NO176922B - Process for the preparation of bifunctional proteins - Google Patents

Process for the preparation of bifunctional proteins Download PDF

Info

Publication number
NO176922B
NO176922B NO881658A NO881658A NO176922B NO 176922 B NO176922 B NO 176922B NO 881658 A NO881658 A NO 881658A NO 881658 A NO881658 A NO 881658A NO 176922 B NO176922 B NO 176922B
Authority
NO
Norway
Prior art keywords
csf
protein
bridge
plasmid
dna sequence
Prior art date
Application number
NO881658A
Other languages
Norwegian (no)
Other versions
NO881658D0 (en
NO881658L (en
NO176922C (en
Inventor
Paul Habermann
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO881658D0 publication Critical patent/NO881658D0/en
Publication of NO881658L publication Critical patent/NO881658L/en
Publication of NO176922B publication Critical patent/NO176922B/en
Publication of NO176922C publication Critical patent/NO176922C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • C07K2319/75Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor containing a fusion for activation of a cell surface receptor, e.g. thrombopoeitin, NPY and other peptide hormones

Description

Foreliggende oppfinnelse angår en fremgangsmåte for fremstilling av "bifunksjonelle proteiner. The present invention relates to a method for the production of "bifunctional proteins.

Nærmere bestemt angår oppfinnelsen fremstilling av slike proteiner som består av en aktiv interleukin-2- og granulo-cytt-makrofag-koloni-stimulerende-faktor (GM-CSF )-del, idet de to biologisk aktive proteindeler er knyttet sammen over en bro av 1 til ca. 20 genetisk kodbare aminosyrer. More specifically, the invention relates to the production of such proteins which consist of an active interleukin-2 and granulocyte-macrophage-colony-stimulating-factor (GM-CSF) part, the two biologically active protein parts being linked together via a bridge of 1 to approx. 20 genetically codeable amino acids.

Interleukin-2, i det følgende betegnet IL-2, virker som T-cellevekstfaktor. IL-2 forsterker aktiviteten av "Killer"-celler som NK (Natural Killer)-celler, cytotoksiske T-celler og LAK (Lymphokine Activated Killer )-celler. Interleukin-2, hereinafter referred to as IL-2, acts as a T-cell growth factor. IL-2 enhances the activity of "Killer" cells such as NK (Natural Killer) cells, cytotoxic T cells and LAK (Lymphokine Activated Killer) cells.

Granulocytt-makrofag-"Colony Stimulating"-faktor, i det følg-ende betegnet GM-CSF, derimot stimulerer granulycyt- og .makrofagdannelsen fra hematopoitiske forløperceller. Kombina-sjonen av de to biologiske aktiviteter er interessant for tumorbehandling med og uten cytostatika-inngivning. IL-2 og GM-CSF er imidlertid forskjellig stabile, som som kan føre til problemer ved den direkte administrering av de to komponenter og således til en nedsettelse av det terapeutiske resultat. Granulocyte-macrophage "Colony Stimulating" factor, hereinafter referred to as GM-CSF, on the other hand stimulates granulocyte and macrophage formation from hematopoietic precursor cells. The combination of the two biological activities is interesting for tumor treatment with and without cytostatic administration. However, IL-2 and GM-CSF are differently stable, which can lead to problems with the direct administration of the two components and thus to a reduction in the therapeutic result.

Problemet av den forskjellige stabilitet kan ifølge oppfinnelsen løses ved at man knytter sammen disse to proteiner til et bifunksjonelt protein. According to the invention, the problem of the different stability can be solved by linking these two proteins together to form a bifunctional protein.

Det er allerede foreslått fusjonsproteiner med den generelle formel Ia eller Ib Fusion proteins of the general formula Ia or Ib have already been proposed

til genteknisk fremstilling av eventuelt modifisert GM-CSF, hvori X betyr i det vesentlige aminosyrerekken av de første ca. 100 aminosyrer og fortrinnsvis menneskelig IL-2, Y betyr for the genetic engineering production of possibly modified GM-CSF, in which X essentially means the amino acid sequence of the first approx. 100 amino acids and preferably human IL-2, Y means

en direkte binding, hvis den til det ønskede protein nabo-plasserte aminosyre eller aminosyrerekke muliggjør en avspalting av det ønskede protein, eller ellers et broledd av en eller flere genetiske kodbare aminosyrer som muliggjør avspaltingen og Z er en sekvens av genetisk kodbare aminosyrer, som er det ønskede GM-CSF protein. Man kan herved også i større eller mindre grad utnytte den for IL-2 kodende DNA-sekvens til det siste og derved frembringe biologisk aktivt, eventuelt modifisert, IL-2 som "biprodukt" (EP-A 0 228 018 resp. SA-86/9557). a direct bond, if the amino acid or amino acid series located adjacent to the desired protein enables cleavage of the desired protein, or else a bridge link of one or more genetically coded amino acids that enables the cleavage and Z is a sequence of genetically coded amino acids, which is the desired GM-CSF protein. In this way, the DNA sequence coding for IL-2 can be utilized to a greater or lesser extent and thereby produce biologically active, possibly modified, IL-2 as a "by-product" (EP-A 0 228 018 resp. SA-86 /9557).

