WO1985004673A1 - Novel dna and its use - Google Patents

Novel dna and its use Download PDF

Info

Publication number
WO1985004673A1
WO1985004673A1 PCT/JP1984/000181 JP8400181W WO8504673A1 WO 1985004673 A1 WO1985004673 A1 WO 1985004673A1 JP 8400181 W JP8400181 W JP 8400181W WO 8504673 A1 WO8504673 A1 WO 8504673A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
peptide
recognition site
antibody recognition
human
Prior art date
Application number
PCT/JP1984/000181
Other languages
French (fr)
Japanese (ja)
Inventor
Masaharu Senoo
Haruo Onda
Koichi Igarashi
Original Assignee
Takeda Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries, Ltd. filed Critical Takeda Chemical Industries, Ltd.
Priority to PCT/JP1984/000181 priority Critical patent/WO1985004673A1/en
Priority to JP60075910A priority patent/JPS61181380A/en
Publication of WO1985004673A1 publication Critical patent/WO1985004673A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity

Definitions

  • the present invention has a DNA having a structural gene encoding a peptide including an antibody recognition site and a structural gene encoding a peptide of human interleukin 2; DNA, a plasmid incorporating the DNA, a transformant transformed with the plasmid, binding of a peptide containing an antibody recognition site to a peptide of human interleukin 2
  • the present invention relates to a polypeptide obtained and a method for producing the polypeptide using the transformant.
  • Ig ⁇ immunoglobulin E
  • Ig ⁇ immunoglobulin E
  • Interleukin 2 (hereinafter sometimes abbreviated as IL-2). Previously it was called T cell growth factor (TCGF). J is a lymphokine produced by a T cell stimulated with a lectin-Paro antigen or the like [Sciense 1993, 1007 197 6) Immunological Review 51, 25 7 (1998) 0)].
  • IL-12 not only allows T cells to be expanded while retaining their functions at the mouth of the mouth to maintain the long-term age, but also promotes the mitogen response of thymocytes to date ( It has the activity to restore the antibody-producing ability of splenocytes of costimulator-null mice to ⁇ cell-dependent antigens (: ⁇ cell replacement factor-1) and to promote the differentiation and proliferation of killer cells (killer factor> killer cell).
  • ⁇ cell replacement factor-1 ⁇ cell-dependent antigens
  • the present invention ligates a DNA having a structural gene encoding a peptide containing an antibody recognition site to a human interleukin 2 (a DNA having a structural gene encoding a peptide of human IL-12).
  • DNA said DN A plasmid into which A has been integrated, a transformant transformed with the plasmid, a polypeptide obtained by binding a peptide containing an antibody recognition site to a peptide of human IL- 12 , and the transformation
  • the present invention relates to a method for producing the polypeptide using a body.
  • the present inventors have produced a complex of a heterologous protein of human I and human IL-2 using a genetic engineering technique, and found that the complex has the immunogenicity of human IgE. It has been found that it has both the antigenic properties of human IL-1 and human IL-12, and as a result of further research based on this, the present invention was completed.
  • the present invention provides (1) a DNA having a structural gene encoding a peptide containing an antibody recognition site and an I) NA having a structural gene encoding a human IL-2 peptide, DNA linked in the open reading frame, (2), DNA having a structural gene encoding a peptide containing an antibody recognition site, and DNA having a structural gene encoding a human IL-2 peptide (3), DNA having a structural gene encoding a peptide including an antibody recognition site, and human IL- 2.
  • a transformant transformed with a plasmid incorporating DNA which is obtained by joining DNAs encoding structural peptides encoding the same peptides in the same reading frame, (4), antibody recognition site And peptides containing With IL- 2 peptide ( 5 ) a DNA having a structural gene encoding a peptide containing an antibody recognition protein and a DNA having a structural gene encoding a peptide of human IL-2,
  • the transformant transformed with the plasmid into which the linked DNAs are aligned and ligated together is cultured in a culture medium, and the peptide containing the antibody recognition site and human IL-12 are cultured in the culture.
  • This is a method for producing the polypeptide comprising producing and accumulating a polypeptide which is bound to the polypeptide, and collecting the produced polypeptide.
  • a peptide containing an antibody recognition site is human IgE, and a polypeptide in which this is bound to a human IL-12 peptide is referred to as immunogleukirg (Immunogleukirg EC22; It may be simply abbreviated as IGL-EC22.
  • Examples of the peptide having an antibody recognition site in the present invention include a peptide having an anti-human immunoglobulin E antibody recognition site.
  • Examples of the peptide containing the anti-human Ig antibody recognition site include a peptide containing all or a part of the human IgE chain.
  • the portion of the human IgE heavy chain is one of the peptide chains constituting the human IgE molecule, and the molecule is composed of one pair of H chains and one pair of L chains. It has been known. Therefore, examples of the structural gene encoding a peptide containing an antibody recognition site include a structural gene encoding a peptide containing all or a part of a human IgE H chain.
  • Examples of structural genes encoding peptides containing all or a part of the Ig chain include, for example, Japanese Patent Application Laid-Open No. 59-44399, Cell vol. 29, 691 (1989) 2, Nucleic Acids Research 1, 719 [1 983], Nucleic Acids Research 11, 3077 198 3), EMBO The European Molecular Biology Organization Journal l_, 655 (1992) and the like.
  • the human IL-2 peptide of the present invention refers to a peptide having human IL-2 activity. As long as it has the activity, it may be a peptide shorter than human IL-2.
  • Examples of the structural gene encoding the peptide of the human IL-2 include, for example, Japanese Patent Application No. 225,079 (Showa 58, 1983) Date application :), Japanese patent application No. 235638 (Showa 58 (1980), filed on February 13, 1980), Nature vol. 302, p. 305 (1 983) , Biochemical and Biophysical Research Com- muni cations vol 109, 2, p.363 (1 9 82 ⁇ , Nucleic Acids Research ll, 4307 (1 9 8 3 J) are described, for example:. DNA force; mentioned are c above The DNA encoding the peptide of human IL-2 described in Japanese Patent Application No.
  • AAT AAT TAC AAG AA CCC AAA CTC ACC AQG A G CTC ACA ⁇ AAG ⁇ ⁇ TAC ATG OCC AAG AAG GCC ACA GAA CTG AAA
  • NA (V) can be mentioned c this;
  • DNA (V) that in the 5 'terminal ATG or the formula codon S. 1 to S 2 0 May be present, and preferably has TAA.
  • Leu Glu Hi s Leu Leu Leu Asp Leu Gin Met lie Leu Asn Gly lie Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met
  • X represents Met or hydrogen. It encodes a peptide represented by the following formula. Further, it encodes a peptide of human IL-2 described in Japanese Patent Application No. 58356/1983.
  • NA is the formula
  • Z represents an amino acid residue other than Ser or hydrogen.
  • the codon indicated by X is a codon encoding a amino acid constituting a part of ⁇ (where X is Ser)
  • Any of L which is not a translation termination codon and a translation termination codon, may be used, and may further have one or more codons encoding an amino acid at the 5 'end thereof. Is particularly preferably ATG.
  • the codon represented by Y may be any translation termination codon or any codon that encodes an amino acid that forms part of a polypeptide having substantially the same activity as human IL-2. And may further have one or more codons encoding an amino acid at the 3 'end thereof When the codon represented by Y is a codon other than the translation termination codon (and further at the 3 ' end thereof) (Including one or more amino acid-encoding codons) preferably has a translation termination codon at the end.
  • the codon indicated by Y may be TAA, TAG or T More preferred, and particularly preferred is TGA.
  • the amino acid residue other than Ser represented by Z may be an amino acid residue that is part of a polypeptide having substantially the same activity as human IL-12. Any of these may be used, for example, the amino acid residues shown in Table 1 (excluding Ser), and further on the N-terminal side thereof, for example, the amino ⁇ group shown in Table 1 or these amino acid residues May be included. Particularly, ⁇ is preferably Met or.
  • a DNA having a structural gene encoding a peptide containing an antibody recognition site and a DNA having a structural gene encoding a peptide of human IL-2 are ligated in the same reading frame. The ligation may be performed according to a known method. For example, one T3 DNA ligase is used to ligate one 3OH end of NA to the 5 P end of the other DNA in the presence of ATP.
  • a linker is interposed between the two genes.
  • the linker for example, EcoRI linker (pCTAGAATTCTAG) and the like can be used, and those available from New England Biolabs (USA) and other commercially available linkers can be used.
  • the linker can be ligated by terminating the gene with blunt ends using Escherichia coli polymerase I (large fragment or Si nuclease), and linking the terminus with the terminus of the linker using T4 DNA ligase. It is necessary to digest with a restriction enzyme to make it sticky to remove overlapping linkages between linkers, etc.
  • restriction enzyme varies depending on the type of linker, for example, EcoRJ Linker
  • the restriction enzyme used is EcoRI, and the resulting sticky ends are used to ligate the two genes together using T4 DNA ligase to obtain one DNA via a linker.
  • the order of the two structural genes to be linked downstream of the promoter is such that the structural gene encoding the peptide containing the antibody recognition site downstream of the promoter and then the human IL-12 structural gene are used. Alternatively, it is ligated downstream of the promoter so as to be a structural gene for human IL-2 and then a structural gene encoding a peptide containing an antibody recognition site.
  • the order of connection of the two members other than the mouth motor is not particularly limited, but it is essential that the promoter is connected at the most upstream position.
  • the promoter includes, for example, tryptophan synthesis (trp promoter s' motor, recA promoter-lactomer promoter, etc., and trp promoter is particularly preferable.
  • a translation initiation codon ATG is added to the 5 terminus of the gene to be expressed using an appropriate linker, and this is linked to the 3 'terminus of the promoter.
  • T ligase is generally used, and the treatment method is the same as described above. It is desirable that an appropriate restriction enzyme recognition site is provided downstream of the promoter.
  • a plasmid is used as a vector, and the plasmid is incorporated into the plasmid.
  • a plasmid as the vector for example, pBR32 2 [Gene 2_, 95 (1977)]:! Derived from CollEI is the most commonly used force ⁇ other plasmids. Any of those that can be expressed efficiently can be used, for example, ptrp781 and ptrp771 incorporating a triptophan synthesis promoter.
  • the 1NA of plasmid is treated with an appropriate restriction enzyme to form a linear form. ⁇ Connect A with T ligase.
  • a host bacterium is transformed with the thus-obtained plasmid into which DNA is ligated, and a transformant is produced.
