Ala Siy Thr ifcr Arg lis Ma aiisr Qly Vai Leu Ser Thr Ala Pro 4325 4330 4335
Ma Sis Glu Pró Glu Phe Asp Fhé lis Ma Trp Pro Pro Ma Asp Ala 4349 4343 4350 filu ârg II© tóp Vai Glu Thr Phe Tyr Thr Asp Leu Ma Glu Arg Siy 4355 4360 4365
Tyr GXy Tyr Gly Pro Ma Phe Gk Gly Leu Gin Ala Vai Trp Arg Arg 4370 4375 4380
Asp Giy Asp Vai Phé Ma Glu Vai Ala Leu Pro Glu Asp Leu Arg 1¾1¾ 43S5 4390 4395 4400
Asp Ala ôly Arg Pha Giy Vai lis Pro Ala Leu Loa Asp Ala. Ala Leu 4405 4410 4415
Gin Ala Ala Thr Ma Vai Giy Giy Asp Glu Pro Gly Gin Pro Vai Leu 4420 4425 4430
Ala Pbe Ala Trp Asn Giy Leu Vai Leu Eis Ala Ala Giy Ala. Ser Ala 4435 4440 4445
Leu Arg Vsl Arg Leu Ma Pro Ser Giy Pro Aep Thr Léu Ser Vai Ma 4450 4455 4460
Ala Ais Asp Glu Thr Gly Gly Leu Vai Leu Thr Met Glu Ser Leu Vai 4465 4470 4475 4480
Ser Arg Pro Vai se.r Ala Glu Gin, Leu Gly Ma Ala Ala Asp Ala Gly 4485 4490 4498 179 ΡΕ0929681
Bis Asp Ala fct Fh© Arg Vai &sp Srp Thr Glu Leu Pro Ma Vai Pr© 4500 4505 4510
Arg M& oiu im ¥to Pm frp VáL »g Ile Asp Thr Ala Asp- Asp ¥M. 4SIS 4520 4535
Ma âlâ Lsu Ma Giu Lys Ma Asp Ma J?ro Fr© Vai Vai Vai $tj> GM 4530 4535 4540
Ma Ma Gly Gly Asp pr© Ma Leu Ma Vai Ser Ser Are VM Lea Glm 4545 4550 4555 4550 lie Met Gin Ma frp Leu Ma Ma Pr© Ma Phe Gin <&« Ala Mg Leu 4585 4570 4575
Vai Vai fhr SCte Mg Gly Ma Vai Fr» Ms Gly Gly Asp Bis Thr Leu 4580 4585 4590
Tftr Asp Pro Ma Ma Ma Ma Vai Trp Gly Leu vai Arg Ser Ma Gin 4595 46ÔÕ 4605
Ma Gle His Pr© Ase Arg V&l Vai Leu leu Asp f&r Aep Gly Gla Vál 4610 4615 462Ô
Fr© L»u Gly Ma vai Leu Ma Ser Gly Glu Fr© Gin Lea Ma Vai Arg 4625 4630 4635 464Ô
Gly 3íhr ite Fhe Phs Vâl Pr© Ar© leu Ma Arg Ma fhr Arg Lea Ser 4645 4650 4655
Asp Ma Fr© Fr© Ma 38» A»p Peo Asp Gly fte Vai tmx Vai Ser Gly 4660 4665 4670
Ma GIv Ser Leu Gly Thr Leu Vai Ma Arg His Leu Vai fhr Arg Bis 4675 4880 4685
Gly Vai Arg Arg Vai Vai L®u Ala Ser Arg Gin Qíy Arg Asp Alâ 61© 180 ΡΕ0929681 4600 469S 4700
Gly Ma GIb tep Leu lie TM Glu leu thr Gly 01¾ Gly Má Mp Vai 4705 4710 4715 4730
Ser phe vai Ma Cys Asp Vai Sm Asp Mg Mp Gin Vai Ma Ma leu 4775 4730 4735
Jjfâji Ma Gly Lm Vsro Asp Leu Tte Gly Vai VM Eis 3&r Ma Gly Vai 4740 4745 4750
Phe Glu Mp Gly Vai ile Glu Mâ Leu *Ffcr iro Asp Gin leu Ma Asn 4755 4760 4765
Vai Tyx Ala Ma Lys Vai Tfcr Ma Ma Msfc Bia Leu Asp Glu Leu Thr 4770 4775 47S0
Mg Asp Arg Asp Leu Gly Ala 14» Vai vai the Ser ser Vai Ala Gly 47-85 4790 4795 4800
Vai I4efc Gly Gly Gly Gly Glu Gly Vro Tyr Ma Ma Ma la» Mà Vhe 4805 481Q 4815
Leu Αβρ Ma Ma Hfefc Alt Ser Arg Si» Ala Ala Gly Leu fre Gly Leu 4830 4825 4830
Ser Leu Ala *Psp Gly Leu Trp Mg Ser Ser Gly «et Mft Ma His 4835 4M0 4845
Leu ser Glu Vai Asp sis Ala Atg Ma Ser Mg Asn Gly VeX Leu Glu 4850 4855 4880
Leu Thr Arg Ma Glu Gly Leu Ma Leu Phe Mp leu Gly Leu Arg Btet 4865 4870 4875 4880
Ma Glu Ser Leu Leu vai Aro £le Lys Leu Asp leu Ala Ma Met Arg 4885 4W0 4895 181 ΡΕ0929681
Ma Ser Tfcr Vai Pr© vai Leu Phe &rg Gly Leu Vai Arg Pr» Ser Arg 4900 4905 4910
Thr Gl» Ma Arg Thr Ma Ser Tbr Vai &sp Arg Gly Leu Ma Gly Arg 4915 4920 4925
Leu Ma Gly Leu Pro Vai Ma Glu &rg Ma Ma vai Leu Vai Asp Leu 4930 4935 4940
Vai Arg Gly Gin Vai Ma Vai Vai Lee Gly Tyr fesp Gly Pr© <51» Ala 4945 4950 4955 4950
Vai Arg Fr» Mp fhr Ma Ph® Lys Mp Thr Gly Fíie Asp Ser Leu Fftr 4965 4970 4975
Ser Vai Gl» Lee Arg Mu Arg Leu Arg Glu Ma $hr Gly Leu Lys Leu 4990 4905 4990
Fr» Ala fiar Lfeú Vai Phe Asp 3¾¾ Pr© ta Fro Leu. Ala Vai Ala Arg 4995 500-0 5005
Tyx La» Gly Ala Mg Leu Vai Pr» Mp Gly ffe Ala Mn Gly Mn Gly 5010 5015 5020'
Mn Gly Mn Glv His Ser 01« Mp Mp Arg Leu Arg His Ala Le» Ala 5035 5030 5035 5040
Ala lie Ala Ala Glo Mp Ala Gly Glii Glli Arg Ser Ile Ala Mp Leu S045 5050 5055
Gly Vai Mg Mp Leu Vai Gin Leu Ala Fhe Gly Mp Glu 5060 5965 (2) INFORMAÇÃO PARA A SEQ ID NO: 6: (i) CARACTERÍSTICAS DA SEQUÊNCIA: 182 ΡΕ0929681 (A) COMPRIMENTO: 1721 aminoácidos (B) TIPO: aminoácido (C) TIPO DE CADEIA: simples (D) TOPOLOGIA: linear (ii) TIPO DE MOLÉCULA: péptido (xi) DESCRIÇÃO DA SEQUÊNCIA: SEQ ID NO: 6:
Mb* Ala Cys Arg Leu Pro Gly Gly Vai Thr Gly Pt© Gly Asp Leu Trp 15 10 15
Mq Leu Vai Ala Glu Gly Gly Asp Ala Vai Ser Gly Phe Lro Thr Asp 20 25 30
Arg Cys Asp Las Asp Thr Leu Asp Sr© Asp Aro Asp Mis Ala 35 40 45
Gly Thr Ser Tyr fhr Asp Gin Gly Giy Phe Leu ai» Asp Ala Ala Leu 50 55 60
Phe Asp Aro Gly Phe Phs Gly lie Ser Sr© Arg Gl» Ala Lèsi Ala Kai 6S 70 75 m .Asp Aro Gin Gin Arg Leu Leu Leu Glu Ala Ser Trp GXtt Ala Lee Gl» SS §0 95
Gly Vai Gly Leu Asp Pm Ala Ser Leu Gl» Gly Thr Asp Vai Gly Vai 100 105 11Ô
Phe Thr Gly Ma Gly Gly .Ser Gly Tyr Gly Gly Gly Leu Thr Gly Fr© 115 120 123
Gtu mt Gla sar Phe Ala Gly Thr Gly Leu Ai& Ser ser Vai Ala Ser 183 ΡΕ0929681 130 135 140
Gly Arg Vai Ser Tyr Vai P.he Gly P&e ela Gly Pr© Ma Vai Thr He 145 150 155 150
Aap Tísr ala Cys ser Ser Ser Seu Vai Ma Hat ais Leu Ma Ma Gin 165 HO 1.75
Mâ Leu A3?g Sln Gly Mp Cye Ser Me* Ma Leu Ma Gly Gly Ma 180 105 ISO
Vai Met Ser Gly Fr© M© Ser fhs Vai Vai Fhe Ser Arg Gin Mg Gly 195 200 205 leu Ma tíjt Asp Gly Arg Cys Lys Ma Fhe Ma ser Gly Ma Mp Gly 210 21S 220
Me* Vai Leu Ma βία Gly 21® Ster Vâl Vai Vai Lee Gla Mg Leu Ser 225 230 235 240
Vai. Ma Arg Glu Mg Gly Sis Arg Vai Leu Ma Vai Leu Arg Gly Ser 245 250 255
Ma Vai Ass Glo Asp Gly Ma Ser Asn Gly Leu Thr Ma Pr© Asn Gly 260 265 270
Fr© Ser Gls Glu Arg Vai He Arg Ala Ala Leu Ma Âsrs Ma Gly He 275 280 255
Gly Fr© Ser Aep Vai Asp Leu Vai Glu Ma Bis Gly TM Gly Thr Ser 2SQ 285 300
Leu Gly Mp Fr© 11$ Glu Alt Gla Ala Leu leu Ma Thr Tyr Gly Glo 303 310 313 320
Asp Arg Glu Tfcr Fr© Leu Trp Leu Gly Ser Leu Lys Ser tón He Gly 330 335 325 184 ΡΕ0929681
His Thr ®Ln Ais Ma Ala Gly Vai Ala Seat Vai 11« tya VAl Vai ela · 340 345 350
Xk Leu Arg Bis Gly Vai Met Pr© Pr© fhr Leu Eis Vai Asp Glu Frõ 355 360 365
Bar Bar Gin Vai Asp Trp Ser Glu Gly Ma Vai Glu Leu Leu Thr Gly 370 375 380
Ser Arg Asp Trp Pr© Arg Gly Mp Arg Pr© Arg Mg Ma Gly Vai Ser 385 350 335 4SÓ
Ser Phe Gly Vai Sar Gly Thr Vai His Leu 11« Ile Glu Glu Ma 405 *10 415
Pr© Glu ela ?ro Ala Ala, Ala. Vai p*» Thr Ser Ma Asp vsal vai Fr© 420 425 430
Leu Val vai. Ser Ala Arg Ser Thr Gly Ser Leu Ma Gly Gin Ma ásp 435 440 445