Foreliggende oppfinnelse tar sikte på å forbedre den kjente teknikk og angår derved en fremgangsmåte av den innlednings-vis nevnte art og denne fremgangsmåte karakteriseres ved at man legerer en DNA-sekvens som koder for IL-2, en DNA-sekvens som koder for GM-CSF og en DNA-sekvens som koder for broen, i en eksprimeringsvektor, transformerer en vertscelle med dette og eksperimerer og isolerer det tilsvarende bifunksjonelle protein. The present invention aims to improve the known technique and thereby relates to a method of the kind mentioned at the outset, and this method is characterized by combining a DNA sequence that codes for IL-2, a DNA sequence that codes for GM- CSF and a DNA sequence encoding the bridge, in an expression vector, transform a host cell with this and express and isolate the corresponding bifunctional protein.

De ifølge oppfinnelsen fremtilte fusjonsproteiner består altså av to biologisk aktive komponenter, nemlig på den ene side av en IL-2 del som på i og for seg kjent måte kan være modifisert, på den annen side, av en GM-CSF-del som likeledes kan være modifisert og eventuelt et broledd tilsvarende definisjonen Y i de ovenfor angitte formler. Fortrinnsvis tilsvarer anordningen av de to komponenter formel (Ia). Prinsippet ifølge oppfinnelsen kan imidlertid også tjene til fremstilling av andre nye bifunksjonelle proteiner. The fusion proteins produced according to the invention thus consist of two biologically active components, namely on the one hand an IL-2 part which can be modified in a manner known per se, on the other hand, a GM-CSF part which likewise can be modified and possibly a bridge link corresponding to the definition Y in the above stated formulas. Preferably, the arrangement of the two components corresponds to formula (Ia). However, the principle according to the invention can also serve to produce other new bifunctional proteins.

Figuren viser konstruksjonen av plasmidet pB30, som koder for et ifølge oppfinnelsen fremstilt bifunksjonelt protein. The figure shows the construction of the plasmid pB30, which codes for a bifunctional protein produced according to the invention.

Modifikasjoner av IL-2-molekylet er kjent, men det skal her bare henvises til EP-A 0 091 539, 0109 748, 0 118 617, 0 136 489 og 0 163 249. Modifications of the IL-2 molecule are known, but here only reference should be made to EP-A 0 091 539, 0109 748, 0 118 617, 0 136 489 and 0 163 249.

Videre ble det i den ikke tidligere publiserte EP-A 0 219 839 foreslått et IL-2 derivat hvor N-terminal de første syv aminosyrer er deletert. Furthermore, in the not previously published EP-A 0 219 839, an IL-2 derivative was proposed in which the N-terminal first seven amino acids have been deleted.

Modifikasjoner av GM-CSF-molekylet ble foreslått i EP-A 0 228 018. Modifications of the GM-CSF molecule were proposed in EP-A 0 228 018.

Ytterligere modifikasjoner av de to aktive molekyldeler kan foretas på i og for seg kjent måte, idet det her som eksempel bare skal nevnes den spesifike mutagenese. Further modifications of the two active molecular parts can be carried out in a manner known per se, as only the specific mutagenesis should be mentioned here as an example.

Broleddet Y har fordelaktig formel II, The bridge link Y advantageously has formula II,

hvori x betyr et helt tall inntil 20, og AS betyr en ønskelig genetisk kodbar aminosyre med unntak av cystein. where x means an integer up to 20, and AS means a desirable genetically codeable amino acid with the exception of cysteine.

Fortrinnsvis er i formel (II) IL-2-delen anordnet ved den venstre ende og følgelig GM-CSF-delen ved den høyre ende. Preferably, in formula (II) the IL-2 part is arranged at the left end and consequently the GM-CSF part at the right end.

Spesielt foretrukne utformninger av Y har aminosyrerekken -Asp-Pro-Met-Ile-Thr-Thr-Tyr-Ala-Asp-Asp-Pro- eller -Asp-Pro-Met-Ile-Thr-Thr-Tyr-Leu-Glu-Glu-Leu-Thr-Ile-Asp-Asp-Pro- Particularly preferred forms of Y have the amino acid sequence -Asp-Pro-Met-Ile-Thr-Thr-Tyr-Ala-Asp-Asp-Pro- or -Asp-Pro-Met-Ile-Thr-Thr-Tyr-Leu-Glu- Glu-Leu-Thr-Ile-Asp-Asp-Pro-

idet likeledes fortrinnsvis IL-2 delen er anordnet ved den venstre ende, og GM-CSF-delen ved den høyre ende. the IL-2 part being likewise preferably arranged at the left end, and the GM-CSF part at the right end.