  • Examples of the host bacteria include Escherichia bacteria, Bacillus subtilis, yeast, and the like, and particularly preferred are Escherichia bacteria. Said Escherichia sp.
  • E. coli Esscherichia coli DH1 strain Nature 217,
  • Examples of a method for transforming a host cell with the plasmid include a calcium method and a protoplast method, with the calcium method being particularly preferred.
  • Example 1 As an example of the transformant obtained by the above method, the transformant produced in Example 1 described below was used. ichi a co 1 i DH lZ p GJEL 1028.
  • the microorganism was found in the Fermentation Research Institute (IFO, 532) at 18-17-85, Jusanhoncho, Yodogawa-ku, Osaka-shi, Japan. The deposit was deposited on March 27 as accession number IFO 14332, and the microorganism was submitted to the Research Institute of Microorganisms and Industrial Technology of the Ministry of International Trade and Industry of Japan (FRI, 2005) in Yatabe-cho, Tsukuba-gun, Ibaraki, Japan. It was deposited on 1-chome 1-3, as accession number f, ERM J-7568 according to March 29, 1894 AD.
  • a liquid medium is suitable, in which a carbon source, a nitrogen source, an inorganic substance, and the like necessary for growth of the transformant are included. It is included.
  • carbon sources include glucose, dextrin, soluble starch, and sucrose
  • nitrogen sources include ammonium salts, nitrates, corn chip-liquor, leptone, casein, meat extract, and the like.
  • Inorganic or organic substances such as soybean meal and barley extract, and examples of inorganic substances include calcium chloride, sodium dihydrogen phosphate, and magnesium chloride.
  • yeast extract, vitamins, growth promoting factor and the like may be added.
  • a medium containing about 0.1 ⁇ 3 ⁇ 4 of calcium chloride • dihydrate and about 2% of sodium dihydrogen phosphate 'dihydrate is advantageous for production of the desired product.
  • Conditions such as temperature, pH, and time for culturing are such that the production of the target product and its activity are maximized.
  • the culture temperature is around 20 to 40 ° C
  • the culture pH is from acidic to slightly alkaline, and especially around neutral
  • the culture time is from 6 to 10 ° C. About an hour.
  • the target polypeptide is usually accumulated in the cells, so to collect the polypeptide accumulated in the culture, the cells are first collected by centrifugation or filtration. This is done by extracting the polypeptide.
  • ultrasonic treatment, J ′ zyme treatment, treatment with a chemical such as a surfactant, or the like is performed.
  • Purification of the polypeptide extracted in this manner can be performed by a conventional protein or peptide purification method such as ammonium sulfate precipitation, alcohol precipitation, ion exchange column chromatography, cellulose column chromatography, or the like. This is performed by applying a gel filtration method or the like.
  • the DNA obtained in Example 1, which will be described later, is a DNA containing a polynucleotide having a nucleotide sequence shown in FIG.
  • the polynucleotide shown as the nucleotide sequence 9-356 in FIG. 1 is the polypeptide represented by the amino acid sequence 3—118 in FIG. 2, that is, the human Ig_E H chain. Encoding the C2 region of
  • the polynucleotide shown in FIG. 1 as the nucleotide sequence 369—767 is a polypeptide represented as the amino acid sequence 123—255 in FIG. 2, that is, a human. Code IL-2. These polynucleotides may have an ATG so as to match the open reading frame to the 5 'end for direct expression. In this case, a polypeptide having Met at the N-terminus is encoded.
  • polynucleotides are used to match the reading frame
  • OMPI It may have any intervening sequence.
  • this intervening sequence is shown as the nucleotide sequence 357-368. In this case,
  • the polypeptide obtained by binding the peptide containing the antibody recognition site and the human IL-2 peptide obtained by the method of the present invention is useful as a reagent for purifying the human IL-2 antibody.
  • IGL-EC22 comprising the above amino acid sequence obtained by the method of the present invention has both the antigenicity of human IgE and the antigenicity of human IL-2. Therefore, IGL-EC22 was purified using an anti-human IgE antibody, and an anti-human IL-2 antibody was prepared using the purified IGL-C22. It can be used as a medium for a series of human IL-12 purification processes in which human IL-12 is purified using an anti-human IL-2 antibody.
  • the force of Azukasuru I GL- EC 2 2 force directly related is when purifying Kohi Bok IL- 2 antibody; a method of making and purifying such unknown antibodies exceptional without It is greatly expected as a new technology for antibody purification.
  • IGL-EC22 has both immunological and biological St life of human IgE involved in the allergic reaction and human IL-12 having T cell proliferating action. It is expected to have an unknown third activity.
  • the purification of the human IL-2 antibody the following method is performed. First, an anti-human Ig ⁇ antibody and agarose gel beads (Bio-Had
  • bases, amino acids, and the like are indicated by abbreviations based on the abbreviations of the IUPAC-I UB Commission on Biochemical Nomenclature or commonly used abbreviations in the relevant field. It is listed in the table.
  • the L-isomer shall be indicated unless otherwise specified.
  • H is histidine P he feniralanin
  • FIG. 1 shows a DNA having a structural gene encoding a peptide of human Ig ⁇ and a DN having a structural gene encoding a peptide of human IL-2.
  • Fig. 2 shows the nucleotide sequence of the DNA linked to A
  • Fig. 2 shows the amino acid sequence corresponding to the nucleotide sequence shown in Fig. 1
  • Fig. 3 shows the construction of Reference Example 1
  • Fig. 4 Shows the grooves of Reference Example 2).
  • Fig. 5 shows an embodiment
  • the DNA 1 of plasmid pGET trp 302 constructed in ten thousand method described in Japanese JP-5 9 4 4 3 9 9 No. cleaved with Clal, cut sticky ends at both ends by performing an S iota nuclease digestion was.
  • This DNA was purified by phenol extraction and ethanol precipitation, and then the ligated EcoRI linker dCTAGAATTCTAGs (0 ng) was ligated using T4 DNA ligase, and the EcoRI linker was ligated. To remove the mid The compound was cut with EcoRI.
  • This DNA was religated with T4 DNA ligase to transform E. coli 294, and pGET trp 302-a was obtained from the transformed strain.
  • pGETt ⁇ 302-d was cleaved at the restriction enzyme ⁇ site, then cut at the restriction enzyme AvaI site, and the DNA promoted at the Aval site was fractionated. After shaping both ends of the NA chain with S1 nuclease to smooth it, EcoRI linker dCTAGAATTCTAG was bound thereto, digested with EcoRI, and religated to construct the expression plasmid pGETt ⁇ 818-c ( See Figure 3 :).
  • pGETt ⁇ 818-c encodes a 121-amino acid in the C2 region and a 13.000 molecular weight peptide having Leu, Glu, and Phe generated at the C-terminus by linker attachment.
  • This plasmid has Met and Leu at the N-terminus, which are not derived from the IgE heavy chain and are encoded by the adapter.
  • Lymphocytes prepared from human peripheral blood were treated with 12-0-tetradecanoylphorone 13-acetate ( ⁇ ) C 15 ng / m £) and concanaparin A 40 ⁇ ⁇ ⁇ The culture was carried out at 37 ° C. in RPMI 1640 medium (containing 10 fetal bovine serum), and IL-12 was induced.
  • RNA was adsorbed to an oligo (dTJ cellulose column) in a high salt solution [0.5 ⁇ NaC1, 10 mM Tris ⁇ HC1 pH7.6, imM EDTA, 0.3% SDS J, and poly (A) was The mRNA containing the poly (A) was eluted with a low salt solution (10 mM Tris—HC1. PH 7.6, 1 mM EDTA, 0.3 ⁇ SDS) to obtain 300 ig of the mRNA containing poly (A).
  • a high salt solution [0.5 ⁇ NaC1, 10 mM Tris ⁇ HC1 pH7.6, imM EDTA, 0.3% SDS J
  • poly (A) was The mRNA containing the poly (A) was eluted with a low salt solution (10 mM Tris—HC1. PH 7.6, 1 mM EDTA, 0.3 ⁇ SDS) to obtain 300 ig of the mRNA containing poly (A).
  • This mRNA was further precipitated with ethanol, dissolved in a 0.2 ⁇ solution (1 OmM Tris-HCI pH 7.6, 2 mM EDTA, 0.3 ⁇ SDS), treated with 65 for 2 minutes, and subjected to a 10 to 35% sucrose gradient. Centrifugation (centrifugation at 20 and 25000 rpm for 21 hours using a Beckman SW 28 rotor ⁇ Separation :) to obtain 22 fractions. A portion of the RNA from each of these fractions was injected into the oocytes of Lactobacillus frogs, the IL-12 activity in the synthesized protein was measured, and fractions 11 to 15 (sedimentation constant 8 S ⁇ 15S), the activity of IL-12 was detected. The IL-2 mRNA in this fraction was about 25.
  • reaction solutions (5 / mRNA, 50 ig oligo (dT), 100 units of reverse transcriptase, 1 111 ⁇ 1 of 1 ?, d CTP, 01 1 > ⁇ 41 1 ?, 8 mM MgC 12, 50 mM KC 1, lo mM dithiothreitol, 50 mM
  • Double-stranded DNA synthesis Double-stranded DNA synthesis:
  • the single-stranded complementary DNA synthesized here was reacted in a 50/50 reaction solution (the same reaction solution as described above except that mRNA and oligo dT were not contained) to react for 2 hours at 42 ° C.
  • Heavy chain I) NA was synthesized.
  • duplex DN A 0.1 M sodium acetate pH 4.5, 0.2 5 M NaC 1 , 1.5mM ZnS0 4, 6 0 Yuni' Bok of S 1 quinuclidine Reactase] at room temperature for 30 minutes, deproteinize with phenol, precipitate the DNA with ethanol, and add 50% reaction solution (double-stranded DNA) , 0.1 4 M Kako Gilles acid strength Li, 0.3 M Tris (base) ⁇ 7.6, 2 mM Jichiosurei DOO one le, 1 mM Co C 1 2, 0.1 5 mM d CTP, 3 0 Yuni' preparative terminal DOO 3 minutes in translanase). C to extend about 15 deoxytidine chains at both 3 'ends of the double-stranded DNA. These series of reactions yielded about 300 ng of double-stranded DNA with a deoxycytidine chain.
  • the restriction enzyme Pst was added to 10 ig of E. coli plasmid pBR322 DNA.
  • the reaction solution 50 I 10 g DNA, 50 mM N a C 1, 6 mM Tris. HC1 ⁇ pH7.4, 6 mM MgC 1 2, 6 mM 2- mercaptoethanol, 100 ⁇ / M bovine serum albumin , 20 units of Pst IJ for 3 hours at 37 ° C to cleave one Ps11 recognition site in PBR322 DNA, deproteinize it with phenol, and then conduct terminal transfection.