Arg Leu Thr Glu Val A»p Val. Fr© Leu Gly Ei® L«u Ma Gly Ala. Leu 450 455 460
Vai Ma Gly Arg Ma Val Leu Glu Glu &rg Ala Val Val val Ma Gly 465 470 473 480
Ser Ma Glu Glu Ala Arg Ma Gly Leu Gly Ala Leu Ala Arg Gly Gin 485 490 495
Ala Ala iro Gly val Val Thr Gly Thr Ala Gly Lys firo Gly Lys Vai SOO 505 510
Val Trp Vai Phe fir» Gly Gin Gly Thr Gin Trp Val Gly Mefc Gly Arg
SIS 520 525 185 ΡΕ0929681
Glu Leu 1«« Asp Mà Ser Fro Vai Phe Ma Glu Arg II® Lys fila Cys 530 535 540
Ala Ala Ma Leu Asp Gin Trp Tfor Asp Irp Ser Leu Leu Asp Vai Leu 545 550 555 550
Arg Gly Asp Gly Asp Leu Asp Ser Vai Glu Vai Leu Gin Pro Ma Cys 565 570 575
Phe Ala Vai Mfet Vai Glv Leu Ma Ala Vai Trp Glu Ser Ma Gly Vai SêÔ SB 5 550
Arg ®ro Asp Ala Vai Vai Siy Eis Ser Gin Gly Glu He Ms Ma Ma 585 600 S05
Cys vai Ssr Glv Ma Leu T&r leu Asp Asp Ala Ala Lys vai vai Ma 610 615 620
Leu Arg ser Gin Ma lie Ma Ma Arg Leu Ser Gly Arg Gly Gly Met SIS 630 635 640
Ma Ser Vai Ma Leu Ser Glu Asp Glu Ma Asn Ala Arg Leu Giy Leu 645 650 655
Vrp Asp Giy Arg 11« Glu Vai Ma Ala Vai Asn Giy Pro Ala Ser Vai 660 66$ 670
Vai Ile Ala Gly Asp Ala Gin Ala Leu Asp Glu Ala Leu Glu Vai Leu 675 680 6ÊS
Ala Gly Asp Glv Vai Arg Vai Arg Gin Vai Ala VM Mp Tyr Ala Ser 690 685 700
His Thr Arg Hís Vai Glu Asp He Arg Asp fàr Leu Ma Glu Thr Leu 705 710 715 720
Ma Gly He Shr Ala Gin Ala vro Asp vai Sr© Phe Arg ser ®hr Vai 186 ΡΕ0929681 725 73Ô 735
Thr Gly Gly Trp Vai Arg Asp Ala Asp Vai Leu Asp Gly Gly Tyr Trp 740 745 7SÔ
Tyr Arg Mn Leu HJCg Aon Oln Vai Arg Fhà Gly fseo Ma VAX Ala Gl« 755 760 755 l^t> Ljêís eiu Gin Gly His Sly Vai- Fh® VAX- GX» Vai Ser Ma Eis Faro 770 775 790
Vai Leu. Vai Gin Pr» Ile Ssr Gin Leu Sbc Asp Ma Vai Vai Tfcr Gly
785 770 795 SOO
Thr 'Leu Arg ftrg Asp Asp Sly Gly Leu A*g Arg Leu Leu ffihr Ser Me* 805 810 815 Μ.& Glu Leu Fha Vãl Arg Gly Vai. Mg Vai Asp Trp Ala. Thr Lan Vai 820 S25 830
Pr» Prc Ma Arg Vai A$p Leu Pco Thr Tyr Ma. phe Asp eis g.1« Eis 835 840 845
Fhe Trp Lea Ma ¥ to Ma Ma Gin Ma Asp Ma Vai Set Lsu Gly Gin 850 §55 880
Ma Ma Ma Glu Eis Fro· Leu leu Gly Ma Vai Vai Arg Leu Pro Gin SIS 870 175 880
Ser Asp Gly Leu Vai Phe Thr Ser Arg Leu Ser Leu Arg Thr His pro 885 890 895
Trp Leu Ma Asp Eis Thr Ile Gly Gly Vai VAI Leu Fhe Pre Gly Shr 900 905 910
Gly Leu Vai Glu Lee Ala Vai Arg Ala Gly Mp Glu Ala Gly Cys xtro 915 920 .v 825 187 ΡΕ0929681 V&I Leu Asp Gla l©u Vai Tbr £lu Ma Pro Leu Vai Vai Pro Gly Gin 930 935 940
Gly Gly Vai Mn Vai Gin Vai ttr Vai Ser Gly Pro Asp Gin Asn Gly 945 950 9S5 960
Leu Arg i&r Vai Asp 11« fii« Ser Gin Mg Asp Asp Vai Srp s$ar Aacg $€5 970 975 84s Ala Thr Gly Thr Vai Ser Ma Sbr Pm Ma Ser Ser Pro Gly Pfee 980 98 5 990
Asp Ph© ϊϊηγ Ma $rp 9xo Pro Pro Asp Gly Gin Arg Vai Glu tle Gly §95 1000 1005
Asp pàa Pyr Ma Asp Leu Ma Gin Arg Gly Lyr Ma Tyr Gly Pro Leu 1010 1015 1020
Phe Gin Gly Vai Arg Ma Vai Vrp Gin Arg Gly Gl« Asp Vai Fhe Ala 1025 3030 3035 1040
Glu Vai Ala Leu Pro Glu Asp Arg Arg Glu Asp Alá Ala Arg Fhe Gly 1045 1050 1055
Lesa His Pro Ala Lee Leu Asp Ma Ala Leu Gin ÍPhr Gly Tfef 2le Ala 3060 1065 107Q
Ma Ala Ala Ser Gly Gin Pro GIv Lys Ser Vai Met Pro PA® Ser T.rp 1G75 1080 1005
Mn Arg Leu Ma Leu 8iâ Ala Vai Gly Ala Ala Gly Leu Mg Vai Arg 1090 1095 1100
Vai Ala Er® Gly Gly Ero Asp Ala Leu Tbx Vâl Glu Ma Ma Ãsp Glu 1105 1110 1115 1120 ΡΕ0929681
Thr Gly Ale Fro Vai Leu Thr Met hsp Ser teu II© Leu Arg Glu Vai 1125 1130 Π35
Ala Leu Asp Gin Leu Asp Tkr Ala Arg Ala Gly Ser leu ®yr Arg Vai 1140 1145 1150
Asp Trp liar Fr© Leu Fro Thr ¥al ASp Ser Ala Vai Pr® Ala Gly Arg 1155 1150 1165
Ala Glu Vai Leu Glu Ala Fhe Gly Glu Glu Fro teu Asp Leu Tkv Gly 1170 1175 USO
Arg Vai Lsu Ma Ala Leu Glu Ala Trp teu Ser Asp Ala Ala Glu Glu 1185 liSÕ 1135 1200
Ale Arg leu Vai Vai Vai Tbr Arg Gly Ma Vai Fr© Ma Gly Asp Gly 1205 1210 1215
Vai Val Ser Asp Fr© Ma Gly Ala Ala Vai Trp Gly teu Vai Arg Ala 1220 1225 1230
Ma Gin Ala Slu Asn Faro Me Arg Phe Val Lm Lm Asp ffer Asp Gly 1235 1240 1245
Glu Val Pr® Leu «Lu Ala Val. teu Ala. «u: Gly Glu fico Glh Leu Ala 1250 1255 1260
Leu Arg Gly Thr Thr Fh© Ser Val Fr© Arg Leu Ala Arg Val Thr Glu 1265 1270 1275 1260
Pro Ala Glu Ala Pro Leu Thr Phe Axg Fr© Asp Gly Thr Val Leu Val
1285 1250 12SS
Ser Gly Ma Gly Thr Leu Gly Ala Leu Ma Ala Arg Asp Leu Val Thr 1300 1305 1310
Mg Sis GXy Val Mg Arg Leu Val Leu Ala Ser Arg Mg Gly Arg Ala 189 ΡΕ0929681 1315 1320 1323
Ma siu Gly He A$p Mp Leu Vai Ma Glu Lee Sfer Gly Sis Gly Ala 1330 1335 1340 Gíxj vsl Tfer Vai Ala Ala Cys âsp Vai Ser Asp Arg Asp Gin Vai Ala 134^ .1350 1355 3360
Alã Leu Leu Ly» Gin His Ma leu. Thr Ala vai Vai Bis 3hr Ala Gly 1365 1330 1335
Vai Phe Asp Ma Gly Vai Thr Gly Ala Leu Thr Axg Glu Arg Leu Ala 1380 1305 1350
Lys Vai She Ma Pr© Lys Vai Asp M® Ala As» Bis Leu Asp Glu Leu 1355 1400 1405
Thr Arg Asp Leu As® La» Asp Ala Pfce Ha Vai Tyr Ser Ser Ala Ser HlO 1415 1420
Ser Jle Pfee Met Gly Ale Gly Ser Gly Gly Tyr Ma Ala Ala Asu Ma 1425 1430 1435 1440
Tyr Leu Aso Gly Leu Hei Ala àk Arg Arg Ala Ala Gly Leu Pro Gly 1445 1450 1455
Leu Ser Leu Ala Trp Gly Pm Trp Gl» Gin Leu Thr Gly Met Ala Asp 1460 1455 1470
Thr lie Asp A8p Leu Thr Leu Ala Arg Mst Ser Arg Arg Glu Gly Arg 1475 1480 1485
Gly Gly Vai Arg Ala Leu Gly Ser Ms Asp Gly Met Glu Lm PAs 149Õ 1405 1500
Ala Ala Leu Ala Ala Gly Gin Ala Leu Leu Vai Fro lie Glu Leu Asp 1505 1510 1515 1520 1510 1515 190 ΡΕ0929681
Leu Arf Sla Vai Mg Ale Asp Ala &1* Gly Gly Gly Shr Vai JRCO Hi» 1S25 1530 1535
leu teu Mg Gly leu Vai Arg Ala Gly Mg Gin Ala Ala Arg fhr Ala 1540 1545 -ISSO
Ala Thr Glu Asp Gly Gly teu ela Arg .Arg teu Ala Gly teu Thr Vai 1533 1560 1563
Ala Glu Glu cia Ala teu. leu teu Aep Leu Vai Arg Gly Glu Vai Ala 1570 1575 1580
Vai. Vai Leu Gly His Ala Asp Ser Ser Gly Vai Arg Ala Asp Ala Ala 1SB5 15BÚ 1595 1600 lha Lys Asp Ala Gly ihe Asp ser Leu Wsr ser Vai du teu Arg Asa 1605 151.0 1615
Arg Leu Arg ela Thr ahr Gly Leu Ly» Lea to* Ala Thr 'Leu Vai Pb© 1620 um 1630 tep His iro Asa to teu Ala teu Ala. Arg Hís teu Arg Ala Glu teu 1633 1640 1643
Ala Vai Asp Glu Ala Ser iro Ala &sp Ala Vai teu Ala Gly teu .Ala 1650 1555 1660
Gly teu Glu Ala Ala Ile Ala Ala Ala Gly Me Fr» Asp Gly Asp Arg 3665 1670 1675 1680 lie Thr Aia Arg teu Arg Glu teu Leu Lys Ma Ma Glu Ma Ma Glu 1663 1630 1655