Eksprimeringen av de bifunksjonelle proteiner som fremstilles ifølge oppfinnelsen kan foregå på i og for seg kjent måte. I bakterielle eksprimeringssystemer kan man gå via direkte eksprimering. Hertil egner seg alle kjente verts-vektor-systemer med bakterier av typen Streptomyces, B.subtilis, Salmonella tuphymurium eller Serratia marcenscens, spesielt E.coli som verter. The expression of the bifunctional proteins produced according to the invention can take place in a manner known per se. In bacterial expression systems, direct expression can be used. All known host-vector systems with bacteria of the type Streptomyces, B.subtilis, Salmonella tuphymurium or Serratia marcenscens, especially E.coli as hosts, are suitable for this.

DNA-sekvensen som koder for det ønskede protein innbygges på i og for seg kjent måte i en vektor som i det valgte eksprimeringssystem sikrer en god eksprimering. The DNA sequence which codes for the desired protein is incorporated in a manner known per se into a vector which, in the chosen expression system, ensures good expression.

Herved velger man hensiktsmessig promoteren og operatoren fra gruppen trp. lac, tac, Pl eller Pg av fagen \, hsp, omp eller en syntetisk promoter, slik de for eksempel er omtalt i DE-OS 34 30 683 resp. EP-A 0 173 149. Fordelaktig er tac-promoter-operator-sekvensen som i mellomtiden er handelsvanlig (f.eks. eksprimeringsvektor pKK223-3, Pharmacia, "Molecular Biologi-cals, Chemicals and Equipment for molecular Biology", 1984, s. 63). In this way, the promoter and the operator are appropriately selected from the group trp. lac, tac, P1 or Pg of the phage \, hsp, omp or a synthetic promoter, as they are for example described in DE-OS 34 30 683 resp. EP-A 0 173 149. Advantageous is the tac-promoter-operator sequence which is meanwhile commercially available (e.g. expression vector pKK223-3, Pharmacia, "Molecular Biology, Chemicals and Equipment for molecular Biology", 1984, p . 63).

Ved eksprimeringen av proteinet ifølge oppfinnelsen kan det vise seg hensiktsmessig å endre enkelte tripletts av de første aminosyrer etter ATG-start-kodonet for å hindre en eventuell baseparing på nivå med av mRNA. Slike endringer som delesjoner eller addisjoner av enkelte aminosyrer er vanlige for fagfolk, og omfattes likeledes av oppfinnelsen. When expressing the protein according to the invention, it may prove appropriate to change certain triplets of the first amino acids after the ATG start codon to prevent possible base pairing at the level of mRNA. Such changes as deletions or additions of certain amino acids are common to those skilled in the art, and are likewise covered by the invention.

For eksprimering i gjær - fortrinnsvis S.cerevisiae-anvender man hensiktsmessig et sekresjonssystem - eksempelvis den heterologe eksprimering via a-faktorsystemet som er beskrevet flere ganger. For expression in yeast - preferably S. cerevisiae - a secretion system is suitably used - for example the heterologous expression via the α-factor system which has been described several times.

For eksprimeringen av det bifunksjonelle molekylet i gjær er det fordelaktig når i det bifunksjonelle protein de basiske peptidsekvenser samt glykosyleringssteder ødelegges ved tilsvarende utveksling av enkelte aminosyrer. Herved fremkommer mange kombinasjonsmuligheter som også kan påvirke den biologiske virkning. For the expression of the bifunctional molecule in yeast, it is advantageous when in the bifunctional protein the basic peptide sequences and glycosylation sites are destroyed by corresponding exchange of individual amino acids. This creates many combination possibilities that can also affect the biological effect.

Eksprimeringen av IL-2 i gjær er kjent fra EP-A 0 142 568, av GM-CSF fra EP-A 0 188 350. The expression of IL-2 in yeast is known from EP-A 0 142 568, of GM-CSF from EP-A 0 188 350.

Administreringen av de bifunksjonelle proteiner som fremstilles ifølge oppfinnelsen tilsvarer denne av de to komponenter. På grunn av den større stabilitet, er det imidlertid i mange tilfeller mulig med en mindre dosering som holder seg i det nedre området av de hittil foreslåtte doseringer. The administration of the bifunctional proteins produced according to the invention corresponds to this of the two components. Due to the greater stability, however, it is possible in many cases with a smaller dosage that stays in the lower range of the hitherto proposed dosages.

Oppfinnelsen skal forklares nærmere ved hjelp av noen eks-empler. Prosentangivelser og forhold er beregnetpå vekt hvis intet annet er anført. The invention will be explained in more detail with the help of some examples. Percentages and ratios are calculated by weight if nothing else is stated.

Eksempel 1. Example 1.