  • the reaction solution La one peptidase 50 [DNA 10 ig, 0.14 M force prying oxide Li, O. SMTris • base pH 7.6, 2 mM Jichiosurei Bok Ichiru, 1 mM CaCl 2, 0.15 mM GTP, 3 0 Yuni' Tota Terminal 3 minutes in Transferase :)
  • the DNA was allowed to act with 37 to extend approximately 1 ⁇ of the blocking guanine chain to the three ends of the plasmid PBR 3 222 DNA.
  • E. coli MM294 was transformed according to 495 C1975 :).
  • the O Rigonuku Rechio 50 reaction solution by using of T 4 poly quinuclidine Reochi Dokaine Ichisu against de (O Rigonuku Reochi de 0.2 O ug, 5 0 mM Tr is • HC1 ⁇ 8.0, 1 0 mM MgC 1 2, 10 mM mercaptoethanol, 50 ⁇ Cir- 32 ⁇ , 3 Yuni' preparative ⁇ reacted with 4 Porinuku Reochi de force rice in Ichisu 1 hour 3 7 ° C, was labeled at the 5 'end with 32 P.
  • the lignonucleotide was used as a probe to associate with the DNA fixed on the nitrocell filter according to the method of Lawn et al. [Nucleic Acids Res., 9, 6103 (1981)], and the autoradiography was performed.
  • four strains that responded to the above two types of oligonucleotide probes were isolated, and plasmid DNA was isolated from the cells of each of these strains by the alkaline method [Birncoim HC & Doly, J. Nucleic Acids Reagents]. , 7, 1513 (1979)].
  • the insert of rasmid DNA was excised with the restriction enzyme PstI, and among the separated plasmids, the one containing the fragment with the longest insert was selected, and this plasmid was designated PILOT 135-8. I named it.
  • the plasmid PILOT 135-8 obtained in the above (1) was digested with the restriction enzyme HgiAI to obtain a 1294 bp DNA fragment.
  • This DNA fragment was treated with T4 DNA polymerase to make blunt ends, and then EcoRI linker dTGCCAT GAATTCATGGCA was ligated using T4 DMA ligase, the ligated product was digested with EcoRI to remove the duplicated plasmid of the 51coRI linker, and this fragment was digested with the restriction enzyme PstI to obtain human IL—
  • a DNA fragment with the translation initiation codon "ATG" added was prepared in accordance with the reading of the two genes.
  • This DNA fragment was ligated to the expression plasmid ptrp 781 "Nuc 1 eic Acids Research 11, .3077-3085 C 1983 JJ digested with the restriction enzymes EcoRI and Pst I using T4 DNA ligase. This reaction resulted in the trp promoter.
  • the human IL-2 expression plasmid pTFl was constructed by matching the reading frame with the translation initiation codon downstream of-(See Fig. 4. This plasmid was used to transform Escherichia coli DH1). As a result, a strain containing the desired plasmid PTFI was obtained.
  • Plasmid pGET trp818-C was digested with restriction enzymes C1al and EcoRI to obtain a DNA fragment of about 3 Kbp.
  • the plasmid pTFi was digested with restriction enzymes EcoRI and Pst1 to obtain a DNA fragment of about 500 bp. These two DNA fragments were joined by T 4 DNA ligase.
  • a translation initiation codon was provided downstream of the trp promoter, and an IGL-EC22 expression plasmid pGEL1028 was constructed in the same reading frame (see FIG. 5 ).
  • Escherichia coli DE1 was transformed with this plasmid to obtain a transformant ⁇ ⁇ DH1 / GEL1028 (1FO14332, FERM P-7568) containing the plasmid PGEL1028.
  • I gE activity I GL- EC 22 was found to be 42 x 10 3 units / ⁇ culture.
  • Human IL-12 activity was measured using the mouse TCGF-dependent cell line NKC3.
  • the culture was performed for 20 hours. Further, after adding 3 H-thymidine 1 iCi and culturing for 4 hours, the cells were trapped in a glass filter using a cell filter (Wake Chemical Co., Japan), and the cells were washed, dried, and dried. After that, the radioactivity was measured by a scintillation counter 1.
  • the IL-12 activity of IGL-EC22 in the sample was 16 ⁇ 10 3 units of the culture solution.
  • the activity was measured based on the calculation method described in Japanese Patent Application Laid-Open No. 58-116498.
  • the IGL-EC22 adsorbed on the column was eluted from the column with 0.2 M acetic acid and 0.15 M NaCl solution 5, and the eluate was immediately neutralized. After that, it was dialyzed against PBS 1 for 24 hours at 5 ° C. By this operation, a polypeptide of IGL-EC22 with a purity of 80 or more was obtained with a recovery of about 50.
  • polypeptide comprising a peptide containing an antibody recognition site and a human interleukin-2 peptide is bound.
  • the polypeptide is useful as a reagent when purifying human interleukin 2 antibody.

Abstract

A novel DNA is prepared in which a DNA fraction having a structural gene which code a peptide containing an antibody recognition site and a DNA fraction having a structural gene which code human interleukin 2 peptide are linked to each other. This novel DNA makes it possible to produce a polypeptide in which the two peptides are linked to each other by transforming host microorganism with the DNA and culturing the transformed microorganism.

Description

明 細  Details
新規 D N Aおよびその用途  New DNA and its uses
技 術 分  Technology
本発明は、 抗体認識部位を含むぺプチドをコ一ドする構造遺伝子を有 する D NAおよびヒ 卜イ ンタ一ロイキン 2のぺプチドをコ一 ドする構造 遺伝子を有する; N Aを連結してなる D NA ,該 D NAが組み込まれた プラスミ ド ,該プラス ミ ドで形質転換された形質転換体 .抗体認識部位 を含むぺプチ ドとヒ 卜 イ ンタ一ロイ キン 2のぺプチ ドとを結合したポリ ペプチドおよび該形質転換体を用いる該ポ リぺプチドの製造法に関する。  The present invention has a DNA having a structural gene encoding a peptide including an antibody recognition site and a structural gene encoding a peptide of human interleukin 2; DNA, a plasmid incorporating the DNA, a transformant transformed with the plasmid, binding of a peptide containing an antibody recognition site to a peptide of human interleukin 2 The present invention relates to a polypeptide obtained and a method for producing the polypeptide using the transformant.
一背 一景―技 ― 術  One back view-technique-art
抗体認識部位を含むぺプチド ,例えば免疫グロブリン E (以下、 I g βと略称することもある:)は、 アレルギー反応などの重要な生体反応を 担っている。 すなわち、 アレルギー反応は特奠抗原と結合した I g の 感作された肥満細咆や好塩基球への結合によって誘起されることが知ら れてレヽる( Immunol ogi cal Revi ew JJ^, 1 0 9 ( 1 9 7 8 "。従って、 ァレ ルギ一反応をおさえるために抗原結合部位を除いた I g £1分子を用いる ことも考えられている。 しかし生体内での I g に起因する種々の反応 については、 まだ未解決な点が多い。 十分な置のヒ 卜 I を供铪でき ないことカ^ この理由の一^ 3となっている。  Peptides containing an antibody recognition site, for example, immunoglobulin E (hereinafter sometimes abbreviated as Igβ) are responsible for important biological reactions such as allergic reactions. That is, it is known that an allergic reaction is induced by the binding of Ig bound to the toxin antigen to sensitized obese proboscis and basophils (Immunological Review JJ ^, 10). 9 (19778 ". Therefore, it is considered to use an Ig £ 1 molecule excluding the antigen-binding site in order to suppress the Argallgi reaction. However, various factors caused by Ig in vivo are considered. There are still many unresolved points about the reaction of this.One of the reasons for this is that it is not possible to supply enough humans.
I g の生産方法としては、 ヒ 卜 I g 産生能を有する株化ヒ 卜骨髄 腫細胞の培養上清より分取精製する方法が提唱されているが、 細胞培養 であること、 細胞の増殖能が低いことなどから、 安価に大量の I を 得るのは難しい。 そこで、 遺伝子操作技術を利用して、 1 ^構造遺沄 子が組み込まれたプラス ミ ドで形質転換された形質転換体を培養するこ とにより、 I g を大量に得られる技術が開発された「 Nucleic Aci-  As a method for producing Ig, a method of fractionating and purifying from the culture supernatant of established human myeloma cells having the ability to produce human Ig has been proposed. It is difficult to obtain a large amount of I at low cost because of the low cost. Therefore, a technique was developed that could obtain a large amount of Ig by culturing a transformant transformed with a plasmid incorporating the 1 ^ structural gene using genetic engineering technology. "Nucleic Aci-
OM?r ds Researc 11 , 719 ( 1 9 83; *, Nucleic Ac ids Research 11 , 3077( 1 98 3つ〕。 OM? R ds Researc 11, 719 (1983; *, Nucleic Acids Research 11, 3077 (198 three).