Ala Arg to Gly Thr Ser Gly Asp teu Aso Thr Ma Set As» Glu Glu 1700 1705 1710 191 ΡΕ0929681
Leu í>he Ma Leu Vai Asp Gly Lea Asp 173 L5 1720 INFORMAÇÃO PARA A SEQ ID NO: 7: (i) CARACTERÍSTICAS DA SEQUÊNCIA: (A) COMPRIMENTO: 1688 aminoácidos (B) TIPO: aminoácido (C) TIPO DE CADEIA: simples (D) TOPOLOGIA: linear (ii) TIPO DE MOLÉCULA: péptido (xi) DESCRIÇÃO DA SEQUÊNCIA: SEQ ID NO: 7:
Mst Ma Cys Arg Tyr Fro Gly Gly Vsl Ser Ser Pro <3lu Asp leu 7*rp 1 5 10 15
Arg Leu Vsl .Ale Ql« Gly Thr As» Ma Vai Ser Ma Phe Px© Gly Asp 50 35 30
Arg Gly Sr» Asp Vai Asp Gly Leu Vai Asp Pr® Asp Sm Mp Arg Sm 35 40 45
Gly shr Shr syr shr As» Gin Gly Gly Phe Leu Eis Glu Ma Gly &βκ 50 55 50
Shé Abc Ala Gly I%e Phe Gly Ile Ser Pro Arg Giu Ma Vai Ma Met 55 70 75 80
Asp Pm Gin Gin Arg Leu Leu Leu Glu Thr Ser frp Glu Ma lie Gl» 85 §0 95
Arg Thr Gly Tkr Asp Pr© Leu Ser Leu Lys Gly Ser Asp Ile Gly Vai 192 ΡΕ0929681 100 105 Π0
Sfee Thr Gly Vai Ala Ser M.et- GSy Gly Ma GXy Gly Gly Vai Vai 115 120 125
Ma. Pro Glu Leu Glu Gly Phe Vai Gly Shr Gly Ma Ala Pro Cys lie 130 135 140
Ma Ser Gly Mg vai Ser Tyr Vai Leu Gly Phe Glu Gly Pro Ma Vai
145 150 155 ISO
Thr Vai Asp *hr Gly Cys Swr Ser Ser Le» Vai Má J9at Bis Lev Ala 165 170· 175
Ala Glr, Ma Lê» Arg Mç Gly Glu Cys Ser Mefc Má La» Ma Gly Gly 180 185 180
Ala Mtefc vai Mát Ma Gin Pro Gly Ser Mia Vál Ser Phe Ser Arg Gln IS 5 200 205
Arg Gly Leu Ma Leu Asp Gly Arg Cys Lys Ala Phe Ser Asp Ser Ala 210 215 220
Asp Gly Met Gly Leu Ala Gla Gly VaX Gly Vai lis Ma Leu Glu Arg 235 230 235 240
Lev Sar vai Ma Arg Gltt Arg Gly Eis Arg Vai La» Ala vai Leu Arg 245 250 255
Gly He Ala Vai Mn Gla Asp Gly Má Ser As» Gly Leu Thr Ala Pro 2 60 2€5 270
Asn Gly Pro Ser Gin Cl» Arg Vai He Arg Ala Ms Xea Ma Gl» Ala 275 280 285
Gly Leu Ser Pro Ser Asp Vai Asp Ala Vai Gla Gly Eis Gly Thr Gly 200 255 300 193 ΡΕ0929681 ®*r Sfer 6Xy Asp Fro 11« 61« Ma Sis Ma lai χ*β Ala «sr S*r 305 310 31$ .320
Gly Lys Gly Mg Asp Fre Gly Ay# Fro Lmf Txψ Imx Gly Ser Vai Lys 325 330 335
Ser Asn lm Gly Eis fiar Gin Ma Ala Ala Gly Vai Ala Ser Vai Xle 340 343 350
Lys Mmt Vai Gin Ãla Letí Arg Eis Gly Vai XèO Pro Pr© Thr Xe» Bis 355 300 3$5
Vai Asp Arg Pr© Ser fhr Giu Vai Asp Tr» Ser Ala Gly Ma vai Ser 370 375 380 leu Leu fAr Glu Ma Arg Slu Srp Pro Arg Gl» Gly Bg Pso Arg Arg 383 390 395 400 Mè Gly Vai Ser Ser Phe Gly li® Ser Gly ffcr Asa Ala Sis £.«» Jl# 405 410 415
Xe» 61» 61» Ma Pro Gl» Giu GXa Fro Pr© vai Ala Gl» Ala Fr© Ser #20 425 430
Ma Gly Vai Vai Pr© Vai Vai Vai Ser Ala Arg Gly Ala Lm Ma Gly 435 440 445 61» Ala Gly Arg leu Ala Ala Piia Xe» 61» Ala Ser Asp 61» Pr© Leu 430 455 450
Vai ®íi Vai. Alã Gly Ala leu. lie CVS Gly Arg Ser Arg Phe Gly Asp 465 470 475 480
Arg Ma Vai Vai Vai Ma Gly fhr Arg Ma. Gia Ma vhr Ma Gly Xe» 415 430 493 194 ΡΕ0929681
Ala Ala Lea Ma Arg Gly Glu Ser Ma Ma Asp Vai Vai tkr Gly Thr SOO SÕ5 510 V4l Ma Ala Ser Gly Vai Fro Qiy Xys Leu Vai Trp Vai Phe Pr© Gly 515 520 525
Gly Ser d» stp Vai Gly Met Gly Arg £lu Leu Leu Glu Ma ser 530 535 540
Pr© Vai Phe Ma Ma Arg SM Ala Glu Cys Ma Ma Ms leu Glu Pr©
545 550 555 S6Q
Trp lie Ass Tsp Smr fca leu Aap Vai X©u Arg Gly Glu Gly Asp Xeu 565 570 575
Asp Arg V«1 Asp Vai Vai Gin Fr© Ma Ser Phe Ma Vai Het Vai Gly 580 585 5W
Xeu Ma Ma Vai trp Ser Ser Vai Gly Vai Vai Pr© Asp Ma Vai Leu 595 mo sm
Gly Bis Ser Gin Gly Gla 11® Ala Ala Ala Cy* Vai Ser Gly Ma Leu 610 615 620
Ser leu Gls Asp Ale Ma Lys Vai Vai Al,a Lsa Arg Ser Gin M.a lie €25 630 635 640
Ma Ala lys Leu Ma Gly &rg Gly Gly Hat Ala Ssr Vai Ma leu Ser MS 650 655
Giu Glu Asp Mi Vai Ala irg Leu Arg His Trp Ala Asp Arg Vai Glu &m 665 670
Vai Ida Ala Vai. Asn Ser Pí© Ser Ser Vai Vai Ile Ala Gly Asp Ala $75 660 695
Gla Ma Lea Asp Gin Ma Leu Glu M® im Shr Gly Gin Asp XM Arg 195 ΡΕ0929681 €90 m S 100
Vai Mg Mg Vai Ma Vai Asp Tyt Ala Ser Bis Thr Arg ais Vai Glu 705 710 715 720
Mp Ile Gin sia sro Leu Ma Giti Ala Lmt Ala Gly xie Glu Ma Bis 725 730 735
Ala Fro Sbr Leu Eco Pfee Pís® Ser Thr Leu 35sr Gly Asp Srp Xle Arç 740 745 750
Glw Ma Gly Vai Vai Mp Gly Gly Tyr Trp tyr ftrg Ass Leu Arg Asii 755 760 765 ÊjXís Vai Gly Pise Gly Fr» Ma Vai Ma Slu Lea Les Gly Le» Gly His 770 775 7S0 teg Vai Phe Vai «3la Vai Ser Ala Sis Fro Vai Leu Vai Gin Ala Ile 785 750 755 800
Ser Ala Ile Ma Mp Asp 3fe ASp Ma Vai Vál l&r My Ser Lea Arg 80S 810 815
Arg eia 61» Gly Gly Léu Mg Arg Lea Lea Thr Ser Hat Ala 6!» Leu B20 S3S §30
Phe Vai Arg Gly Vai Asp Vai Asp Ttp Ala Thr «ai Vai Fro Fro Ala 835 840 845
Arg Vai Asp Leu Fro Thr Tyr Ala Fhe Asp His Gin Ri» Tyr Trp Leu 850 855 860
Arg ttyr Vai Glu Thr Ale Thr Asp Ma Ma Gly Fro 'Vai Vai Arg Leu 865 870 875 880
Fro· €1r TM Gly Gly Leu Vál Phe Thr Thr Glu Trp ser Leu Lys Ser S85 §90 895 196 ΡΕ0929681
Glrs Pr© frp Xeu Mâ Glu Eia Thr Leu Glu Mp Leu Vai Vai Vai Pr© 900 SOS tiO
Giy Ala Ala Leu Vai Glu Leu Ma Vai Arg Ma Giy Asp Glu Ala Sly 515 920 925
Thr Sro Vsl Lau Asp Glu Leo Vai Ila Glu Thr Prc Leu Vai Vai Pr© §30 935 940
Glu Arg Giy Ma Ile Arg Val Gin Val Thr Val Ser Giy Fr© Ãsp Asp
945 $50 955 MO
Giy Thr Arg Thr Leu Glu Val Bis Ser Gin Pr© Glu &sp M.a Thr Asp $6S $70 $75
Glu Ίχρ Thr Arg His Ma Thr Giy TSar Leu ser Ma Thr Fr© Asp Glu 980 965 $90
Ser Ser Giy Phe Asp Fha Thr Ala Trp Pr© Pr© Pr© Gly Ala Arg 61a 1.000 1005
Leu tep Giy Vai Pro Ala Xle $η& Mg Ala 6ly Asp Glu Ile Fha Ala 1010 1015 1020
Glu Val Ser Leu Pro Arp Asp Ala &sp Ala Glu Ma Phe Giy Ile Bis 1025 1030 1035 2640
Pro Ala Lm Leu Asp Ala sia Leu Bis Fr© Ala Leu Pro Giy A»p A®p 1045 1050 2055
Giy Leu Tfer Glu Pr© Kst Glu Trp Arg Giy Leu Thr Leu His Ma Ala 1060 1065 1070
Giy Ala Ser Thr Leu Arg Val Arg Leu Val Fr© Giy Giy Pb& Leu Glu 1075 1080 1085 197 ΡΕ0929681
Ma Ma Asp Gly Ala Gly Ser Seu Vai Vai Thr Ala Lys ala Vai Ma 1QS0 ' 109S 1100
Lsu Arg Pro Vai Thr Ile Ala ârg Ser Mg TM Thr Thr Arg Mp Ser 1105 mo ΠΪ5 1120 » Phe Gin Leu Asa Trp Ile Gls hsa Pro Glu Ser Gly Vai Vai Ala nas mo ms
Ala Ma mp mp «fer ¢1¾ Vai Lm Gltt VM Pro Ma Gly Asp Ser Pro Π4 0 1145 1150 LSU Ala Ma Thr Ser Azg Vai Leu Gin Mg Seu Gla Thr Trp Lm TM 1155 1160 U€5 «la Pro Glu Ms elu Ma Seu Vai Vai Vai Thr Arg Gly Ma Vai. Pro im ms uso