Plasmidet pl59/6 (EP-A2 0 163 249, fig. 5; (1) i foreliggende figur inneholder, mellom et EcoRI- og et Sall-snittsete, et syntetisk, for IL-2 kodende gen. DNA-sekvensen for dette gen er i nevnte EP-A2 gjengitt som "DNA-sekvens I". I området av triplettene 127 og 128, befinner det seg et Taql-snittsete. Fra dette plasmid skjærer man ut IL-2 delsekvensen (2) ved hjelp av EcoRI og Taql og isolerer den. The plasmid p159/6 (EP-A2 0 163 249, fig. 5; (1) in the present figure contains, between an EcoRI and a SalI cut site, a synthetic IL-2 coding gene. The DNA sequence for this gene is reproduced in said EP-A2 as "DNA sequence I". In the area of triplets 127 and 128, there is a Taql cut site. From this plasmid, the IL-2 subsequence (2) is excised using EcoRI and Taql and isolates it.

Fra EP-A2 0 183 350 kjenner man plasmidet pEG23 (3), som koderer for GM-CSF. GM-CSF-cDNA er gjengitt på fig. 2 i dette EP-A2. Plasmidet pHG23 fåes når man bygger inn cDNA-sekvensen i Pstl-snittsetet av pBR322, idet man på den ene side gjør bruk av Pstl-snittsetet ved 5'-enden, og på den annen side et ved GC-"tailing" innført Pstl-sete ved 3'-enden. Fra dette plasmid isolerer man ved kutting med SfaNI og Pstl DNA-sekvensen (4) som inneholder den største del av CM-CSF-genet. From EP-A2 0 183 350 the plasmid pEG23 (3) is known, which codes for GM-CSF. The GM-CSF cDNA is shown in fig. 2 of this EP-A2. Plasmid pHG23 is obtained when the cDNA sequence is incorporated into the Pstl cut site of pBR322, using on the one hand the Pstl cut site at the 5' end, and on the other hand a Pstl site at the 3' end. From this plasmid, the DNA sequence (4) containing the largest part of the CM-CSF gene is isolated by cutting with SfaNI and Pstl.

Etter fosfitt-metoden syntetiseres følgende oligonukleotid (5): Following the phosphite method, the following oligonucleotide (5) is synthesized:

Oligonukleotidet (5) supplerer DNA-sekvensen av IL-2 ved 5'-enden, hvorved dog Asp. står istedet for Thr i posisjon 133. Ved 3'-enden av dette oligonukleotid finnes nukleotidene som er falt bort ved kutting med SfaNI fra cDNA. The oligonucleotide (5) supplements the DNA sequence of IL-2 at the 5' end, whereby however Asp. stands instead of Thr in position 133. At the 3' end of this oligonucleotide are found the nucleotides that have been lost by cutting with SfaNI from the cDNA.

Fremstillingen av eksprimeringsplasmidet pEWlOOO (6) er foreslått i (det ikke tidligere publiserte) EP-A 0 227 938 (fig. 1). Dette plasmid er et derivat av plasmidet ptac 11 (Amann et al., "Gene" 25 (1983) 167-178), hvor det i gjen-kjennelsesetet for EcoRI ble bygget inn en syntetisk sekvens som inneholder et SalI-snittsted. Man får således eksprimeringsplasmidet pKK 177.3. Ved inskyting av lac-repressoren (Farabaugh, "Nature" 274 (1978) 765 - 769) får man plasmidet pJF 118. Dette åpnes ved det singulære restriksjonssnittsete for Aval og forkortes på kjent måte med eksonukleasebehandl-ing rundt ca. 100o bp og ligeres. Man får plasmidet pEWlOOO (6) . Ved åpning av dette plasmid i polylinker med enzymene EcoRI og Pstl får man det lineariserte eksprimeringsplasmid (7) . The preparation of the expression plasmid pEW1000 (6) is proposed in (not previously published) EP-A 0 227 938 (Fig. 1). This plasmid is a derivative of the plasmid ptac 11 (Amann et al., "Gene" 25 (1983) 167-178), where a synthetic sequence containing a SalI cut site was built into the recognition site for EcoRI. The expression plasmid pKK 177.3 is thus obtained. By inserting the lac repressor (Farabaugh, "Nature" 274 (1978) 765 - 769), the plasmid pJF 118 is obtained. This is opened at the singular restriction site for Aval and shortened in a known manner with exonuclease treatment around approx. 100o bp and ligated. The plasmid pEWlOOO (6) is obtained. By opening this plasmid in polylinker with the enzymes EcoRI and PstI, the linearized expression plasmid (7) is obtained.

Dette lineariserte plasmid-DNA (7) ligeres nu med DNA-fragmentet (2) som koder for IL-2 sekvensen, med syntetiske oligonukleotid (5) og med cDNA-fragmentet (4). Man oppnår plasmidet pB30 (8), som transformeres i E.coli-stammen Mcl061. Plasmid-DNA av enkelte kloner isoleres og karakteriseres ved restriksjonsanalyse. This linearized plasmid DNA (7) is now ligated with the DNA fragment (2) that codes for the IL-2 sequence, with synthetic oligonucleotide (5) and with the cDNA fragment (4). The plasmid pB30 (8) is obtained, which is transformed in the E.coli strain Mcl061. Plasmid DNA of individual clones is isolated and characterized by restriction analysis.