—方、 イ ンターロイキン 2 〔以下、 I L— 2と略称することもある。 ¾前は T細胞増殖因子( TCGF ) と呼ばれた。 Jは、 レクチンゃァロ 抗原等で刺激された T細胞によって産生される リ ンホカイ ンである〔 Sciense 1 9 3 , 1 0 0 7 1 9 7 6 ) Immunological Review 51 , 2 5 7 ( 1 9 8 0 ) 〕。 I L一 2は、 T細胞をインビ 卜口でその機能 を保持したまま増頒させ長期間の继代維持を可能にするほかに、 今まで に胸腺細胞のマイ ト -ジェン反応を促進したり ( コスティ ミュレ一ター ヌー ドマウス脾細胞の Τ細胞依存性抗原に対する抗体産生能を回復 させたり(: τ細胞リプレーシングファクタ一 )キラー細胞の分化増殖を 促進する( キラ一^ >ルパーファクター)活性を有すると報告されている し The journal o丄 immunology 1 2 3 , 2 9 2 8 ( 1 9 7 9  —Interleukin 2 (hereinafter sometimes abbreviated as IL-2). Previously it was called T cell growth factor (TCGF). J is a lymphokine produced by a T cell stimulated with a lectin-Paro antigen or the like [Sciense 1993, 1007 197 6) Immunological Review 51, 25 7 (1998) 0)]. IL-12 not only allows T cells to be expanded while retaining their functions at the mouth of the mouth to maintain the long-term age, but also promotes the mitogen response of thymocytes to date ( It has the activity to restore the antibody-producing ability of splenocytes of costimulator-null mice to Τ cell-dependent antigens (: τ cell replacement factor-1) and to promote the differentiation and proliferation of killer cells (killer factor> killer cell). The journal o 丄 immunology 1 2 3, 2 9 2 8 (1 9 7 9
Immunological Review 5 1 , 2 5 7 ( 1 9 8 0 lo Immunological Review 5 1, 2 5 7 (199 8 0 l o
し力 しながら、 ヒト I L一 2は、 天然のものを用いての鼈産は困難で ある^め、 遺伝子操作技術を利用して、 ヒ 卜 I L一 2構造遺伝子が組み 込まれたプラスミ ドで形質転換された形質転換体を培養することにより、 ヒ 卜 I L— 2を大量に得られるようになつた〔 Nature 3 0 2 , 3 0 5 C 1 9 8 3 ^ ; Biochemical and Biophysical Research Communic- at ions vol . 1 09 , yfa2 , p .363 C 1 9 83 ; Nucleic Acids Research l l, 43 07 〔 1 9 8 3 〕〕o However, it is difficult to produce tortoise using natural IL-12, and it is a plasmid that incorporates the human IL-12 structural gene using genetic engineering technology. By culturing the transformed transformant, a large amount of human IL-2 can be obtained [Nature 302, 305C1893 ^; Biochemical and Biophysical Research Community- ions vol. 1 09, yfa2, p. 363 C 1983; Nucleic Acids Research II, 4307 [1993]] o
発— 明 の 示  Signs of the light
本発明は、 抗体認識部位を含むぺプチドをコ一ドする構造遺伝子を有 する D N Aおよびヒ 卜 ィ ンターロイ キン 2 (ヒ ト I L一 2 のぺプチド をコ一ドする構造遺伝子を有する DNAを連結してなる DNA,該 DN Aが組み込まれたプラスミ ド ,該プラス ミ ドで形質転換された形質転換 体、 抗体認識部位を含むぺプチ ドとヒ ト I L一 2のぺプチドとを結合し たポリぺプチドおよび該形質転換体を用いる該ポリぺプチドの製造法に 関する。 The present invention ligates a DNA having a structural gene encoding a peptide containing an antibody recognition site to a human interleukin 2 (a DNA having a structural gene encoding a peptide of human IL-12). DNA, said DN A plasmid into which A has been integrated, a transformant transformed with the plasmid, a polypeptide obtained by binding a peptide containing an antibody recognition site to a peptide of human IL- 12 , and the transformation The present invention relates to a method for producing the polypeptide using a body.
ヒ 卜 I g Eあるいはヒ 卜 I L— 2をそれぞれ単独でコ一 ドする mRNA が既に分離同定され、 これらの遺伝子の発現もそれぞれ単独で試みられ てレヽる Γ Nucleic Acids Research 1 1 , 71 9 ( 1 9 8 3 ; 同 1 1 , 3077 ( 1 9 8 3 ; ; Nature 302, 305 ( 1 9 8 3 ) 〕。 し力 し ながら、 2種類の異なる免疫学的あるいは生物学的活性を持つ異種蛋白 の複合体を得ることは、 従来知られていなかった。  MRNAs encoding human IgE or human IL-2 alone have already been isolated and identified, and the expression of these genes has also been attempted independently. Nucleic Acids Research 11, 719 ( 1, 3077 (1993;; Nature 302, 305 (1 983)) A powerful, heterologous protein with two different immunological or biological activities. Obtaining a complex of the above has not been known before.
本発明者らは、 ヒ 卜 I とヒ 卜 I L— 2との異種蛋白の複合体を遺 伝子工学の手法を用い製造したことろ、 該複合体はヒ 卜 I g Eのもつ抗 原性とヒ 卜 I L一 2のもつ抗原性の両方の性質を有していることを見い だし、 これに基づいてさらに研究した結果、 本発明を完成した。  The present inventors have produced a complex of a heterologous protein of human I and human IL-2 using a genetic engineering technique, and found that the complex has the immunogenicity of human IgE. It has been found that it has both the antigenic properties of human IL-1 and human IL-12, and as a result of further research based on this, the present invention was completed.
すなわち、 本発明は、 (1)、 抗体認識部位を含むペプチドをコー ドする 構造遺伝子を有する DNAおよびヒ 卜 I L— 2のぺプチドをコ一 ドする 構造遺伝子を有する I) N Aを、 それぞれの読み取り枠をそろえて連結し てなる DNA, (2)、 抗体認識部位を含むペプチドをコードする構造遺伝 子を有する DNAおよびヒ 卜 I L— 2のぺプチドをコ一ドする構造遺伝 子を有する DNAを、 それぞれの読み取り枠をそろえて連結してなる D NAが組み込まれたプラスミ ド, (3)、 抗体認識部位を含むぺプチ ドをコ ―ドする構造遺伝子を有する DNAおよびヒ 卜 I L— 2のぺプチドをコ -ドする構造遺伝子を ¾fる DNAを、 それぞれの読み取り枠をそろえて 連結してなる DNAが組み込まれたプラスミ ドで形質転換された形質転 換体, (4)、 抗体認識部位を含むぺプチドとヒ 卜 I L— 2のペプチドとを 結合したポリぺプチド ,および (5)、 抗体認識き啦を含むぺプチドをコ一 ドする構造遺伝子を有する DNAおよびヒ卜 I L— 2のぺブチドをコ一 ドする構造遺伝子を有する DNAを、 それぞれの読み取り枠をそろえて 連結してなる DNAが組み込まれたプラスミ ドで形質転換された形質転 換体を培地に培養し、 培養物中に抗体認識部位を含むぺプチドとヒ ト I L一 2のぺプチドとを結合したポ リぺプチドを生成蓄積せしめ、 これを 採取することを特徴とする該ポリぺプチドの製造法である。 That is, the present invention provides (1) a DNA having a structural gene encoding a peptide containing an antibody recognition site and an I) NA having a structural gene encoding a human IL-2 peptide, DNA linked in the open reading frame, (2), DNA having a structural gene encoding a peptide containing an antibody recognition site, and DNA having a structural gene encoding a human IL-2 peptide (3), DNA having a structural gene encoding a peptide including an antibody recognition site, and human IL- 2. A transformant transformed with a plasmid incorporating DNA, which is obtained by joining DNAs encoding structural peptides encoding the same peptides in the same reading frame, (4), antibody recognition site And peptides containing With IL- 2 peptide ( 5 ) a DNA having a structural gene encoding a peptide containing an antibody recognition protein and a DNA having a structural gene encoding a peptide of human IL-2, The transformant transformed with the plasmid into which the linked DNAs are aligned and ligated together is cultured in a culture medium, and the peptide containing the antibody recognition site and human IL-12 are cultured in the culture. This is a method for producing the polypeptide, comprising producing and accumulating a polypeptide which is bound to the polypeptide, and collecting the produced polypeptide.
本明細書においては、 抗体認識部位を含むぺプチドがヒ 卜 I g Eであ り、 これとヒ 卜 I L一 2のペプチドとを結合したポリペプチドをィムノ グロイキン( Immunogleukirg E C 2 2 と称し、 あるいは単に I GL -EC 2 2と略称することもある。  In the present specification, a peptide containing an antibody recognition site is human IgE, and a polypeptide in which this is bound to a human IL-12 peptide is referred to as immunogleukirg (Immunogleukirg EC22; It may be simply abbreviated as IGL-EC22.
本発明における抗体認識部位を含むぺプチ ドとしては、 たとえば抗ヒ ト免疫グロプリン E抗体認識部位を含むぺブチドが挙げられる。 抗ヒト I g 抗体認識部位を含むぺプチドとしては、 'ヒ 卜 I g E Η鎖の全部 または部分を含むぺプチドが挙げられる。 該ヒ 卜 I g £ H鎖の部分と は、 ヒ 卜 I g E分子を構成するぺプチド鎖の 1つで、 該分子は 1対の H 鎖と 1対の L鎖から構成されていることが知られている。 したがって、 抗体認識部位を含むぺプチドをコ一ドする構造遺伝子の例としては、 ヒ 卜 I g E H鎖の全部または部分を含むぺプチドをコ一ドする構造遺伝 子が挙げられる。  Examples of the peptide having an antibody recognition site in the present invention include a peptide having an anti-human immunoglobulin E antibody recognition site. Examples of the peptide containing the anti-human Ig antibody recognition site include a peptide containing all or a part of the human IgE chain. The portion of the human IgE heavy chain is one of the peptide chains constituting the human IgE molecule, and the molecule is composed of one pair of H chains and one pair of L chains. It has been known. Therefore, examples of the structural gene encoding a peptide containing an antibody recognition site include a structural gene encoding a peptide containing all or a part of a human IgE H chain.
該 I g Η鎖の全部または部分を含むぺプチドをコードする構造遺 伝子としては、 たとえば、 日本特開昭 5 9— 4 4 3 9 9号公報, Cell vol. 29, 691 ( 1 9 8 2 , Nucleic Acids Researchl 1, 71 9 〔 1 9 8 3 〕 , Nucleic Acids Research 11, 3077 1 9 8 3 ) , EMBO The European Molecular Biology Organization Journ l l_ , 6 5 5 ( 1 9 8 2 ) などに記載された DN Aが挙げられる。 Examples of structural genes encoding peptides containing all or a part of the Ig chain include, for example, Japanese Patent Application Laid-Open No. 59-44399, Cell vol. 29, 691 (1989) 2, Nucleic Acids Research 1, 719 [1 983], Nucleic Acids Research 11, 3077 198 3), EMBO The European Molecular Biology Organization Journal l_, 655 (1992) and the like.
本発明のヒ 卜 I L— 2のぺプチドとは、 ヒ 卜 I L— 2活性を有するぺ プチドをいい、 活性を有する限り、 ヒ 卜 I L— 2より短いペプチドであ つてもよレ、。  The human IL-2 peptide of the present invention refers to a peptide having human IL-2 activity. As long as it has the activity, it may be a peptide shorter than human IL-2.