Ma Gly Mp Thr Pro Vai Thr As? Pro Ma Ma Ma Ma Vai Trp Gly 1185 USO 1195 1200
Leu vai Arç Ser Ala Gin Ma Glu «an Pro Asp Arg Ile Vai Lm Lm 1205 1210 1215
Mp Thr M? Gly Glu Vai Pro .leu Gly Ma Vai Leu Ala Gly Gly Glu 1220 1.225 1230
Fro <S1» vai Ma Vai &rg Gly Thr AU Leu Tyr Vai Pro Arg Leu Ala 1235 1240 1245
Arg Ais Asp M& Ala Pro vai Ser Gly Leu His Gly Thr Vai Leu Vai 1250 1255 1260
Ser Gly Ma Gly Vai Leu Gly Glu Ile Vai Ma Arg His Leu Vai Thr 1265 1270 1275 1280
Arg His Gly Vai Mg Lya Leu Vai Leu AU Ser Arg Arg Gly Leu Asp 198 ΡΕ0929681 1285 1290 1295
Ala Asp Gly Ma Lys Asp Leu Vai fhr Mp te Thr Gly Glu Gly Ala 1300 1305 1310
Asp Vai Sm Vai Vai Ala cye Asp Leu Ala Asp Arg Asn Gin vai Ala 1315 1320 1325
Ala lau te Ala &ssp Sis Arg Pm Ala Ser Vai lie Sle fhr Ala Gly 1330 1335 1340 vai Leu Asp Mp Gly Vai He Gly T&r Leu Thr Pro Glu Arg Lau Ma 1345 1350 13SS 1340
Xys Vai Phe Ala Tm Lys Vai Mp Ala Vai Mg Sis te Asp Glu leu 1365 1310 1375
Arg Mp te Asp te Mp Ma Ph« Vai Vai Pha Ser Ser Gly Ser 1300 1385 1390
Gly vai Phe Gly ser Tm Gly Gin Gly Mn Tyr Ala Ala Ala As» Ma 1395 1400 1405
Fhe Xetí Asp Ala Ma «et Ma Ser Arg Arg Ala Ala Gly Leu Pro Gly 1410 1415 1420
Leu Ser Leu Ala frp Gly 'Leu Tsp Glu Gin Ala Thr Gly «et Iter Ma 1425 1430 1435 1440
Eis te Gly Gly ftr Asp Gin Ma Arg «et Ser Arg Gly Gly vai Arg 1445 1450 1455 J>ro He Tfcr Ala Glu Glu Gly Hefc Ma te Pbe Asp Thr Ala te Gly 1460 14&5 1470
Ma Gin Pr» Ma Leu .te. Vai Pro Vai Lye te asb te Arg Glu vai 1473 1480· 1485 1480 199 ΡΕ0929681
Arg M« Gly Sly Vai Pro Bis Leu Leu Arg Gly Leu Vai Arg Ma 1490 H9S 130»
Gly Arg Arg Gin Ma SM Ala Ma Ser Thr Vai Asp &sn Gin Lsu Leu 1505 1510 ISIS 1520
Gly Arg Leu M» Gly Lee Gly Ma Rco Glu GIb Glu Ma im Lm Vai 1525 1530 1535
Asp Leu Vai Arg Gly Gla Vai Ma Ma Vai Leu Gly «ia Ma Gly fcco 1540 1545 1550
Asp Ma Vai Mg Ma Asp Thr Ala The Lvs ,àsp Ala Gly Vhe Asp Ser 1555 1560 ISfiS
Leu *fcr Ser ¥sl Asp Le» Arg Mn Arg Leu Mg GI« ser Thr Gly Les 1570 1575 ISSO
Lys Lea wxo Ma Thr Leu Ala Fhe Aáp *yr Pro Thr fc» Leu Vai Lee 1555 1550 1595 1600
Ala Arg Bis Leu Arg Mp Gla Leu Gly Ma Gly Asp Asp Ma leu Ser 1605 1610 1615 V&i Vsl Hls Ma Arg Leu Gl» .Asp vai Glu Ala Leu Leu Gly Gly Le*s Ϊ620 1625 1630
Arg Leu Asp Glu Ser Thr Lys Thr Gly Leu Ttjr Leu Ãxg Leu Gin Gly 1635 1640 164,5 •Leu Vai Ala Arg Cys Asn Gly Vai As» As» Gin Thr Gly Gly Glu Thr' 16S0 1655 1660
Leu Ala Asp Arg Leu Glu Ala Ma Ser Ma Asp Gla Vai Leu Asp S%e 1665 1670 1615 1600 200 ΡΕ0929681
Aap Glu Glu : Leu Gly Leu Lte IfiBS INFORMAÇÃO PARA A SEQ ID NO: 8: (i) CARACTERÍSTICAS DA SEQUÊNCIA: (A) COMPRIMENTO: 3413 aminoácidos (B) TIPO: aminoácido (C) TIPO DE CADEIA: simples (D) TOPOLOGIA: linear (ii) TIPO DE MOLÉCULA: péptido (xi) DESCRIÇÃO DA SEQUÊNCIA: SEQ ID NO: 8:
Kfet Ala Thr .Mp <31* hy» imi Le*í Lys Tyr Leu Lys &rg Vai Thsr Ma
1 5 10 1-S GIu Leu Eis Ser Leu Arg Lys Gin Gly Ma Arg His Ala Asp Gltí ftco 20 25 30
Leu Ma vai Vai Gly Mst Ma eye Mg Fhe Sro Gly Gly v&i Ser Ser 33 40 45
Pr© Slu Mp Leu frp Gin Leu vai Ma Gly Gly vai Assp Ma im Ser 30 55 30
Asp fôe Pro fep fep Arg Gly Trp Glu Leu ,%sp Gly Leu Phe Asp Pre 65 70 75 80 Λχρ Fxo Mp Eia Pro Gly Thr Ser Tyr Thr Ser Gla Gly Gly Phe Leu 85 90 95
Atfg· Gly Ma Gly Leu Fhe Asp Ala Gly Leu Fhe Gly XX® Ser Fro Arg 201 ΡΕ0929681 100 105 110 eltí Ma im Vai Hftt *sp Pa» «1» Gin Mg Vai leu teu Glu B» Ser Π5 120 125
Srp Gin Ma Leu Oiti Àsp Ma Gly Vai As» Pro teã Ser I«B ítfS Gly 139 135 149
Ser Asp Vai Gly Vai. Phe Sftr Gly Vai Phs Thx Gin Gly 1¾¾ Gly Ma
145 159 155 ISO
Gly Ma Ile Thr Pro Asp te» Glti Ma Phe Ma Gly II© Gly Ma Ma 1©5 170 175
Ser Ser Vai Ma Ser Gly Ãtg Vai Ser Tyr Vai 3&e Gly Leu Glu Gly ISO 105 190
Fro Ma vai Thr Ile Mp B® M& Cys Ser Ser se* teu Vai Ma lie 195 200- 205 fíis teu Ma Ma <£l» Má teu jurg Ma Gly Glu €ys Ser »et Ma teu 310 21,5 220
Ma Gly Gly Ma Thr Vai Hat Pro 5&r to Gly Thr Pte Vai Ma 8» 225 230 235 240
Ser Mg Glu Mq Vai teu Ala Ma tep Gly Mg Ser lys Ma Sfee Ser 245 259 255
Ssr Thr Ma tep Gly Thr Giy *txp Ma Giu Gly Ma Gly Vai teu Va.1 %m 255 270
teu Glu Mq teu Ser Vai Ma GIs Glu Mg Gly HÍS Mq lie teu Ma 275 2S0 2MB
Vai teu Arg Gly Ser Ma Vai &&$ Gin Asp Gly Ma Ser Asrç Gly teu 200 235 300 202 ΡΕ0929681
Thr Ma Fro A$a Gly *ro Ser Gin Gin Arg Vai lie Mg Lys Ma Leu 305 310 315 320
Ma Gly Ala Gly Leu Vai Ma Ser Mp Vai Asp Vai Vai Glu Ma His 335 330 335
Gly Thr Gly Thr Ma Leu Gly Asp Pro Ile Glu Ala Gin Ala Leu Leu 340 345 350
Ma ffiir Tyr Gly Gin Gly Jkcq Glu Arg Pro Leu Stp Leu Gly Ser Vai 355 360 365
Lys Ser Asn Phe Gly His Thr Gin Ala Ma Ma Gly V®1 Ala Gly Vai 310 315 380
Ile Lya Mar Vai Gin Ma Leu &rg Eia Gly Ma Met Pro Pro Thr La» 385 WH 385 400
His Vai Ma Gly Pro Thr Pro Gl« Vai Asg> Trp Ser Ma Gly Ma Vai 405 410 «15
Gl« Leu Leu Thr Glu Pro Ara Glu Trp Pro Ma Gly &sp Mg Pro teg 420 425 430
Arg Ala Gly Vai Ser Ma Phe Gly Ile ser Gly Thr· Asn Ala Hi* Leu 435 44S 445 II® Lea Glu Glu Ma Pro Pro Ala Aap Ala. Vai Ais Giu 61u Pro Glu 458 455 4Ê0
Pha Lvs Gly Pro vai pro leu. Vai Vai Ser Ais Gly Ser Pro Thr Ser 465 410 415 460 leu. Ma Ala Gin Ala Gly Mg Leu Ma Glu Vai Leu. Ma Ser Glv Gly 485 480 485 ΡΕ0929681
Vai Set: Mg Ma Mg Leu Ma Ser Gly Leu Leu Ser Gly Arg Ma Leu SOO SOS 510
Leu Gly Asp Arg Ma Vai Vai Vai Ma Gly Thr Asp Glu tóp Ma Vai 515 52S 525
Ma Gly Leu Arg Ma Leu Ma &rg Gly Asp Arg: Ala !*o Gly Vai Leu 530 535 540 *£hr Gly Ser Ma Lys Eis Gly Lys Vai Vai Tyr Vai Xhe Pxo Gly Gla 545 5S0 555 560
Gly Ser Gin Mg Leu Gly Met Gly Arg Glu Leu Tyr Asp Arg Tyr Pro 565 570 575
Vai Phe Ma Shr Ma Fhe Asp Glu Ma Cya Glu Gin Leu Asp Vai Cys 5Í0 585 S$0
Leu Ma. Gly Arg Ala Gly Bis Arg Vai Arg Asp Vai Vai Leu Gly Glu 595 600 505 val Ft© Ma Glu fhr Gly leu hm As» Glu 2fer Vai Fhe T&r Gl» Ais 610 615 630
Gly Leu Sfc* Ala Vai Glu Ser Ala Leu Ph® Arg Leu Ala Glu Ser *Trp €25 €30 635 640
Gly Vai Arg ftco Mp Vai Vai Leu Gly His Ser Xis Gly Glu Xle «ar 645 650 635
Me Ala 2yy Ala Ma Gly Vai j?he Ss*r Leu Pro .top Ma Ma Mg He 660 665 670·
Vai Ma Ala Arg Gly Arg Leu *íet Gl» Ala Leu Ala 5ro Gly Gly Ma ¢75 §80 685
Met Vai Ala Vai Ala Ma Ser Glu Ala Glu V&l Ma Glu Leu Leu Gly 204 ΡΕ0929681 m® 695 700 &sp Gly Val Glu Lee Ala Ala Vai Asn Gly Fí'o Ser Ma Vai Vai Leu 705 7X0 715 720