Eksempel 2. Example 2.

Anvender man i eksempel 1 istedet for oligonukleotidet (5) følgende syntetiske oligonukleotid In example 1, instead of the oligonucleotide (5), the following synthetic oligonucleotide is used

så får man plasmidet pB31. then you get the plasmid pB31.

Eksempel 3. Example 3.

Kompetente celler av E.coli-stammen W3110 transformeres med plasmidet pB30 eller pB31. En overnattskultur av stammen fortynnes med LB-medium (J.H.Miller, "Esperiments in Molec-Gen.", Cold Spring Harbor Lab., 1972), som inneholder 50 pg/ml ampicillin i forhold på ca. 1:100, og veksten følges ved OD-måling. Ved OD = 0,5 innstilles kulturen på en konsentrasjon av 2mM isopropyl-p<->D-tiogalaktopyranosid (IPTG) og bakteriene sentrifugeres av etter 150-180 minutter. Bakteriene behandles ca. 5 minutter i en bufferblanding (7M, urinstoff, 0, 1% SDS, 0, IM natriumfosfat, pH 7 , 0 ), og prøver bringes på en SDS-gelelektroforeseplate. Eksprimeringen av det bifunksjonelle protein bekreftes dermed. Competent cells of E.coli strain W3110 are transformed with plasmid pB30 or pB31. An overnight culture of the strain is diluted with LB medium (J.H. Miller, "Esperiments in Molec-Gen.", Cold Spring Harbor Lab., 1972), which contains 50 pg/ml ampicillin in a ratio of approx. 1:100, and the growth is followed by OD measurement. At OD = 0.5, the culture is adjusted to a concentration of 2mM isopropyl-p<->D-thiogalactopyranoside (IPTG) and the bacteria are centrifuged off after 150-180 minutes. The bacteria are treated approx. 5 min in a buffer mixture (7M, urea, 0.1% SDS, 0, IM sodium phosphate, pH 7.0), and samples are brought onto an SDS gel electrophoresis plate. The expression of the bifunctional protein is thus confirmed.

De angitte betingelser gjelder for ristekulturer ved større fermenteringer, der det hensiktsmessig tilsvarende endrede OD-verdiern, næringsmedium og varierte IPTG-konsentrasjoner. The specified conditions apply to shaking cultures for larger fermentations, where the OD value, nutrient medium and varied IPTG concentrations are suitably changed accordingly.

Eksempel 4. Example 4.

Etter induksjon frafiltreres E.coli W3110-celler som inneholder plasmidet pB30 eller pB31, disse resuspenderes i natrium-fosfatpuffer pH (7), og sentrifugeres fra igjen. Bakteriene opptas i den samme buffer, og oppsluttes deretter (French Press, "Dyno-Miihle"). Celleoppslutningen sentrifugeres fra og supernatant og sediment analyseres ved hjelp av SDS-poly-akrylamid-elektroforese som beskrevet i eksempel 3. Etter farging av proteinbåndet viser det seg at det bifunksjonelle protein finnes i sedimentet av oppslutningen. Sedimentet vaskes flere ganger med chaotrope buffere og til slutt med vann, idet det ønskede protein anrikes videre. I den vandige proteinsuspensjon bestemmes deretter proteinkonsentrasjonen. Suspensjonen innstilles nu på en konsentrasjon på 5M guanidi-niumhydroklorid og 2 mM ditiotreitol (DTT). Blandingen omrøres ca. 30 minutter under nitrogen, og fortynnes deretter med 50 mM tris-buffer (pH 8,5) slik at proteinkonsentrasjonen gir 100 jjg/ml. Man dialyserer så mot denne tris-buffer, og etter to gangers bufferveksel dialyserer man mot vann. Det således behandlede protein sterilfiltreres og undersøkes for sin biologiske aktivitet. Det viser full biologisk virkning såvel i den interleukin-2-avhengige CTLL-2-celleproliferas-jonsprøve som også i human benmargsprøve. Blandede kolonier av granulocytter og makrofater iakttas derved. After induction, E.coli W3110 cells containing the plasmid pB30 or pB31 are filtered out, these are resuspended in sodium phosphate buffer pH (7), and centrifuged again. The bacteria are taken up in the same buffer, and then digested (French Press, "Dyno-Miihle"). The cell digest is centrifuged and the supernatant and sediment are analyzed using SDS-polyacrylamide electrophoresis as described in example 3. After staining the protein band, it turns out that the bifunctional protein is found in the sediment of the digest. The sediment is washed several times with chaotropic buffers and finally with water, as the desired protein is further enriched. In the aqueous protein suspension, the protein concentration is then determined. The suspension is now adjusted to a concentration of 5M guanidinium hydrochloride and 2 mM dithiothreitol (DTT). The mixture is stirred for approx. 30 minutes under nitrogen, and then diluted with 50 mM tris buffer (pH 8.5) so that the protein concentration is 100 µg/ml. You then dialyze against this tris buffer, and after changing the buffer twice, you dialyze against water. The thus treated protein is sterile filtered and examined for its biological activity. It shows full biological effect both in the interleukin-2-dependent CTLL-2 cell proliferation test and also in the human bone marrow test. Mixed colonies of granulocytes and macrophages are thereby observed.