該ヒ 卜 I L— 2のぺプチドをコ一ドする構造遺伝子としては、 たとえ ば、 日本特許出願昭和 5 8年第 225079号( 昭和 5 8年(西暦 1 9 8 3 年) 1 1月 2 8日付出願:) , 日本特許出願昭和 5 8年第 235638号(昭 和 5 8年(西暦 1 9 8 3年) 1 2月 1 3 日付出願) , Nature vol. 302, p . 305 ( 1 983 ) , Biochemical and Biophysical Research Com- muni cations vol . 109 , 2, p.363 ( 1 9 82 ^ , Nucleic Acids Research ll, 4307 ( 1 9 8 3 J)などに記載された: D N A力;挙げられる c 上記、 特許出願昭和 5 8年第 225079号に記載されたヒ 卜 I L— 2の ペプチドをコードする DN Aは、 式 Examples of the structural gene encoding the peptide of the human IL-2 include, for example, Japanese Patent Application No. 225,079 (Showa 58, 1983) Date application :), Japanese patent application No. 235638 (Showa 58 (1980), filed on February 13, 1980), Nature vol. 302, p. 305 (1 983) , Biochemical and Biophysical Research Com- muni cations vol 109, 2, p.363 (1 9 82 ^, Nucleic Acids Research ll, 4307 (1 9 8 3 J) are described, for example:. DNA force; mentioned are c above The DNA encoding the peptide of human IL-2 described in Japanese Patent Application No.
5' QQGQQGQGQQGGQQGGGA CACTCTC TTAATCACTACTGACAG AACC 5 'QQGQQGQGQQGGQQGGGA CACTCTC TTAATCACTACTGACAG AACC
S 1  S 1
TCAACTOCTQCCACA ATG TAG AGG A∑Q CAA CTC C G TCT TGC  TCAACTOCTQCCACA ATG TAG AGG A∑Q CAA CTC C G TCT TGC
S20 I  S20 I
ATT GCA CTA AGT CTT GCA. CTT GTC ACA AA AGT G A CCT ACT TCA. AGT TCT ACA. AAG AAA ACA. GAG ΟΊ CAA CTG GA.G CAT TTA CTG CTG QAT TTA CM} ATG ΑΊ TTG AAT GGfV ATT  ATT GCA CTA AGT CTT GCA. CTT GTC ACA AA AGT G A CCT ACT TCA. AGT TCT ACA. AAG AAA ACA. GAG ΟΊ CAA CTG GA.G CAT TTA CTG CTG QAT TTA CM} ATG ΑΊ TTG AAT GGfV ATT
40  40
AAT AAT TAC AAG AA CCC AAA CTC ACC AQG A G CTC ACA ΊΤΤ AAG Ί Τ TAC ATG OCC AAG AAG GCC ACA GAA CTG AAA AAT AAT TAC AAG AA CCC AAA CTC ACC AQG A G CTC ACA ΊΤΤ AAG Ί Τ TAC ATG OCC AAG AAG GCC ACA GAA CTG AAA
GAT CTT CAG TOT CTA GAA GAA GAA. CTC AAA CCT CTG GA.G GAT CTT CAG TOT CTA GAA GAA GAA. CTC AAA CCT CTG GA.G
80  80
GAA OTG CTA AAT ΓΓΑ OCT CAA AGO1 AAA AAC TTT GA.C ΊΤΑ AGA COG AQG GA.C TTA A∑C AGC AAT A C AAC (3ΓΑ GTT GAA OTG CTA AAT ΓΓΑ OCT CAA AGO 1 AAA AAC TTT GA.C ΊΤΑ AGA COG AQG GA.C TTA A∑C AGC AAT AC AAC (3ΓΑ GTT
100  100
CTG GAA CTA AAG GCA TCT GAA ACA. ACA TTG ATG TG GAA TAT GOT GAT GAG ACA. GC AOC ΑΊΤ GTA GAA TTT CTG AAC 120 CTG GAA CTA AAG GCA TCT GAA ACA. ACA TTG ATG TG GAA TAT GOT GAT GAG ACA. GC AOC ΑΊΤ GTA GAA TTT CTG AAC 120
AGA. TGG ΑΤΓ ACC TTT TGT CM AGC ATC A C TQ ACA CTG AGA. TGG ΑΤΓ ACC TTT TGT CM AGC ATC A C TQ ACA CTG
ACT TQ^ TlAOTAAarGCT CCCACTTAAAACA ATCAQQCC TC ATTT ATTEAAA Ar TAAOTT ACai CCGCCCCCCC3 ACT TQ ^ TlAOTAAarGCT CCCACTTAAAACA ATCAQQCC TC ATTT ATTEAAA Ar TAAOTT ACai CCGCCCCCCC 3
中、 コ ドン l〜l 3 3で示される塩基配列の 1)NA( V )があげられる c この; DNA( V )は、 その 5'末端に ATGまたは上記式中コドン S 1〜 S 2 0で示されるシグナルコドンを有していてもよく、 3'末端に T AA. T GAまたは T A Gを有することが好ましく、 とりわけ T GAが好まし い。 Among, codon L~l 3 in the nucleotide sequence represented by 3 1) NA (V) can be mentioned c this; DNA (V), that in the 5 'terminal ATG or the formula codon S. 1 to S 2 0 May be present, and preferably has TAA. TGA or TAG at the 3 'end, and particularly preferably TGA.
上記 DNA( V )は、 式 1  The above DNA (V) is represented by Formula 1
X-Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gin Leu Gin  X-Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gin Leu Gin
20  20
Leu Glu Hi s Leu Leu Leu Asp Leu Gin Met lie Leu Asn Gly lie Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met  Leu Glu Hi s Leu Leu Leu Asp Leu Gin Met lie Leu Asn Gly lie Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met
40  40
Leu Thr Phe Lys P e Tyr Met Pro Lys Lys Ala Thr Glu  Leu Thr Phe Lys P e Tyr Met Pro Lys Lys Ala Thr Glu
& o  & o
Leu Lys Hi s Leu Gin C s Leu G u Glu Glu Leu Lvs Pro  Leu Lys His s Leu Gin C s Leu G u Glu Glu Leu Lvs Pro
'  '
Leu Glu Glu Val Leu Asn Leu Ala Gin Ser Lys Asn Phe  Leu Glu Glu Val Leu Asn Leu Ala Gin Ser Lys Asn Phe
80  80
His Leu Arg Pro Arg Asp Leu He Ser Asn He Asn Val  His Leu Arg Pro Arg Asp Leu He Ser Asn He Asn Val
10 o  10 o
lie Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Gl Thr Ala Thr He Val Glu Phe lie Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Gl Thr Ala Thr He Val Glu Phe
120  120
Leu Asn Arg Trp lie Thr Phe Cys Gin Ser lie He Ser  Leu Asn Arg Trp lie Thr Phe Cys Gin Ser lie He Ser
133  133
Thr Leu Thr  Thr Leu Thr
(上記式中、 Xは Met または水素を示す。 で表わされるペプチドをコ ードする。 また、 上記日本特許出願昭和 5 8年第 235638号に記載され たヒ 卜 I L— 2のペプチドをコードする 1)N Aは、 式 (In the above formula, X represents Met or hydrogen. It encodes a peptide represented by the following formula. Further, it encodes a peptide of human IL-2 described in Japanese Patent Application No. 58356/1983. 1) NA is the formula
(5 -AGT TCT ACA AAG AAA ACA CAG CTA CAA CTG 一 Ί一 (5 -AGT TCT ACA AAG AAA ACA CAG CTA CAA CTG One
GAG CAT TTA CTG CTG GAT TTA CAG ATG ATT TTG AAT GGA ATT AAT AAT TAG AAG AAT CCC AAA CTC ACC AGG ATG CTC ACA TTT AAG TTT TAG ATG CCC AAG AAG GCC ACA GAA CTG AAA CAT CTT CAG TGT CTA GAA GAA GAA CTC AAA CCT CTG GAG GAA GTG CTA AAT TTA GCT CAA AGC AAA AAC TTT CAC TTA AGA CCC AGG GAC TTA ATC AGC AAT ATC AAC GTA ATA GTT CTG GAA CTA AAG GGA TCT GAA ACA ACA TTC ATG TGT GAA TAT GCT GAT GAG ACA GCA ACC ATT GTA GAA TTT CTG AAC AGA TGG ATT ACC TTT TGT CAA AGC ATC ATC TCA ACA CTG ACT - Y GAG CAT TTA CTG CTG GAT TTA CAG ATG ATT TTG AAT GGA ATT AAT AAT TAG AAG AAT CCC AAA CTC ACC AGG ATG CTC ACA TTT AAG TTT TAG ATG CCC AAG AAG GCC ACA GAA CTG AAA CAT CTT CAG TGT CTA GAA GAA GAA CTC AAA CCT CTG GAG GAA GTG CTA AAT TTA GCT CAA AGC AAA AAC TTT CAC TTA AGA CCC AGG GAC TTA ATC AGC AAT ATC AAC GTA ATA GTT CTG GAA CTA AAG GGA TCT GAA ACA ACA TTC ATG TGT GAA TAT GCT GAT GAG ACA GCA ACC GTA GAA TTT CTG AAC AGA TGG ATT ACC TTT TGT CAA AGC ATC ATC TCA ACA CTG ACT-Y
(3; c i ) (3; c i)
〔式中、 Xは AGC , A G T , T C A , TC C , T C G , T C T , T A A, TAGおよび T GA以外のコ ドンまたは水素を示し、 Yはコド ンま たは水酸基を示す〕で表わされる塩基配列を有する DN Aが挙げられ、 上記 DNA ( VHは、 式  [Where X represents a codon or hydrogen other than AGC, AGT, TCA, TCC, TCG, TCT, TAA, TAG and TGA, and Y represents a codon or a hydroxyl group]. DNA having the above formula (VH is the formula
Ζ - Ser Ser Thr Lys Lys Thr Gin Leu Gin Leu Glu His Leu Leu Leu Asp Leu Gin Met lie Leu Asn Gly lie Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gin Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gin Ser Lys Asn Phe His Leu Arg Pro Ar As Leu lie Ser Asn lie Asn Val He Val Leu Glu- Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala Thr lie Val Glu Phe Leu Asn Arg Trp lie Thr Phe Cys Gin Ser He He Ser Thr Leu Thr C \lf ) Ζ-Ser Ser Thr Lys Lys Thr Gin Leu Gin Leu Glu His Leu Leu Leu Asp Leu Gin Met lie Leu Asn Gly lie Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gin Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gin Ser Lys Asn Phe His Leu Arg Pro Ar As Leu lie Ser Asn lie Asn Val He Val Leu Glu- Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala Thr lie Val Glu Phe Leu Asn Arg Trp lie Thr Phe Cys Gin Ser He He Ser Thr Leu Thr C \ lf)
〔式中、 Zは S e r以外のアミノ酸残基または水素を示す〕の配列を有 するポリぺプチドをコ一ドする。 [Wherein, Z represents an amino acid residue other than Ser or hydrogen].