Ser Gly Asjb Ala Asp Ma Vai Vai Ma Ala Ala Ala Arg Met: Arg Glu 725 730 735
Arg Gly Bis Ly» Tfcr lys Gin Lee Ly» Vai Ser His Ma Phe Bis Ser ?4S 7« 7S0
Ma hxq Het Ala Fr© Meu Lee. Ma Gltt Pise Ma Ma Glu Leu Ma Gly 755 ISO 755
Vai 4?hr frp Arg Glu Pro Glu lie Pr© Vai Vai Ser Mn vai Thr Gly 770 775 780
Arg Phe Ale. Glu Pr© Gly Glu leu TM Glu Pro Gly Tyr Trp Ala Glu 785 790 795 800
His Vai Arg Arg Pr© Vai Atg Phe Ala Glu Gly Vâl Ma Ma Ma SOS 810 815
Glu Ser Gly Gly ser im PI» Vai Glu Leu Gly pr© Gly Ma Ma Leu 820 825 830
Thr Me Leu ¥al Glu Glu Thr Ma Glu Vai Thr Cye Vai Ala Ma Leu 835 840 84S
Arg Asp Asp Arg Pr© Glu Vai Thr Ma Leu lie Thr Ma Vai Ma Glu 85 D 853 fififi
Leu Sha Vai Arg Gly Vai Ma Vai Asp Trp Pro Ma Leu Leu Pro Fr©
865 870 875 S8G val íte Giv Phe Vai mp Leu Pr© Lys Tyr Ma Pbe Asp Gin Gin His 885 890 895 205 ΡΕ0929681
Tyr τερ hm Gla Bro Ma Ma ei» Ma $hr Aap Ma. Ma $*sr hm Gly Seo 905 910
Glu Vai Mi Ala Aâp Bis Pro Lsn Lau Gly Ala Vai Vai Arg Leu Pr© 91S 920 925
Gin Ssr Asp Gly Le« Vai Fhs Thr Ser Arg Lm Ser Leu Lys Ser Eis 930 935 9« P» Hxp hm .Ma Mp Bis Vai lie Gly Gly Vai Vai to Vai Ala «ly 945 950 955 900
Thx Gly Leu Vai Glu Leu Ma Vai Ar§ Ma Gly Asp Glu Ma Gly Cys 955 970 975
Pm Vai Leu Glu Gin Lsu Vai Ile Gin Ala Pro Leu Vai Vai Sro Asp 980 98$ 990
Bis Gly Gly Vai Mg Ile Gin Vai Vai Vai Gly ik Sre Gly Glu Ttss 595 1Q00 1005
Gly Ser Arg Ala Vai Glu Vai Syr Bar Leu Arg Glu Asp Ma Gly Ma 1010 1015 1020
Gin Vai Trp Ala Mg His Ala fhr Gly Bhs Leu Ala Ala Sfer Pxo Ser 1025 1030 1035 1040
Glu Bis Lys Pro Vhe Asp Phe Th£: Ma τερ f» Js» K» Gly Vai Glu 1045 1050 1055
Arg Vai As» Vai Gla Asp Fte tyr Asp Gly to vai Asp Âcg Gly Tyr 1000 1065 1070
Ala *fyr Gly Fm Ser »he .Arg Gly hm Ar? Ma Vai Txp Mg Mg Gly 1075 1080 1085 206 ΡΕ0929681
Asp Glu Vsl Stae Ala Glu Vai Ala Leu Ala Glu Asp Asp Arg Ala Asp lOfO 1Q9S no o
Ala Ala Arg Phe GJ.y He 8i# Pro Gly Leu Leu Asp Ala Ala Leu Bis 1105 1110 1115 1120
Ala Gly SSst Ala Gly Ala Xbr 2& fhr Glu Glu Pro Gly Srg Pro Vai 1125 1130 1135
Leu Saa fhe Ala sp Asn Gly Leu Vai Lau His Ala Ala Gly Ala Bear 1140 1145 1150
Ala Leu Arg Vai Arg Leu Ala ¥to Ser Gly Aro Asp Ala Leu Ser Vai 1155 1160 1165
Glu Ala Ala Asp Glu Ma Gly Gly Leu Vai Vai TSir Ala Asp Ser Leu Π70 1175 1180 ¥al ser Arg Pio Vai Ser Ala Gin ©la Leu Gly fii Ala Ma Asa Bis 1185 USO llfS 1200 Ãsp Ala Lsu Phe Arg Vai Glu $ϋερ Thr Glu lie Ser Ser Ma Gly Asp 1205 1210 1215
Vai Pro Ala Asp Bis Vai Glts Vai Leu Glu Ala. Vai Gly Glu Asp Pra 1220 1225 1230
Leu Glu Leu 5fta Gly Arg Vai Leu. Glu Ma Vai Gin Thr Trp Leu Ala 1235 l24Ô 1245
Mp Ala Ala Aap Aep Alá Arg Leu Vai Vai Vai T&r Arg Gly Alá Vai 1250 1255 .1-260
Bis Glu Vai Shr Asp Pro Ma Gly Ala Ala Vai fr» Gly Leu Ile Arg 1265 1270 1275 12S0
Ala Ala Gin Ala Glu A»n Pro Asp Arg He Vai Leu Lêu Asp Thr Ãsp 207 ΡΕ0929681 12ÊS 1290 1295
Gly Glu Vai Pro Leu Gly Arg Vai leu Ala Thr Gly Gl« Pro Gin Thr 1300 230$ IMO Mâ Vai Srg Gly Ala fhr Lms Ph# Ala Rco Arg leu Ala Arg Ala Gl» 2315 2320 1325
Ma Ma Gl» Ala Sro Ala VAI T&r Gly Gly Thx Vai leu lie Ser Gly 1330 1335 1340
Ma Gly Sar lie» Gly Ala Leu f&r Ala Arg Eis im Vai Ala Arg Ria 1345 13 50 2355 1350
Gly vai Arg Arg Las Vai Leu Vai Ser Arg Arg Gly ftfO A«p Aia Asp 1355 2370 1325
Gly M Ma Gl» Lm Thr Ma Gl» Leu lie Ma Gin Gly Ma 01¾ Vai USO 13S5 1390
Ala Vai Vai Ala Çys Asp Itm Ala Asp Arg Asp Gin Vai Arg Vãl Leu 1395 1400 1405
Leu Ala Gla Eis Arg Pro ásn Ala Vai Vai Bis Thr Ma Gly Vai lm 2420 1415 2420
Asp Ase Gly Vai P&e Gl» .Ser Lm I&tr Arg elu Arg leu Ala Lys Vai 1425 1430 1435 1440
Phe Ala Pro i>ys vai 5fe* Ala Ala Asa ais leu Asp Gin leu Thr Arg 1445 1450 2455
Glu Leu Asp Is» Arg Ala Phe Vai Vai Phts Ser Bar Ala Ser Glv Vai 1460 1465 1470
Pba Gly Ser Ma Gly Gin Gly Asa Tyr Ma Ma Ma Asn Ma Tyr Leu 2475 1480 1485 208 ΡΕ0929681
Mn Ma Vai Vai Má Asn Mg Mg Ma Ala Gly Leu Fro Gly Thr Ser t.m 1495 1500
Leu Ma Trp Gly Leu Trp Clu Gle Tte Asp Gly Met fhr Ma Ris Leai 1305 1510 1515 1520
Gly Âsp Ma Asp Gin Ma &f Ma Ser Arg Gly Gly Vai Leu Ala 11« 1525 1530 1535
Ser Fro Ma Glu Gly Met GlU L«U JS» Asp Mâ Mâ fro Aso Gly Leu 1540 1545 1550
Vai Vai Pre Vai Lys Leu Asp Leu Arg Lys Thr ftrg Ala Gly Gly Thr 1355 ISSO 1565 V&l Fm Bis Leu Leu Arg Gly Leu Vsl Arg íro Gly Arg ela Gin Ma 1570 157$ 2580
Arg Fm Ma Ser Thr Vai M» Mn Gly Leu Ma Gly Arg Ala Gly 1585 1590 1595 1600
Leu Ala Fro Ma Glu Gin G2u Ma Leu Leu Leu Asp Vai Vai Arg Thr 1605 1610 1625
Gin VM Ala. Leu Vai Leu Gly Eis Ma Gly Fro Glu Ala Vai Arg Ala 1620 16.25 1630
Mp Thr Ala P&e Lys Asp Thr Gly Fhe Asp Ser im Thr Ser Vai Glv 1635 2640 2645
Leu Arg Asm Arg Leu Arg Glu Ala Ser Gly Leu Lys Leu fxo Ma Thr 1650 1655 2660
Leu Vai Pàe Asp Tyr Pro 1665 1670
Thr Pro Vai Ma Leu Ala Arg Tyr Leu 1675
Arg 16S0 209 ΡΕ0929681
Asp Giu Leu Gly Mp Star Vai Ma Thr Thr Prc vai Ma TM Ma Ma 16SS 1690 1635
Ala Ala App Ma Gly Sk Pro He Ma lie Vai Gly Kefc Ala Gys Arg 1700 1705 1710
Jm Pre Gly Gly VM Sbr Asp Ss© Gl» Gly Leu Trp Arg Leu Vai Arg 1715 1720 1725
Asp Giy hm Ma Gly hm Sm sro Phe Pro Gl« Pmp Arg Gly Trp Asp 1730 1735 1749
Leu Glu Asa Lãa Pbe Asp Asp Asp ppo Asp Arg Ser Gly Thr fhr Tyr 1745 1750 1755 1760
Tiir £er Arg Gly Gly Phe Leu Mp Gly Ma Gly Leu Phe Asp Ala Gly 1765 1770 177:5 PAs Phe Gly Ile Ser Prc Arg Glu Ma Leu Ms Kôt Asp Pró Gin Gin 1780 I.7Í5 1790
Arg im Lm hm Glu Ma Ma Tip Glu Ala Lau GXu Gly Tfer Gly vai 1705 ISftQ 1805
Asp Fro Gly ser Lea Lys Gly Ma mp vai Gly vai Phe Ala Gly Vai 1810 1815 1820
Ser Asa Gin Gly Tyr Gly Ket Gly Ma As» Pro Ala Glu Leu Ma Gly 1825 1830 1835 1840 íÇgr Ms Ser Thr Ma Gly Ma ser Sar Vai Vai ser Gly Arg Vai Ser 1845 1850 1855 $yr Vai Phe Gly Phe Gin Gly Pro Ala Vai Thr Ile Asp Thr Ala Cys 1850 1865 1870
Ser Ser Ser Leu Vai Ala Met His Leu Ma Gly G.ln Ala Leu jyrg β>η 210 ΡΕ0929681 mi5 imo- xees Ôly (Slu Cys Ser Mefc Ala Leu M& Gly Gly Vâl Wt Vai Mefc Gly Thr 1890 189S 1900
Fro Gly thr Fhe Vai Giu vbe Ma Lys Gin Arg Gly Leu Ma Gly Mp 1905 1910 1915 1920
Gly Arg Cys Lys Ma Tyr Ma Glu Gly Ma Aap Gly thr Gly frp Ma 1925 1950 1935
Glu Gly Vai. Gly Vai Vai Vai Leu Glu Arg Leu Ser Vai Ala Arg Glu .1940 1945 1950