Det bifunksjonelle protein kan renses videre over interleukin-2-spesifikk affinitetskromatografi. Proteinet er også da aktivt i begge prøver. Et E.coli-ekstrakt av den ikke-transformerte stamme W3110 som ble behandlet som omtalt, viser derimot ingen aktivitet. The bifunctional protein can be further purified by interleukin-2-specific affinity chromatography. The protein is also then active in both samples. An E.coli extract of the non-transformed strain W3110 which was treated as discussed, however, shows no activity.

For den tekniske fremstilling av produktet er det hensiktsmessig med andre betingelser, for eksempel for holding av protein og dets rensing. Som i og for seg kjente rensemetoder kan man benytte ionebytting og adsorbsjon, gelfiltrering og preparativ HPLC-kromatografi. For the technical preparation of the product, other conditions are appropriate, for example for holding protein and its purification. As purification methods known per se, ion exchange and adsorption, gel filtration and preparative HPLC chromatography can be used.

Claims (4)

1. Fremgangsmåte for fremstilling av bifunksjonelle proteiner bestående av en aktiv interleukin-2- og granulocytt-makrofag-koloni-stimulerende-faktor (GM-CSF)-del, idet de to biologisk aktive proteindeler er knyttet sammen over en bro av 1 til ca. 20 genetisk kodbare aminosyrer, karakterisert ved at man legerer en DNA-sekvens som koder for IL-2, en DNA-sekvens som koder for GM-CSF og en DNA-sekvens som koder for broen, i en eksprimeringsvektor, transformerer en vertscelle med dette og eksperimerer og isolerer det tilsvarende bifunksjonelle protein.1. Process for producing bifunctional proteins consisting of an active interleukin-2 and granulocyte-macrophage-colony-stimulating-factor (GM-CSF) part, the two biologically active protein parts being linked together via a bridge of 1 to approx. 20 genetically codeable amino acids, characterized in that a DNA sequence that codes for IL-2, a DNA sequence that codes for GM-CSF and a DNA sequence that codes for the bridge are joined in an expression vector, transforms a host cell with this and experiments and isolates the corresponding bifunctional protein. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at broen har formelen der x betyr et helt tall fra 1-18, og As betyr en genetisk kodbar aminosyre med unntak av Cys.2. Method according to claim 1, characterized in that the bridge has the formula where x means an integer from 1-18, and As means a genetically codeable amino acid with the exception of Cys. 3. Fremgangsmåte ifølge krav 2, karakterisert ved at broleddet (As)x står for aminosyrerekken eller3. Method according to claim 2, characterized in that the bridge link (As)x stands for the amino acid sequence or 4 . Fremgangsmåte ifølge et hvilket som helst av kravene 2 til 4, karakterisert ved at IL-2-delen er anordnet N-terminalt og GM-CSF-delen er anordnet C-terminalt.4. Method according to any one of claims 2 to 4, characterized in that the IL-2 part is arranged N-terminally and the GM-CSF part is arranged C-terminally.
NO881658A 1987-04-16 1988-04-15 Process for the preparation of bifunctional proteins NO176922C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873712985 DE3712985A1 (en) 1987-04-16 1987-04-16 BIFUNCTIONAL PROTEINS

Publications (4)

Publication Number Publication Date
NO881658D0 NO881658D0 (en) 1988-04-15
NO881658L NO881658L (en) 1988-10-17
NO176922B true NO176922B (en) 1995-03-13
NO176922C NO176922C (en) 1995-06-21

Family

ID=6325799

Family Applications (1)

Application Number Title Priority Date Filing Date
NO881658A NO176922C (en) 1987-04-16 1988-04-15 Process for the preparation of bifunctional proteins

Country Status (20)