Α VI に関し、 Xで示されるコ ドンは、 ヒ 卜 I L— 2と実質的 に同様の St生を有するボリペプチド( νιπの一部を構成するアミノ酸を コードするコ ドン (但し、 Xは Se rをコ一ドするコ ド ンおよび翻訳終止 コドンではな L、;であればいずれでもよく、 更にその 5'末端側にァミノ 酸をコードするコ ドンを 1個以上有していてもよい。 Xはとりわけ A T Gであることが好ましい。  Α Regarding VI, the codon indicated by X is a codon encoding a amino acid constituting a part of νιπ (where X is Ser) Any of L, which is not a translation termination codon and a translation termination codon, may be used, and may further have one or more codons encoding an amino acid at the 5 'end thereof. Is particularly preferably ATG.
Yで示されるコ ドンは、 翻訳終止コドンまたはヒ ト I L— 2と実質的 に同様の活性を有するポリぺプチド( の一部を構成するァミ ノ酸を コードするコ ドン'であればいずれでもよく 、 更にその 3末端側にァミノ 酸をコードするコドンを 1個以上有していてもよい。 Yで示されるコド ンが翻訳終止コ ドン以外のコドンの場合( 更にその 3'末端側にァミ ノ酸 をコードするコド ンを 1個以上有する場合を含む)は、 末端に翻訳終 止コ ドンを有することが好ましい。 なお Yで示されるコ ドンは T A A , T A Gまたは T であることがより好ましく、 とりわけ T GAである ことが好ましい。 The codon represented by Y may be any translation termination codon or any codon that encodes an amino acid that forms part of a polypeptide having substantially the same activity as human IL-2. And may further have one or more codons encoding an amino acid at the 3 'end thereof When the codon represented by Y is a codon other than the translation termination codon (and further at the 3 ' end thereof) (Including one or more amino acid-encoding codons) preferably has a translation termination codon at the end.The codon indicated by Y may be TAA, TAG or T More preferred, and particularly preferred is TGA.
ポリペプチドし に関し、 Zで示される S e r以外のアミノ酸残基と しては、 ヒ ト I L一 2ど実質的に同様の活 f生を有するポリぺプチドの一 部を するアミノ酸残基であればいずれでもよく、 例えば第 1表に示 されるアミノ酸残基(但し、 Serを除く )が挙げられ、 更にその N末端 側に、 例えば、 第 1表に示されるァミノ β基またはこれらアミノ酸残 基の複数個で構成されるぺプチドを有していてもよい。 とりわけ Ζとし ては Metまたは が好ましい。 抗体認識部位を含むぺプチドをコードする構造遺伝子を有する DNA, およびヒ 卜 I L— 2のぺプチドをコ一ドする構造遺伝子を有する D N A を、 それぞれの読み取り枠をそろえて連結する。 連結する方法は、 公知 の方法に従って行なえばよく、 たとえば、 T 4 DNAリガーゼを用いて ひとつの; N Aの 3 OH末端と他方の DNAの 5し P末端を A TP存 在下で連結させる。 Regarding the polypeptide, the amino acid residue other than Ser represented by Z may be an amino acid residue that is part of a polypeptide having substantially the same activity as human IL-12. Any of these may be used, for example, the amino acid residues shown in Table 1 (excluding Ser), and further on the N-terminal side thereof, for example, the amino β group shown in Table 1 or these amino acid residues May be included. Particularly, Ζ is preferably Met or. A DNA having a structural gene encoding a peptide containing an antibody recognition site and a DNA having a structural gene encoding a peptide of human IL-2 are ligated in the same reading frame. The ligation may be performed according to a known method. For example, one T3 DNA ligase is used to ligate one 3OH end of NA to the 5 P end of the other DNA in the presence of ATP.
また、 両遺伝子の間にリ ン カ一を介するのが好ましい。 該リ ンカ一と しては、 たとえば、 EcoRIリ ンカ一 ( pCTAGAATTCTAG) などが あり、 New England Biolabs社製(米国)のもの、 その他の市販されて いるものを用いること力'できる。 リンカ一を連結する方法は、 たとえば、 遺伝子の末端を大腸菌ポリメラーゼ I (ラージフラグメン ト や Si ヌク レアーゼなどで平滑末端にして、 該末端と リンカーの末端を T 4 DNA リガーゼによって連結する。 この際、 リ ン カ一同志の重複連結などを除 去するために、 制限酵素で消化して粘着 とする必要がある。 制限酵 素の種類はリ ン カ一の種類により異なる力 たとえば、 EcoRJ リ ン カ 一を使用した際の制限酵素は EcoRIである。 生じた粘着末端を利用し て両遺伝子同志を T 4 DNAリガーゼで連結すればリンカーを介したひ とつの DN Aを得ることができる。  It is preferable that a linker is interposed between the two genes. As the linker, for example, EcoRI linker (pCTAGAATTCTAG) and the like can be used, and those available from New England Biolabs (USA) and other commercially available linkers can be used. For example, the linker can be ligated by terminating the gene with blunt ends using Escherichia coli polymerase I (large fragment or Si nuclease), and linking the terminus with the terminus of the linker using T4 DNA ligase. It is necessary to digest with a restriction enzyme to make it sticky to remove overlapping linkages between linkers, etc. The type of restriction enzyme varies depending on the type of linker, for example, EcoRJ Linker The restriction enzyme used is EcoRI, and the resulting sticky ends are used to ligate the two genes together using T4 DNA ligase to obtain one DNA via a linker.
上記両構造遺伝子が連結してなる D N Aの上流に、 プロモータ一を連 結するのが好ましい。  It is preferable to link a promoter upstream of the DNA linking the two structural genes.
なお、 プロモータ一の下流に連結されることとなる両構造遺伝子の順 序は、 プロモーターの下流に抗体認識部位を含むペプチドをコードする 構造遺伝子次いでヒ 卜 I L一 2の構造遺伝子となるように、 あるいは、 プロモーターの下流にヒ 卜 I L - 2の構造遺伝子次いで抗体認識部位を 含むペプチ ドをコードする構造遺伝子となるように連結される。 上記プ  The order of the two structural genes to be linked downstream of the promoter is such that the structural gene encoding the peptide containing the antibody recognition site downstream of the promoter and then the human IL-12 structural gene are used. Alternatively, it is ligated downstream of the promoter so as to be a structural gene for human IL-2 and then a structural gene encoding a peptide containing an antibody recognition site. The above
《 OMPI ' 口モータ一以外の二者の連結の順序は、 特にとわれないが、 プロモータ 一は最上流に連結することが必須である。 該プロモーターとしては、 た とえば、 卜 リブ卜ファン合成(trp プ σ 'モータ一, recAプロモータ一 ラク 卜一マプロモーター等があげられ、 とりわけ trpプロモータ一が好 適である。 《OMPI ′ The order of connection of the two members other than the mouth motor is not particularly limited, but it is essential that the promoter is connected at the most upstream position. The promoter includes, for example, tryptophan synthesis (trp promoter s' motor, recA promoter-lactomer promoter, etc., and trp promoter is particularly preferable.
プロモータ一を連結する方法としては、 たとえば、 発現させようとす る遺伝子の 5 端に適当なリンカ一を用いて、 翻訳開始コドン A T Gを 付加し、 これをプロモータ一の 3'末端に連結する。 このとき用いる酵素 としては T リガーゼが一般的であり、 その処理方法は前述に準 ずる。 また、 プロモーターの下流には適当な制限酵素の認識部位が設け られていることが望ましい。  As a method for linking the promoter, for example, a translation initiation codon ATG is added to the 5 terminus of the gene to be expressed using an appropriate linker, and this is linked to the 3 'terminus of the promoter. As the enzyme used at this time, T ligase is generally used, and the treatment method is the same as described above. It is desirable that an appropriate restriction enzyme recognition site is provided downstream of the promoter.
兩遺伝子を連結してなる D N Aを宿主微生物で発現させるために、 ベ クタ一としてブラス ミ ドを用い、 これに該 を組み込む。 該ベクタ —としてのプラスミ ドとしては、 たとえば、 Co lEI由来の pBR 3 2 2 [ Gene 2_ , 9 5 ( 1 9 7 7〕:!が最もよく利用される力^ その他のブラ スミ ドであっても、 効率良く発現させ得るものはいずれをも用いること ができる。 その例としては、 たとえば、 卜 リプ卜ファン合成プロモータ 一を組み込んだ ptrp 7 8 1 , pt rp 7 7 1などが挙げられる。 このように して得られた をプラスミ ドに組み込むには、 まず、 プラス ミ ドの 1 N Aを適当な制限酵素で処理して、 線状にする。 これと、 前述のよう にして得られた υ Ν Aを T リガーゼで連 る。  In order to express DNA in which the two genes are linked to each other in a host microorganism, a plasmid is used as a vector, and the plasmid is incorporated into the plasmid. As a plasmid as the vector, for example, pBR32 2 [Gene 2_, 95 (1977)]:! Derived from CollEI is the most commonly used force ^ other plasmids. Any of those that can be expressed efficiently can be used, for example, ptrp781 and ptrp771 incorporating a triptophan synthesis promoter. In order to incorporate the thus obtained into plasmid, first, the 1NA of plasmid is treated with an appropriate restriction enzyme to form a linear form. Ν Connect A with T ligase.
このようにして得られた両遺伝子が連結された D N Aが組み込まれた プラスミ ドで宿主菌を形質転換し、 形質転換体を製造する。  A host bacterium is transformed with the thus-obtained plasmid into which DNA is ligated, and a transformant is produced.
該宿主菌としては、 たとえばェシエ リヒア属菌,枯草菌,酵母などが 挙げられ、 特にェ エ ヒア属菌が好ましい。 該ェシエリヒア属菌とし ては、 たとえば大腸菌(Escherichia col i DH 1株 Nature 217,Examples of the host bacteria include Escherichia bacteria, Bacillus subtilis, yeast, and the like, and particularly preferred are Escherichia bacteria. Said Escherichia sp. For example, E. coli (Escherichia coli DH1 strain Nature 217,
11 10— 1 1 14 ( 1968 )〕などが挙げられる。 11 10—1 1 14 (1968)].
該プラスミ ドで宿主菌を形質転換する方法としては、 カルシウム法や プロ ト プラス ト法などが挙げられ、 特にカルシウム法が好ましい。  Examples of a method for transforming a host cell with the plasmid include a calcium method and a protoplast method, with the calcium method being particularly preferred.