Mf Gly Bis Arg Vai Leu Ma Vai leu Arg Gly Ser Ma Vai Mn Ser 195S mm isés
Mp Gly Ma Sar Asn Gly LéU thr Ma Pro Asa Gly Pro Ser Gin Gin 1970 1975 1980
Atg Vai He Mg Arg Ala Leu Ma Gly Ala Gly leu Glu pro Ser Ssp 1985 1990 199S 2000
Vai &sp Xla Vai Gl« Gly Ma Gly thr Gly thr Ala leu Gly Aep Pre 2005 2010 2015
He Gin Ma Gin Ala Leu Laft Ma thr tyr Gly Lys Asp ,&rg Asp Fro 2020 2925 2030
Glu Ihr Fro leu trp Leu Gly Ser Vai Lys Ser Asn Phe Gly Sis tfcr 2035 2049 2045
Gin Ser Ma Ma Gly Vai Ma Gly Vai Ile Lys Het Vai. Gin Ala Leu 2050 2055 2060
Arg Sis Gly vai Hat Fro Fro Thr Leu Mi* Vai Asp Arg Fro thr Ser 2080 2065 2070 2075 211 ΡΕ0929681
Gin vai Aep Trp Ser Ala Gly AI& Vai Gin Vai Lán Thr Glu àla Arg aoas a-09-0 ims
Glu Trp Fre Arg Asn Gly âr$ Pro Arg Arg Ma Gly vai saí Ser Phe 2100 2105 2:110
Gly II® S®r Gly Thr Asm Ma Ris Leu ile xia Gl® Gin Ma P» Ma 2115 2120 2125
Qlu Pro Gin Leu Ma Gly Pr© Pr© Pr® Asp Gly Gly Vai Vai Pr® Leu 2130 2115 2140 ¥al Vai ser Ma Arg Sar Pr© Gly Ma Leu Ma Gly Gin Ma Arg Arg 2145 2150 2155 2160
Lea Ma Thr Ph© leu Gly Asp Gly Pr® leu Ser Asp Vai Ala Gly Ma 2165 2170 2175 .Leu Thr Ser Arg Ala Leu Pb® Gly Gin Arg Ma Vai Vai Vai Ma Asp 2180 2185 2150
Ser Ma Gl® Giu Ala Arg Ala Gly Leu Gly Ma Leu Ma Mg Gly Glu 215S 2200 2205
Asp Ma Pr© Gly X-eu Vai Arg Gly Arg Vai pro Ala Ser Gly L·©» Pr® 2210 2215 2220
Gly Lys lea Vai. Trp vai Pha Pr© Gly Gin. Gly Thr Gin. Trp vai Gly 2225 22.30 2235 2240
Met Gly Arg Gin Leu Leu Glu Glu SêX Pr© Vai Sh» Ala Gin Arg Ile 2245 2250 2255
Ala Gin Cys Ma Ala Ma Leu Glu Pro Trp II© Gly Trp Ser Leu Phe 2270
2260 226S 212 ΡΕ0929681
Mp Vai Lea Arg Gly Asp Gly Asp Leu Asp Mg Vai Asp Vai Leu Gin 227S 2280 2285
Pro &U Cye Phs Ma Vai Set Vai Gly Leu Ala Ma Vai Trp Ser Ser 2290 £295 2300
Ma Gly Vai Vai Iro Asp Ma Vai Leu Gly Eis Ser Gin Gly Glu lie 2305 2310 2315 2320
Ala Ala Ais Cy» Vai Ser GLy Ala Leu Ser Leu Glu Asp Ala Ma Lys 2325 £330 £333
Vai Vai Ma Leu Arg Ser SIn Ala lia Ala Ala Lys Leu Ser Gly Arg 2340 2345 2350
Oly Gly set. Ma Ser Vai Ala Leu Gly Glu AL& Asp Vai Vai Ser Arg 2:355 2 MO £355
Leu Ala Asp Gly Vai Glu Vai Ala Ma Vai Ma Gly Oro .Ala Ser Vai £370 2375 £380
Vai Ila Aiâ Gly Asp Ala Gin Ala Leu Asp Glu Ofer Leu Glu Ala Leu 2315 2330 £395 2400
Ser Gly Ala Gly xie .Arg Ala Arg Arg Vai Ala vai Asp Tfz Ala ser 2405 £410 2415
Eis fhr Arg Bis Vai Glu Asp Ile Glu Asp Thr Leu Ma Glu Ala Leu 2420 2425 2430
Ma Gly Ha Asp Ma Arg Ala Pro Leu Vai Pr© Pbe Leu ser Thr im £435 £449 2445
Thr Gly Glu fcrp Ile Arg Asp Glu Gly Vai Vai Asp Gly Gly Tyr Trp 2450 2455 2460
Tyr Arg Asa Leu Arg Gly Arg Vai Arg -F&e Gly Pro Ma vai Glu Ma 213 ΡΕ0929681 2465 2410 2475 2480 ims imx Ala Gin Gly His Gly vai Phe Vai Glu Leu Ser Ma Hís Pr© Mm 2490 2495
Vai Leu Vai Gin Fro lie 'Thr Glu Leu Tísr Ãsp Glu Thr Ma Ma Vai 2500 2505 2510
Vai Thr Gly Ser Leu &rg Arg Asp Asp Gly Gly Lee Arg Arg Leu Leu 2515 2520 252:5 9&r Ser Me*. Ma Glu Leu phe Vai Mg Gly vai. Glu Vai Asp Trp Tbr 2550 2535 2540
Ser' Léu vai Pro Pro Ala arg .Ala Mp Leu fxq ®hr 5yx Ma. Ffee Asp 2545 2550 2555 2559
His Glu Bis fvr Trp Leu ârg Ala Ma Asp ftr Ma Ser Asp Ala Vai 2865 2870 2.575
Ser Leu Gly Leu Ala Gly Ma Asp Sis Pro Leu Leu Gly Ala Vai Vai 2580 2595 2S90
Gin Leu Pr© Gin Ser Aep Gly Leu Vai Phe Thr Ser Mg Leu Ser Leu 2595 . 2fi00 2605
Arg Ser Bis pro Trp Leu Ma Àsp Sis M* Vai Mg Asp Vai Vai 11« 2610 2615 2620
Vai Pre Gly Thr Gly Leu Vai Glu Leu Ala Vai Arg Alã Gly to Sl« 2625 2630 2635 2640
Ala Gly Cys Pr© Vai Leu Asp Glu Leu Vai lie Glu Ma Pr© Leu Vai 2645 2650 2655
Vai Pr© Arg Arg Gly Gly Vai Arg Vai €£Ln Vai Ma Leu Gly Gly Pro 2660 2665 2670 214 ΡΕ0929681
Ala Asp Asp Gly Ser Arg Thr va.1 Asp Vai Phe Ser Létt Arg Glu Asp 2675 2680 2685
Ala Asp ser τηρ Leu Arg His Ala 3fer &.y Vsl Leu Vai fto Glu ãan 2880 2685 2700
Arg Frc &rg <3Xy Lhr Ala Ala Pha Mp Phe Ala Ma Tfp Pro Pr® Pr® 27Q5 2710 2715 2720
Glu XU Lys Pr» Vai Asp Leu Tfcr Gly Ma Tyr Asp vai Leu Ala Asp 2725 2730 2735
Vai Gly fyr Gly Tyr Gly Pro Sfer Phe Arg Ma Vai Arg Ala Vai τκρ 2740 2745 2750
Arg Arg Gly Ser Gly Asa Thr G3u TAr Pise Ma Glu lie Ma Leu 2755 2760 2785
Pro Glu. Asp Ala Arg Ma Glu Ala Gly Arg Pfce Gly lie Bis ®r© Ma 2770 2775 2780
Leu Leu Asp Ala Ala Leu »i.s Ser Ίϋχτ Met Vai Ser Aia Ala Ma Asp 27BB 2790 2755 2800
Vhr Glu Ser Tyr Gly Asp Glu Vai Mg Leu ®e© Phe Ala Trp Asa Gly 2805 2810 2615
Lea Arg Leu hí* Ala Ala Gly Ma Ser Vai Leu &rg Vai Arg Vai Ala 2820 2825 2630
lys Pro Glu Arg Asp Ser Leu Ser Leu Glu Ala. Vai Aso Glu Ser Gly 2535 2840 2^S
Gly Leu Vai Vai <?hr Leu. Asp Ser Leu Vai Gly Arg Pro Vai Ser A*nt 2650 2655 2660 215 ΡΕ0929681
Asp Gin Leu. Ter Thr Ma. Ma Gly ®eo Ma Gly Ma Gly Ser Leu ϊ^τ 2865 2870 2875 2880
Arg Vai Mp Trp Tkr Fro Leu Ser Ser Vâl Asp Thr Ser Gly Mg Vai 288.5 2890 2895
Pro Ser Trp Leu Pro VM Ma Thr Ma Glu Glu Vai Ma Thr Leu Ma 2900 2905 2910 tep Asp Vai Lsu Thr Gly Ala Thr Glu Ma Fro Ma Vai Ma Vai Mefc 2915 2920 2925
Glu Ma Vai Ma Asp Glu Gly Ser VM Leu Ma lãu Thr Vai Arg Vai. 2S30 2935 2840
Leu Asp Vai Vai sin cys Trp Leu Ala Gly Gly Gly Leu Glu Gly «bar 2945 2959 2SS5 2960
Lys Leu Ma lie Vai Thr Mg Gly Ma Vai Pro Ais Gly Tssp- Gly Vâl 2965 2S70 2975
Vai His .Asp *ro Ma Ma Ala Ala Vâl Trp 6ly Xfttt Vai Mg Ma Ala 2980 2985 2990
Gin Ma Glu Asa Pr© Asp Arg lie Vâl Leu leu Asp Vai Glu Tfc%> Glu 2993 3000 3005
Ma Asp Vâl Fro Pro Leu LSU Gly Ser Vai Leu Mm. Asp Gly Glu Pro 3010 301.5 3020
Gin Vai Ma Vai Arg Gly Thr Thr Leu Ser li© Pro Arg Leu Ma Arg 3025 3030 3035 3040
Ma Ma Arg Pro As© ?ro Ala Ma Gly Phe Lys Thr Arg Gly Pro vai 3045 3050 3055
Leu Vai. Thr Gly Gly Sfcr Gly Ser Leu Gly Gly Leu Vâl Ma Arg His 216 ΡΕ0929681 3060 3065 3070 hmJ Vai Glu Arg Hís Gly Vai Arg Gl» Leu Vai Leu Ala Ser &rg Arg 3075 3080 3088
Gly Leu Asp Ala 61» Giy Ala Lys Âsp Lea Vai Thr Asp Leu Tfer Ala 3090 3095 3100
Leu Giy Ala Asp Vai Ala Vai Ala Ala Cys Asp Vai Ala Asp Arg Asp 3105 3110 3115 .3120 61» Vai Ala Ala Leu Leu Thr Gi» His Arg 1¾¾ Ser Ala Vai Vai Hls 3125 3130 3135
Thr Ala Sly Vai Sr© Asp Ala <5l.y Vai lie <5ly & Vai Thr Aro Asp 3140 3145 3150
Arg Leu Ala @lu vai sfee Ma Fro Lys Vai Thr Ma Aia Arg Eia Leu 3155 3160 3165