Country Link
EP (1) EP0288809B1 (en)
JP (1) JP2667193B2 (en)
KR (1) KR970000187B1 (en)
AR (1) AR242991A1 (en)
AT (1) ATE79135T1 (en)
AU (1) AU613022B2 (en)
CA (1) CA1322157C (en)
DE (2) DE3712985A1 (en)
DK (1) DK170741B1 (en)
ES (1) ES2033981T3 (en)
FI (1) FI98830C (en)
GR (1) GR3006141T3 (en)
HU (1) HU204303B (en)
IE (1) IE61574B1 (en)
IL (1) IL86086A (en)
NO (1) NO176922C (en)
NZ (1) NZ224247A (en)
PH (1) PH25327A (en)
PT (1) PT87237B (en)
ZA (1) ZA882659B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662896A (en) * 1988-03-21 1997-09-02 Chiron Viagene, Inc. Compositions and methods for cancer immunotherapy
US5225538A (en) * 1989-02-23 1993-07-06 Genentech, Inc. Lymphocyte homing receptor/immunoglobulin fusion proteins
US6406697B1 (en) 1989-02-23 2002-06-18 Genentech, Inc. Hybrid immunoglobulins
US5116964A (en) * 1989-02-23 1992-05-26 Genentech, Inc. Hybrid immunoglobulins
WO1990012877A1 (en) * 1989-04-19 1990-11-01 Cetus Corporation Multifunctional m-csf proteins and genes encoding therefor
ES2055445T3 (en) * 1989-08-22 1994-08-16 Immunex Corp FUSION PROTEINS INCLUDING GM-CSF AND IL-3.
US5108910A (en) * 1989-08-22 1992-04-28 Immunex Corporation DNA sequences encoding fusion proteins comprising GM-CSF and IL-3
US5073627A (en) * 1989-08-22 1991-12-17 Immunex Corporation Fusion proteins comprising GM-CSF and IL-3
US5376367A (en) * 1991-11-22 1994-12-27 Immunex Corporation Fusion proteins comprising MGF and IL-3
US5723125A (en) * 1995-12-28 1998-03-03 Tanox Biosystems, Inc. Hybrid with interferon-alpha and an immunoglobulin Fc linked through a non-immunogenic peptide
DE69824039T2 (en) 1997-12-08 2005-08-18 Lexigen Pharmaceuticals Corp., Lexington HETERODIMARY FUSION PROTEINS FOR THE USE OF TARGETED IMMUNOTHERAPY AND GENERAL IMMUNE REGION
SK782002A3 (en) 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
BR0013231A (en) 1999-08-09 2002-07-23 Lexigen Pharm Corp Multiple cytokine-antibody complexes
WO2001040311A1 (en) * 1999-11-30 2001-06-07 Shionogi & Co., Ltd. Chemokine slc-il2 fused protein and gene thereof
ES2269366T3 (en) 2000-02-11 2007-04-01 Merck Patent Gmbh IMPROVEMENT OF AVERAGE LIFE IN CIRCULATION OF FUSION PROTEINS BASED ON ANTIBODIES.
BR0207854A (en) 2001-03-07 2004-08-24 Merck Patent Gmbh Expression technology for proteins containing a hybrid isotype antibody moiety
US6992174B2 (en) 2001-03-30 2006-01-31 Emd Lexigen Research Center Corp. Reducing the immunogenicity of fusion proteins
DE60239454D1 (en) 2001-05-03 2011-04-28 Merck Patent Gmbh RECOMBINANT, TUMOR-SPECIFIC ANTIBODY AND ITS USE
NZ532027A (en) 2001-10-10 2008-09-26 Neose Technologies Inc Remodeling and glycoconjugation of peptides
ES2381025T3 (en) 2001-12-04 2012-05-22 Merck Patent Gmbh Immunocytokines with modulated selectivity
JP4494977B2 (en) 2002-12-17 2010-06-30 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Humanized antibody (H14.18) of mouse 14.18 antibody that binds to GD2 and its IL-2 fusion protein
EP1648931B1 (en) * 2003-07-21 2011-02-09 Transgene S.A. Multifunctional cytokines
DE602004031341D1 (en) 2003-07-21 2011-03-24 Transgene Sa MULTIFUNCTIONAL CYTOKINE
WO2010001414A1 (en) * 2008-07-03 2010-01-07 Lupin Limited Expression of heterologous proteins in bacterial system using a gm-csf fusion tag

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000817A1 (en) * 1983-08-10 1985-02-28 Amgen Microbial expression of interleukin ii
GB8327880D0 (en) * 1983-10-18 1983-11-16 Ajinomoto Kk Saccharomyces cerevisiae
EP0158198A1 (en) * 1984-03-29 1985-10-16 Takeda Chemical Industries, Ltd. DNA and use thereof
WO1985004673A1 (en) * 1984-04-10 1985-10-24 Takeda Chemical Industries, Ltd. Novel dna and its use
DE3419995A1 (en) * 1984-05-29 1985-12-05 Hoechst Ag, 6230 Frankfurt GENE TECHNOLOGICAL METHOD FOR PRODUCING HUMAN INTERLEUKIN-2 AND MEANS FOR CARRYING OUT THIS METHOD
AU588819B2 (en) * 1984-10-29 1989-09-28 Immunex Corporation Cloning of human granulocyte-macrophage colony stimulating factor gene
JPS61128889A (en) * 1984-11-27 1986-06-16 Green Cross Corp:The Recombinant dna and transformant by same
JPH0646957B2 (en) * 1985-03-11 1994-06-22 武田薬品工業株式会社 Method for producing interleukin-2
EP0238655A4 (en) * 1985-10-03 1989-09-11 Biogen Nv Human granulocyte-macrophage colony stimulating factor-like polypeptides and processes for producing them in high yields in microbial cells.
DE3541856A1 (en) * 1985-11-27 1987-06-04 Hoechst Ag EUKARYOTIC FUSION PROTEINS, THEIR PRODUCTION AND USE, AND MEANS FOR CARRYING OUT THE PROCESS
DE3545568A1 (en) * 1985-12-21 1987-07-16 Hoechst Ag GM-CSF-PROTEIN, ITS DERIVATIVES, PRODUCTION OF SUCH PROTEINS AND THEIR USE