上記方法によって得られた形質転換体の一例 して、 後述の実施例 1 で製造された
Figure imgf000013_0001
ichi a co 1 i DH lZp GJEL 1028が挙げられる。 該微生物は、 財団法人発酵研究所( I FO, 5 3 2日本国大阪府大阪市 淀川区十三本町 2丁目 1 7番 8 5号 に昭和 5 9年(西暦 1 9 8 4年:) 3月 2 7曰に受託番号 I FO 14332として寄託され、 また、 本微生 物は、 日本国通商産業省工業技術院微生物工業技術研究所( F RI , 3 0 5日本国茨城県筑波郡谷田部町東 1丁目 1番 3号:)に昭和 5 9年(西 暦 1 9 8 4年 3月 2 9 曰に受託番号 f, E RM J - 75 68 として寄 託されている。
As an example of the transformant obtained by the above method, the transformant produced in Example 1 described below was used.
Figure imgf000013_0001
ichi a co 1 i DH lZ p GJEL 1028. The microorganism was found in the Fermentation Research Institute (IFO, 532) at 18-17-85, Jusanhoncho, Yodogawa-ku, Osaka-shi, Japan. The deposit was deposited on March 27 as accession number IFO 14332, and the microorganism was submitted to the Research Institute of Microorganisms and Industrial Technology of the Ministry of International Trade and Industry of Japan (FRI, 2005) in Yatabe-cho, Tsukuba-gun, Ibaraki, Japan. It was deposited on 1-chome 1-3, as accession number f, ERM J-7568 according to March 29, 1894 AD.
このようにして得られた.形質転換体の培養に使用される培地としては、 液体培地が適当であり、 その中には該形質転換体の生育に必要な炭素源、 窒素源、 無機物その他が含有せしめられる。 炭素源としては、 たとえば グルコース、 デキス 卜 リ ン、 可溶性澱粉、 ショ糖など、 窒素源としては、 たとえばアンモニゥム塩類、 硝酸塩類、 コーンスチープ - リ カ一、 ぺプ ト ン、 カゼイ ン、 肉エキス、 大豆粕、 バ レイ ョ抽出液などの無機また は有機物質、 無機物としてはたとえば塩化カルシウム、 リン酸二水素ナ 卜 リウム、 塩化マグネシウムなどがあげられる。 また酵母エキス、 ビタ ミン類、 生長促進因子などを添加してもよい。 とりわけ塩化カルシウム • 2水和物を約 0· 1 <¾およびリ ン酸二水素ナ卜 リウム ' 2水和物を約 2 %含有する培地が目的物の生産に有利である。 また、 培養するための温 度、 pH、 時間などの条件は、 目的物の生産およびその活性が最高とな るように適宜に定められる力 一般に培養温度は約 2 0〜 4 0 °C付近、 培養 pHは徼酸性から微ァルカリ性で、 ことに中性付近が好ましく、 培 養時間は約 6〜 1 0時間程度である。 As a medium used for culturing the transformant, a liquid medium is suitable, in which a carbon source, a nitrogen source, an inorganic substance, and the like necessary for growth of the transformant are included. It is included. Examples of carbon sources include glucose, dextrin, soluble starch, and sucrose, and examples of nitrogen sources include ammonium salts, nitrates, corn chip-liquor, leptone, casein, meat extract, and the like. Inorganic or organic substances such as soybean meal and barley extract, and examples of inorganic substances include calcium chloride, sodium dihydrogen phosphate, and magnesium chloride. Also, yeast extract, vitamins, growth promoting factor and the like may be added. In particular, a medium containing about 0.1 <¾ of calcium chloride • dihydrate and about 2% of sodium dihydrogen phosphate 'dihydrate is advantageous for production of the desired product. Conditions such as temperature, pH, and time for culturing are such that the production of the target product and its activity are maximized. In general, the culture temperature is around 20 to 40 ° C, the culture pH is from acidic to slightly alkaline, and especially around neutral, and the culture time is from 6 to 10 ° C. About an hour.
本発明の発酵に於て目的とするポリぺプチドは通常菌体内に蓄積され るので、 培養物中に蓄積された該ポリペプチ ドを採取するには、 まず菌 体を遠心分離や 過によって集め、 これよリ該ポリぺプチドを抽出する ことにより行なわれる。 該ポ ぺプチドを効率よく抽出させるためには、 たとえば超音波処理, J ' ゾチーム処理,界面活性剤などの化学薬品によ る処理などが行われる。 ―  In the fermentation of the present invention, the target polypeptide is usually accumulated in the cells, so to collect the polypeptide accumulated in the culture, the cells are first collected by centrifugation or filtration. This is done by extracting the polypeptide. In order to efficiently extract the peptide, for example, ultrasonic treatment, J ′ zyme treatment, treatment with a chemical such as a surfactant, or the like is performed. ―
このようにして抽出された該ボリペプチドの精製は、 従来からの蛋白 質あるいはペプチドの精製法、 たとえば硫安塩析,アルコール沈澱,ィ オン交換カラムクロマ卜グラフィ一, セルロースカラムク ロマ 卜グラフ ィ一,ゲル 過法などの適用により行なわれる。  Purification of the polypeptide extracted in this manner can be performed by a conventional protein or peptide purification method such as ammonium sulfate precipitation, alcohol precipitation, ion exchange column chromatography, cellulose column chromatography, or the like. This is performed by applying a gel filtration method or the like.
後述の実,施例 1において得られる D NAは、 第 1図に示されるヌクレ ォチド配列のポリヌクレオチドを含有する D NAである。 このうち、 第 1図においてヌクレオチド配列 9 - 3 5 6として示されるポリヌクレオ チドは、 苐 2図においてァミノ酸配列 3 — 1 1 8で表されるポリぺプチ ド、 つまりヒ 卜 I g _E H鎖の C 2領域をコードする。  The DNA obtained in Example 1, which will be described later, is a DNA containing a polynucleotide having a nucleotide sequence shown in FIG. Among them, the polynucleotide shown as the nucleotide sequence 9-356 in FIG. 1 is the polypeptide represented by the amino acid sequence 3—118 in FIG. 2, that is, the human Ig_E H chain. Encoding the C2 region of
また、 第 1図においてヌクレオチド配列 3 6 9— 7 6 7として示され るポリヌクレオチドは、 第 2図においてァミノ酸配列 1 2 3 — 2 5 5と して表されるポリぺプチド、 つまりヒ 卜 I L— 2をコ一ドする。 これら のポリヌクレオチドは、 直接発現のために、 5'末端に読み取り枠を一致 させるように、 A T Gを有していてもよい。 この場合には、 N末端に Metを有するポリぺプチドをコ一ドする。  The polynucleotide shown in FIG. 1 as the nucleotide sequence 369—767 is a polypeptide represented as the amino acid sequence 123—255 in FIG. 2, that is, a human. Code IL-2. These polynucleotides may have an ATG so as to match the open reading frame to the 5 'end for direct expression. In this case, a polypeptide having Met at the N-terminus is encoded.
また、 これらのポ 'Jヌクレオチドは読み取り枠を一致させるために、  Also, these polynucleotides are used to match the reading frame,
OMPI 任意の介在配列を有していてもよい。 第 i図において、 この介在配列と はヌク レオチド配列 3 5 7— 3 6 8として示される。 この場合には、 第OMPI It may have any intervening sequence. In FIG. I, this intervening sequence is shown as the nucleotide sequence 357-368. In this case,
2図においてァミノ酸配列 1 1 9 — 1 2 2として表されるポリぺプチド をコードする。 2 encodes a polypeptide represented as the amino acid sequence 1 19 -122.
前述したように、 ヒ 卜 I g Eおよびヒ 卜 I L— 2に関しては、 それぞ れ単独で、 それをコードする m RNAが既に分離同定され、 これらの遺 伝子の発現も単独で試みられているが、 本発明のように、 2種類あるい は、 それ以上の遺伝子を連結して、 2種類あるいは、 それ以上の異なる 免疫学的もしくは生物学的活性をもった 1つの新たなポリぺプチドを製 造するという概念は、 今までに無いものである。 さらに、 2種類以上の 独立な免疫学的もしくは生物学的活性を有する 1つのポリぺプチドは、 自然界にもその例が少なく、 本発明は、 新規活性蛋白を提供するという 点で、 遺伝子工学に追随したぺプチドエ学の先駆をなすものである。  As described above, for human IgE and human IL-2, the mRNAs encoding them have been isolated and identified by themselves, and the expression of these genes has also been attempted alone. However, as in the present invention, two or more genes are linked to form a new polypeptide having two or more different immunological or biological activities. The concept of manufacturing is never before seen. Furthermore, one polypeptide having two or more independent immunological or biological activities is rare in the natural world, and the present invention provides a novel active protein. It is the pioneer of peptide science that followed.