Asp Glu Leu Thr Arg Asp Leu Asp Le» &sp Ser She Vai Vai Tyr Ser 3170 3175 3180
Ssr Vai Ser Ala Vai Ftes Met Gly Ma 6ly ser Giy $sr Tyr Ala Ala 3185 319.0 3195 3200
Ala As» Ala Tyr Leu Asp Gly Leu ítet Ma Eis Arg Arg Ala Ala 6Xy 3205 3310 3215 leu Pso Gly GI» Ser Leu. Ma. Trp Gly Leu Τερ Mp 61a Thr Thr Gly 3220 3325 3230
Gly «et Ma Ala Sly TM' Asp Glu Ala Gly Arg Ala .Arg Mat Thr Arg 3235 3240 3245 .Arg Gly Gly leu vai Ala Stet Lys jpro Ala Ala Gly Leu Asp Leu Phe .3250 3255 3260 217 ΡΕ0929681
Asp Ala Ala Ile Gly Ser Gly GXu Ρεο Leu L&u Vai Pso Ma Gin Lau 3265 3270 3275 3290
Asp Leu Jteg Gly tau Aref Ma Gin Ma Ma Gly Gly tibe Glu Vai Pr© 3285 3290 3295
Sis Leu Leu Mg Gly Leu Vai Arg M.& Gly Arg Gin Gin Ma Mg Ma, 3300 3305 3310
Ma Ser Thr Vai Ciu Gla Μη Ttp Ma Giy Mg Leu Ma Gly Gin 3315 3320 3325
Fro Ma 61» Arg Gly Gin Vai Leu Leu Glu Leu Vai Mg Ma Gin Vai 3330: 3,335 3340
Ma Gly Vai Leu Gly Tyr Mg Ma Ma. His Gin Vai Asp Fro Mp Gin 3345 3350 3355 3360
Gly La» Fhe Glu Ile Gly ?he Âsp Ser Le« Ttsr Ala He Glu Leu Aarg 3365 3370 3375
Asn Arg Lea Arg Ma Arg TM Gla Mg Lys He Ser Fr© Glv Vai V&l 3380 3385 3390 .Stoe Asp His Pr© Vhr Fr© Ma hm Lm Ma Ma His Lee &sn Glu Leu 3395 3400 3405
Lm Arg Lys Lm Vai 3410 (2) INFORMAÇÃO PARA A SEQ ID NO: 9: (i) CARACTERÍSTICAS DA SEQUÊNCIA: (A) COMPRIMENTO: 226 aminoácidos (B) TIPO: aminoácido (C) TIPO DE CADEIA: simples ΡΕ0929681 218 (ϋ) (D) TOPOLOGIA: linear TIPO DE MOLÉCULA: péptido (xi) DESCRIÇÃO DA SEQUÊNCIA: SEQ ID NO: 9:
Met. Ma lie Pro Tyr Ser Ssr Leu Ala Tyr Sk Leu Arg Asp Ma Vai 1 S m 15
Asn VAI Vai Asp Leu Asp Glu Asp Asp Vai £be Vai Sfctr Ser 11« Ala 20 25 30 £Lu Gly Gin Gly Gly Ma Cys fyr Ma Leu. Jkan Arg teu Fhe His Arg 35 40 45
Leu Leu Thr Glu Lsu Gly Tyr Mp Vai Thr Fro Leu Ma Gly Ser Thr 50 55 60
Ala Glu Gly ftrg Glu Thr Phe Gly Thr Asp Vai Glu Sis Met Pb© As» SS ?0 75 SS
Leu Vai T&r Leu Aap Gly Ma Aap frp Leu vai Mp Vai Gly Tyr Fro
85 90 5S
Gly Fro Thr fvr Vai ôl« Fro Leu Ala Vai Ser Fro Ma Vai Gin. Thr
100 105 HO
Gin Tyr Gly Ser Sln Phe Arf Leu vai. Glu Gin Glu fhr Gly Tyr Ala. 115 120 W5
Leu 61» ,Arg Arg Gly Ala Vai T&r Arg Trp Ser Vai Vai Tyr Thr Phe 130 135 I40
Thr Thr Gin Pro Arg Gin frp Ser Asp Trp &y» Glu Leu Glu Asp Asn 219 ΡΕ0929681 145 150 1SS 160
Ffee .Ajrg Ma -Lesa Vai Gly Mp T&r 2âar Mg 7S»r Asp fte Gin Glv ftor 16$ 170 175
Leu Cys Gly M§ Ma Efee Ala Asa Sly Gin Vai Phe Leu &rg Gin Ârç ISO 185 ISO
Axg Tvr i«i Thr vai. 61« As» Gly Mg Gin Gin vai Arç Sfcr lie Slsr 195 200 205
Aap Aáp Ãsp Glu Phe Arg Ala l/m Vai Ser Arg vai Le« Ser Gly Asp 210 a15 220 HÍS Gly 225 ΡΕ0929681 220
Cifas-Ssigy Μ' CE?-4S©2 2asei HKranr w ws case gp a»» okswnaí, mtam 'm&4 |&M3Jsact í« &r& 7.5 &y &ε sKTERSAtassí^t &skj«tak.y a$ít*ímm k&ntóTrcá is fcssnftw && ffWfjf
ΡΕ0929681 221 C.itoa-Geigy Aís CH-4G83 Base! VJAHHJTV ST/im«JiT SiasS ilsKKIS! 1:1 feífc SSJ.3 Si? Wí sf«sasiAtK»í:Vi, 8®pes*rA*v AVTHOserv sáççsiêksJ ss )}& fcatsoífc £f shh, paç*
ΡΕ0929681 222
Hovartis ΑΰCH-'40Ô2 Betsel SKÉaa^T ÍN TOE CASE O)' AN OSSKifNAE EEfOSÍT n> Ãis>- ? ;j fcy &£ ΜΒΒΜΙΏβΜΛ*, :OMTMY AUmCJKtTY Sd ifcç MS»* Cif
223 ΡΕ0929681
Sovart.is AG Οι-4002 Siwsel
¥j*®BJT¥ StATBUfiEW ÍSSiBid pHSUSíS *a ftafis· JM At ««nfgftííAtwtiAt ^^wrA#y αο?»#»»ϊυ sdsntíisá Λ fa tose®· aí sMs gsg*
f È^* w* »twis íw igigSísibje Sai- * FiU ss 8*» isfera>sks8 Si« tesa «sgsfcêSSâ mi $'«* KHSNS i*S ÍNt«» *·«>« («çssiv*. f»TS( BS^fô.-EP.^ (s<S!è ΡΕ0929681 224
Movartis A.6 CH-4003 Sasel mxB/t »* t«E em er ak ormwml, &i«srr $5« d pyriuaKS *e RiíSc 7.1 Sry tbe 'm£W#RBt*Al ÈÈfo8StAÃV A^íÒfeTY ώκοίΐίίίΛ & 5Í» híWfStft. ^ £agg
Ftwsn- ΡΕ0929681 225 NOvartis &G Cif 400?, Basal VSABttíTT S7ATEMEKT issueé poiisratit ta RíiJe ϊφ,ί by Μ?δΐκ**κ»<Αΐ osfosiARV jmmmv iiííwitoí W !h* &SR£t» OÍHÁ tttgt ASártss ISfeííSíKXJíf WS;·. Sb
Si^iiHiMeSií er wawtYi) 3!*yiK(j tis (xs»-» sj kíxkwm tis* ^râsSkjiiat fkpttt&f· Asi&&%· çj vi «fM8SMí«á «jgKiaJfe.}c/. (aJ^Zo te XW7-C7-X5
5. ffiMW κ, n&mft&mai <w THE ]i«pkww^u4km isams: Kw.aí;ti,s &G lAâdKSií CS>4G93 SSassI Ammm motim *to** i*r a? «KÍOSJTASY AO^WJY: fôSR ll€m \ 3>5íe rf ::.v: deptrad oy ttE u^ífç?·' 1897-07-14 55S. VMBIUTV STAm^Nt T3*f visáSity ertíss βηηκ^μ&κ ·&κ£&βϋ atáitt $ áfe?** -was ssaeítíKS IS OíJ· ti¥if Sáíâr tS& ç&Xj fiVtójS&ígSftTíflfc *¥£>. >3?»e?»i4 ». íso' vjaifc t ? ®?· *s®8 vMSt iv.: g&8Hn@N$ tascs-s wocm ϊηκ vmmutv tbst mas beeh rmotam^ V. HíSBBKMSeSlAi PBPOSt&ftV A«*BWWTV Níes; OSÍff OfímaSE S^MLtJNIlS VÓft w&mxmxawi íifi-ákítífi ?ftç aásie <tí <s( w&&«. a -ibçw <t? 8 sraasfes &S3 tatn *®®κ raççra *çitY«Kj áste &f ifeg íkw 4&§κ&$ «k1 s ;l$ síie s®»ís PG&mtf ía fiule 3:íOía3 <íí) xtú {tuj, retsr & ihs ír»íi vsofttf vis&i&t? w®a· :‘ Mirò v^ái « tm% fl^áfcusà-iÉ Sas, e F3I m aí tjsfr feas w»S ií íh* it-iciis tftt ÍSSÍ WfV'l r«$s$i\*S. ί®Η» wme&m &Φ. m$ ws* 226 ΡΕ0929681 CH~40Q2 Eãssl 8S03IT EN ttí6 ÇA&B ÓF AN ÍSRJQSNA3- ÊF-fOSET Sssseí pehsss 6? Mt 7,1 Ir #*
SsEMBÍATIONAL. OEPaSfTAEV AVTWttíftlY ifcteft&iHMl *v forfram àt’ ifàjB gt$gc:
! Stote 4$kifl jjájr ss^jj $$ she $>$ SíSíu* c-í ir&ro&ksssí s«f«íi^ss?y' rag ai^i&nk!. i;«ra ^sg?S$ fcftgc) 03¾ ΡΕ0929681 227 Ííovarfeis ag CH-«8D2 B&ísel VWSJUTlf StAlí&ffiWÍ issiasí) iwmiwit #s Raj* l#2! lkf íte? »!Tei»íATK*tM. tígfsçssTARy AWSKWfrr itíwstiífoà i< íhs bãi&atâ Φ-f &sa j&gt
&>«π (¾¾ jtagsr) $§5&
Lisboa 17 de Novembro de 2006

Claims (17)

1 ΡΕ0929681 REIVINDICAÇÕES 1. DNA isolado que é (i) o aglomerado isolado responsável pela biossintese de rifamicina em Amycolatopsis mediterranei, compreendendo SEQ ID NO: 3, ou (ii) uma porção de DNA de (i) que codifica para uma sintase de policétido ou um seu domínio enzima-ticamente activo, ou (iii) uma porção de SEQ ID NO: 3 compreendendo pelo menos 15 nucleótidos consecutivos desta e que pode ser utilizada como sonda de hibridação num banco de genes genómico de um organismo de produção de rifamicina para encontrar constituintes do aglomerado de genes correspondente, ou (iv) um DNA possuindo pelo menos 70% de identidade com o DNA de (ii) e que codifica para um polipéptido possuindo a mesma actividade de sintase de policétido que a codificada pelo DNA de (ii).