Also Published As

Publication number Publication date
ES2033981T3 (en) 1993-04-01
NO881658D0 (en) 1988-04-15
PT87237A (en) 1988-05-01
FI98830C (en) 1997-08-25
AR242991A1 (en) 1993-06-30
JPS63301898A (en) 1988-12-08
DE3873397D1 (en) 1992-09-10
NO881658L (en) 1988-10-17
IL86086A (en) 1995-01-24
NZ224247A (en) 1990-04-26
KR970000187B1 (en) 1997-01-06
DK170741B1 (en) 1996-01-08
FI881743A0 (en) 1988-04-14
IE881146L (en) 1988-10-16
DK209188D0 (en) 1988-04-15
HU204303B (en) 1991-12-30
NO176922C (en) 1995-06-21
AU1466188A (en) 1988-10-20
PH25327A (en) 1991-04-30
ZA882659B (en) 1988-10-14
DK209188A (en) 1988-10-17
EP0288809A1 (en) 1988-11-02
FI98830B (en) 1997-05-15
ATE79135T1 (en) 1992-08-15
CA1322157C (en) 1993-09-14
GR3006141T3 (en) 1993-06-21
KR880012760A (en) 1988-11-29
AU613022B2 (en) 1991-07-25
HUT47319A (en) 1989-02-28
DE3712985A1 (en) 1988-11-03
IE61574B1 (en) 1994-11-16
FI881743A (en) 1988-10-17
IL86086A0 (en) 1988-09-30
PT87237B (en) 1992-07-31
EP0288809B1 (en) 1992-08-05
JP2667193B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
NO176922B (en) Process for the preparation of bifunctional proteins
US5359035A (en) Bifunctional proteins including interleukin-2 (IL-2) and granuloctyte macrophage colony stimulating factor (GM-CSF)
JP3115318B2 (en) Fusion protein containing GM-CSF and IL-3
SU1604164A3 (en) Method of producing hybride interferon
US20080064066A1 (en) Modified human granulocyte-colony stimulating factor and process for producing same
IE64202B1 (en) Fusion proteins comprising gm-csf and il-3
EP0165654A2 (en) Purified interleukin 1
WO1990010070A1 (en) Il-2 analogs containing n-linked glycosylation sites
AU621051B2 (en) Method for purifying granulocyte-macrophage colony stimulating factor
US5047504A (en) Method for purifying granulocyte-macrophage colony stimulating factor
RU2708556C1 (en) RECOMBINANT PLASMID DNA p280_2GM CODING POLYPEPTIDE WITH PROPERTIES OF GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR OF HUMAN, STRAIN ESCHERICHIA COLI SG 20050/p280_2GM - PRODUCER OF POLYPEPTIDE WITH PROPERTIES OF GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR OF HUMAN AND METHOD OF OBTAINING OF SAID POLYPEPTIDE
KR960016705B1 (en) Novel polypeptides and dna encoding the said polypeptides
US4851512A (en) Novel human interleukin-2 polypeptide derivative
JPS62502305A (en) How to improve polypeptide production
JPH0923883A (en) Method of producing living organism activity beta -ngf by gene control
RU2326169C1 (en) RECOMBINANT PLASMID DNA pA3GF CODING POLYPEPTIDE OF HUMAN GRANULOCYTE COLONY-STIMULATING FACTOR, AND Escherichia BACTERIA RACE coli-PRODUCER OF HUMAN GRANULOCYTE COLONY-STIMULATING FACTOR POLYPEPTIDE
RU2048521C1 (en) Method of preparing polypeptide showing human lymphotoxin property
JP3003135B2 (en) Expression vector for polypeptide and method for producing polypeptide
RU2091488C1 (en) Recombinant plasmid dna p280 gm encoding polypeptide showing property of human granulocyte-macrophage colony-stimulating factor, strain of eschcerichia coli sg 20050/p 280 gm - a producer of polypeptide showing property of human granulocyte-macrophage colony-stimulating factor
RU2113483C1 (en) Recombinant plasmid dna pggf-8 encoding polypeptide showing properties of human granulicytic colony-stimulating factor and the strain of bacterium escherichia coli - producer of polypeptide showing properties of human granulocytic colony-stimulating factor

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees

Free format text: LAPSED IN OCTOBER 2003