2. DNA isolado, de acordo com a reivindicação 1, em que o referido DNA (i) compreende uma sequência de nucleótidos seleccio-nada do grupo consistindo em ORF A consistindo num fragmento da SEQ ID NO:3 começando no nucleótido nas posições 1825 até 15543 2 ΡΕ0929681 ORF B consistindo num fragmento da SEQ ID NO:3 começando no nucleótido nas posições 15550 até 30759, ORF C consistindo num fragmento da SEQ ID NO:3 começando no nucleótido nas posições 30895 até 36060, ORF D consistindo num fragmento da SEQ ID NO:3 começando no nucleótido nas posições 36359 até 41325, ORF E consistindo num fragmento da SEQ ID NO:3 começando no nucleótido nas posições 41373 até 51614, ORF F consistindo num fragmento da SEQ ID NO:3 começando no nucleótido nas posições 51713 até 52393; ou, (ii) codifica uma ou mais das proteínas ou polipéptidos das SEQ ID NOS 4 a 9.
3. Método para identificar, isolar e clonar um DNA isolado da reivindicação 1, de um organismo que sintetiza rifamicina, compreendendo o referido método os seguintes passos: construir um banco de genes genómico do referido organismo que sintetiza rifamicina; rastrear este banco de genes com o auxílio do DNA da reivindicação 1; isolar os clones identificados como positivos. 3 ΡΕ0929681
4. Utilização do DNA da reivindicação 1 na produção de ansamicinas ou seus percursores; incluindo aqueles em que a ponte alifática é ligada apenas numa extremidade do núcleo aromático.
5. Utilização de acordo com a reivindicação 4, em que a referida ansamicina é rifamicina.
6. Utilização do DNA da reivindicação 1 para inactivar ou modificar genes da biossintese da ansamicina.
7. Utilização de acordo com a reivindicação 6, em que a referida ansamicina é rifamicina.
8. Utilização do DNA da reivindicação 1 para construir estirpes de actinomicetes mutadas das quais o aglomerado de genes da biossintese da rifamicina ou ansamicina natural, no cromossoma, foi parcialmente ou completamente removida.
9. Utilização do DNA da reivindicação 1 para reunir uma biblioteca de sintases de policétido.
10. Sintase de policétido de Amycolatopsis medi-terranei que está envolvida na sintese da rifamicina, ou um seu dominio enzimaticamente activo, em que a referida sintase de policétido é codificada por um DNA da reivindicação 1. 4 ΡΕ0929681
11. Utilização da sintase de policétido de acordo com a reivindicação 10, para sintetizar ansamicinas.
12. Utilização da reivindicação 11, para sintetizar uma biblioteca de ansamicinas.
13. Vector hibrido compreendendo o DNA da reivindicação 1.
14. Vector hibrido compreendendo um vector de expressão compreendendo o DNA da reivindicação 1.
15. Organismo hospedeiro compreendendo o vector hibrido da reivindicação 14.
16. Sonda de hibridação compreendendo o DNA da reivindicação 1.
17. Utilização da sonda de hibridação de acordo com a reivindicação 16 para identificar fragmentos de DNA envolvidos na biossintese de ansamicinas. Lisboa, 17 de Novembro de 2006
PT97938923T 1996-08-20 1997-08-18 Aglomerado de genes da biossíntese da rifamicina PT929681E (pt)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP96810551 1996-08-20

Publications (1)

Publication Number Publication Date
PT929681E true PT929681E (pt) 2007-01-31

Family

ID=8225680

Family Applications (1)

Application Number Title Priority Date Filing Date
PT97938923T PT929681E (pt) 1996-08-20 1997-08-18 Aglomerado de genes da biossíntese da rifamicina

Country Status (8)

Country Link
US (1) US6924106B2 (pt)
EP (1) EP0929681B1 (pt)
AT (1) ATE339506T1 (pt)
AU (1) AU4119597A (pt)
DE (1) DE69736673T2 (pt)
ES (1) ES2271973T3 (pt)
PT (1) PT929681E (pt)
WO (1) WO1998007868A1 (pt)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495348B1 (en) * 1993-10-07 2002-12-17 Regents Of The University Of Minnesota Mitomycin biosynthetic gene cluster
US6121029A (en) 1998-06-18 2000-09-19 Novartis Ag Genes for the biosynthesis of epothilones
CA2330543A1 (en) * 1998-06-23 1999-12-29 Biosearch Italia S.P.A. Methods for transferring the capability to produce a natural product into a suitable production host
US6265202B1 (en) 1998-06-26 2001-07-24 Regents Of The University Of Minnesota DNA encoding methymycin and pikromycin
WO2000044888A2 (en) * 1999-01-26 2000-08-03 University College London Dimethylarginine dimethylaminohydrolases
ES2335385T3 (es) 1999-10-13 2010-03-26 The Board Of Trustees Of The Leland Stanford Junior University Biosintesis de sustratos de policetido sintasa.
JP2014508516A (ja) 2011-01-28 2014-04-10 アミリス, インコーポレイテッド ゲルに封入されたマイクロコロニーのスクリーニング
MX2013013065A (es) 2011-05-13 2013-12-02 Amyris Inc Metodos y composiciones para detectar la produccion microbiana de compuestos inmiscibles em agua.
CN104540949B (zh) 2012-08-07 2018-05-29 阿迈瑞斯公司 用于稳定乙酰-辅酶a衍生化合物生成的方法
AU2014227811C1 (en) 2013-03-15 2018-09-27 Amyris, Inc. Use of phosphoketolase and phosphotransacetylase for production of acetyl-coenzyme a derived compounds
CA2918891C (en) 2013-08-07 2023-03-14 Amyris, Inc. Methods for stabilizing production of acetyl-coenzyme a derived compounds
WO2016210343A1 (en) 2015-06-25 2016-12-29 Amyris, Inc. Maltose dependent degrons, maltose-responsive promoters, stabilization constructs, and their use in production of non-catabolic compounds

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463707A1 (en) * 1985-12-17 1992-01-02 Lubrizol Genetics Inc. Production of polyketide antibiotics
US5763569A (en) * 1991-08-23 1998-06-09 The Brigham And Women's Hospital, Inc Calcium receptor-active molecules
ES2164713T3 (es) * 1993-09-20 2002-03-01 Univ Leland Stanford Junior Produccion recombinante de nuevos poliquetidos.

Also Published As

Publication number Publication date
US6924106B2 (en) 2005-08-02
ES2271973T3 (es) 2007-04-16
WO1998007868A1 (en) 1998-02-26
EP0929681A1 (en) 1999-07-21
ATE339506T1 (de) 2006-10-15
DE69736673D1 (en) 2006-10-26
DE69736673T2 (de) 2007-09-13
AU4119597A (en) 1998-03-06
EP0929681B1 (en) 2006-09-13
US20050053927A1 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
PT929681E (pt) Aglomerado de genes da biossíntese da rifamicina
Steffensky et al. Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891
Zhu et al. Biosynthesis of the fluorinated natural product nucleocidin in Streptomyces calvus is dependent on the bldA‐specified Leu‐tRNAUUA molecule
Li et al. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation.
Kim et al. Atolypenes, tricyclic bacterial sesterterpenes discovered using a multiplexed in vitro Cas9-TAR gene cluster refactoring approach
Sommer et al. Pseudoreversion analysis indicates a direct role of cell division genes in polar morphogenesis and differentiation in Caulobacter crescentus.
Cui et al. Identification and characterization of a Mucilaginibacter sp. strain QM49 β-glucosidase and its use in the production of the pharmaceutically active minor ginsenosides (S)-Rh1 and (S)-Rg2
Li et al. ESI LC-MS and MS/MS characterization of antifungal cyclic lipopeptides produced by Bacillus subtilis XF-1
BRPI0519410B1 (pt) método para produzir ácido l-glutâmico
US20090087435A1 (en) Isolated Chimeric Proteins Of Modified Lumazine Synthase
CN110218244A (zh) 化合物ilamycin F及其应用
Li et al. Improvement of daptomycin production in Streptomyces roseosporus through the acquisition of pleuromutilin resistance
Musiol et al. The AT2 domain of KirCI loads malonyl extender units to the ACPs of the kirromycin PKS
Yushchuk et al. Genomic-led discovery of a novel glycopeptide antibiotic by Nonomuraea coxensis DSM 45129
Zaretsky et al. Sialic acid-like sugars in Archaea: legionaminic acid biosynthesis in the halophile Halorubrum sp. PV6
Zhao et al. Improving acarbose production and eliminating the by-product component C with an efficient genetic manipulation system of Actinoplanes sp. SE50/110
Berck et al. NolL of Rhizobium sp. strain NGR234 is required for O-acetyltransferase activity
Feng et al. Biosynthesis of the β-methylarginine residue of peptidyl nucleoside arginomycin in Streptomyces arginensis NRRL 15941
Heng et al. Enhancing armeniaspirols production through multi-level engineering of a native Streptomyces producer
CN104928305B (zh) 一种大环内酰胺类化合物heronamides的生物合成基因簇及其应用
CN110317765A (zh) 一种高产香叶醇葡萄糖苷的大肠杆菌表达菌株及其应用
US9487762B1 (en) Method and system for producing triterpenes
Rodicio et al. The Sa1I (SalGI) restriction-modification system of Streptomyces albus G
Li et al. Adaptive optimization boosted the production of moenomycin A in the microbial chassis Streptomyces albus J1074
CN107603934A (zh) 一株异源表达组蛋白去乙酰化酶抑制剂的工程菌株及其应用