本発明万法により得られた抗体認識部位を含むぺプチドとヒ ト I L— 2のペプチ ドとを結合したポリペプチ ドは、 ヒ ト I L— 2抗体を精製す る際の試薬として有用である。 たとえば、 本発明方法により得られた上 記のアミノ酸配列で構成される I GL—E C 2 2は、 ヒ ト IgEのも つ抗原性とヒ 卜 I L— 2のもつ抗原性の両方を有しているために、 抗ヒ 卜 I g E抗体を用いて I GL— E C 2 2を精製し、 精製した I GL— C 2 2を用いて抗ヒ 卜 I L— 2抗体を作製 '精製し、 精製した抗ヒ 卜 I L— 2抗体を用いて、 ヒ 卜 I L一 2を精製するという一連のヒ 卜 I L一 2精製過程の媒体となり得る。 この場合、 I GL— EC 2 2力 直接関 与するのは抗ヒ 卜 I L— 2抗体を精製するときである力;、 この様な未知 の抗体を作製 ·精製する方法は他に例が無く、 抗体精製の新技術として 大きく期待される。 また、 I GL— E C 2 2はァレルギ一反応に関与するヒ 卜 I g Eと、 T細胞増殖作用を有するヒ卜 I L一 2の双方の免疫学的もしくは生物学 的 St生を有し、 さらに未知の第三の活性を有することが期待される。 ヒ ト I L— 2抗体精製の具体例としては次の様な方法が行なわれる。 まず、 抗ヒ ト I g β抗体とァガロースゲルビーズ(Bio- Had社製 The polypeptide obtained by binding the peptide containing the antibody recognition site and the human IL-2 peptide obtained by the method of the present invention is useful as a reagent for purifying the human IL-2 antibody. For example, IGL-EC22 comprising the above amino acid sequence obtained by the method of the present invention has both the antigenicity of human IgE and the antigenicity of human IL-2. Therefore, IGL-EC22 was purified using an anti-human IgE antibody, and an anti-human IL-2 antibody was prepared using the purified IGL-C22. It can be used as a medium for a series of human IL-12 purification processes in which human IL-12 is purified using an anti-human IL-2 antibody. In this case, the force of Azukasuru I GL- EC 2 2 force directly related is when purifying Kohi Bok IL- 2 antibody; a method of making and purifying such unknown antibodies exceptional without It is greatly expected as a new technology for antibody purification. In addition, IGL-EC22 has both immunological and biological St life of human IgE involved in the allergic reaction and human IL-12 having T cell proliferating action. It is expected to have an unknown third activity. As a specific example of the purification of the human IL-2 antibody, the following method is performed. First, an anti-human Ig β antibody and agarose gel beads (Bio-Had
Affigel-10など:) を結合させた抗体カラムを作成する。 この抗体カラ 厶に、 E.coli DHl/pGEL 1028 抽出液に含まれる I GL C 22 を特異的に結合させる。 次に、 ヒ ト I L一 2で免疫されたラッ 卜の腹水、 あるいはゥサギの血清を、 上述の I GL— _E C 2 2に吸着抗ヒ 卜 I gE 抗体カラムと反応させる。 これを適当な緩衝液で溶出すると、 IOL— EC 2 2とヒ 卜 丄 L— 2抗体の混合液が得られる。 この混合液を I) A βセルロースカラム(Whatman社製 Cellulose52など)の抗体以外の 蛋白を吸着する塩濃度で溶出すればヒ ト I L一 2抗体が精製される。 なお、 本明細書および図面において、 塩基やアミノ酸などを略号で表 示する場合、 IUPAC— I UB Commission on Biochemical Nomenclature による略号あるいは当該分野における慣用略号に基づ くものであり、 その例を第 1表に挙げる。 また、 アミノ酸に関し光学異 个生体がありうる場合は、 特に明示しなければ L—体を示すものとする。 Create an antibody column to which Affigel-10 is bound. IGLC22 contained in the E. coli DHl / pGEL1028 extract is specifically bound to this antibody column. Next, the ascites of a rat immunized with human IL-12 or the serum of a rabbit is reacted with the above-mentioned anti-human IgE antibody column adsorbed on IGL-_EC22. Elution this in appropriate buffer, IOL- EC 2 2 and a mixture of human Bok丄L-2 antibody is obtained. The mixture was I) when eluted with a salt concentration adsorbed proteins other than antibodies of the A beta-cellulose column (such as manufactured by Whatman Cellulose52) human IL one 2 antibody is purified. In the present specification and drawings, bases, amino acids, and the like are indicated by abbreviations based on the abbreviations of the IUPAC-I UB Commission on Biochemical Nomenclature or commonly used abbreviations in the relevant field. It is listed in the table. In addition, when there is an optically distinct organism for an amino acid, the L-isomer shall be indicated unless otherwise specified.
D N A デォキシリボ核酸 D N A Deoxyribonucleic acid
c DNA 相補的デォキシ!;ボ核酸  c DNA complementary doxy !; nucleic acid
R N A リボ梭酸  R N A Ribosuccinic acid
m RNA 伝令リボ核酸  mRNA messenger ribonucleic acid
A デォキシァデュル酸 5一 A Deoxyduronic acid 5 one
τ チ ミジル酸  τ Thymidylate
G デォキシグァニル酸 c デォキシシチジル酸  G Deoxyguanylic acid c Deoxycytidylic acid
U ゥリジル酸  U peridylic acid
d AT P デオキ ^アデノ シン三リ ン酸 d T TP デォキンチミジン三リン酸 d GT P デォキシグアノシン三リン酸 d CT P デオキ^ チジン三リ ン酸 d ATP deoxy ^ adenosine triphosphate dTTP deoxythymidine triphosphate d GT P deoxyguanosine triphosphate dCTP deoxy ^ thidine triphosphate
A T P ァデノシン三リ ン酸 A T P adenosine triphosphate
ED TA エチレンジァ ミン四酔酸 ED TA Ethylenediamine tetracarboxylic acid
S D S ドデシル硫酸ナ ト リウムS D S Sodium dodecyl sulfate
Gl y グ リ シン Gly
A 1 a ァラ二ン  A 1 a
Va 1 ノく リ ン  Va 1 Lin
Leu ロイシン  Leu Leucine
I 1 e イ ソ ロイ シン  I 1 e
S e r セ リ ン  Ser Serine
Th r スレオニン  Th r threonine
Cy s ΐ スティン  Cy s ス テ ィ ン Stin
Me t メチォニン  Me t Methionin
Gl u グルタミ ン酸 .  Glutamate.
As p ,スノヽフ千ン酸  As p, Snowpuff
L y s リジン  Lys lysine
A r g アルギニン  A r g Arginine
H i s ヒ スチジン P h e フエ二ルァラニン H is histidine P he feniralanin
T y r チ σシン  T y r H
T r 卜 リプ卜 ファン  Tr r rrip fan
Pro プロ リン  Pro Proline
A s n ァスノ ラギン  A s n Asno Lagin
G 1 π グルタミン  G 1 π Glutamine
b P 塩基対  b P base pairs
図 面 の 隨 単 な 説 明  Simple explanation of the drawing
第 1図はヒ 卜 I g ^のぺプチドをコ一ドする構造遺伝子を有する DN Aおよびヒ 卜 I L— 2のペプチドをコードする構造遺伝子を有する DN FIG. 1 shows a DNA having a structural gene encoding a peptide of human Ig ^ and a DN having a structural gene encoding a peptide of human IL-2.
Aを連結してなる DN Aのヌク レオチド配列を、 第 2図は第 1図に示さ れるヌク レオチ ド配列に対するァミノ酸配列を、 第 3図は参考例 1の構 築図を、 第 4図は参考例 2 )の溝 ¾図をそれぞれ示す。 第 5図は実施例Fig. 2 shows the nucleotide sequence of the DNA linked to A, Fig. 2 shows the amino acid sequence corresponding to the nucleotide sequence shown in Fig. 1, Fig. 3 shows the construction of Reference Example 1, and Fig. 4 Shows the grooves of Reference Example 2). Fig. 5 shows an embodiment
1の構築図を示し、 "''/"/〃,囊部はヒ 卜 I L一 2のぺプチドをコードする 部分を示す。 1 shows a construction diagram, "''/" / 〃,囊部represents a region encoding a peptide of human Bok IL one 2.
—発明を実施するための最良の形態  —Best mode for carrying out the invention
参考例 1. Reference example 1.
ヒ 卜 I g E H鎖 C 2領域のポリぺフ-チ ドを発現するプラス ミ ド p G E T trp 8 1 8— Cの搆築:  A plasmid that expresses the polypeptide of the human IgE H chain C2 region pGETTrp818—C
日本特開昭 5 9— 4 4 3 9 9号公報に記載の万法で構築されたプラスミ ド pGET trp 302の DNA 1 を Clalで切断し、 S ιヌクレアーゼ 消化を行って両端の粘着末端を削った。 この DNAをフエノ ール抽出、 ェタノ 一ル沈澱により精製したのち、 末端をリ ン酸化した EcoRIリ ンカー dCTAGAATTCTAGs 0 ngを T 4 DNAリ ガーゼを用い て結合し、 EcoRI リ ンカ一の重複連結したプラス ミ ドを除くため、 結 合物を EcoRIで切断した。 この DNAを T 4DNAリガーゼを用いて 再結合して大腸菌 2 9 4を形質転換し、 転換株よリ pGET trp 302— aを得た。 pGET trP 3 0 2 一 aを EcoRIと Pstlで消化して生ず る 1.2 kb DNA断片を、 1.2 %ァガロースゲル電気泳動によリ分画回 収した。 この DNA断片 5 0 ngを、 EcoRI, Ps t I消化した発現用べ クタ一 Ptrp 7 8 1 〔Nurleic Acids Re search l l , .3077 一 3 0 85 〔 1 9 8 3 ) 〕 2 0 Ongに T 4 DNAリ ガーゼを用いて組み 込み、 大腸菌 2 9 4を形質転換し、 アンピン リ ン感受性の転換株より pGET trp 3 0 2 - bを得た。 pGET trp 302— bを制限酵素 Xbal で切断した後、 生じた DN Aの粘着末端を S 1ヌクレアーゼ消化を行つ て平滑末端とした。 この DNAを、 フエノール抽出、 エタノール沈澱に より精製したのち、 T 41) NAリガーゼを用いて再結合し、 大暘菌 294 を形質転換した。 転換株より pGETtrp 302— dを得た。 The DNA 1 of plasmid pGET trp 302 constructed in ten thousand method described in Japanese JP-5 9 4 4 3 9 9 No. cleaved with Clal, cut sticky ends at both ends by performing an S iota nuclease digestion Was. This DNA was purified by phenol extraction and ethanol precipitation, and then the ligated EcoRI linker dCTAGAATTCTAGs (0 ng) was ligated using T4 DNA ligase, and the EcoRI linker was ligated. To remove the mid The compound was cut with EcoRI. This DNA was religated with T4 DNA ligase to transform E. coli 294, and pGET trp 302-a was obtained from the transformed strain. the pGET tr P 3 0 2 1.2 kb DNA fragment of an a that may arise from was digested with EcoRI and Pstl, was 1.2% Agarosugeru electrophoresis by Li fraction times Carabid. T The DNA fragment 5 0 n g, EcoRI, Ps t I digested base for expression Kuta one Ptrp 7 8 1 [Nurleic Acids Re search ll, .3077 one 3 0 85 [1 9 8 3)] in 2 0 Ong E. coli 294 was transformed by incorporation using 4 DNA ligase, and pGET trp302-b was obtained from a transformant that was sensitive to ampinline. After pGET trp 302-b was digested with the restriction enzyme Xbal, the sticky end of the resulting DNA was digested with S1 nuclease to be blunt-ended. This DNA was purified by phenol extraction and ethanol precipitation, and religated using T41) NA ligase to transform Daekyo 294 . PGETtrp 302-d was obtained from the transformed strain.
pGETt卬 302— dを制限酵素 ΡνιιΠ部位で切断した後、 制限酵素 Ava I部位で切断し、 Aval部位で切断された DNA銷を分取した。 こ の; NA鎖の両端を S 1ヌクレア一ゼで削って平滑とした後、 EcoRI リ ンカ一 dCTAGAATTCTAGを結合し、 EcoRI 消化後再結合させ て、 発現プラスミ ド pGETt卬 818— cを構築した(第 3図参照:)。  pGETt 卬 302-d was cleaved at the restriction enzyme ΡνιιΠ site, then cut at the restriction enzyme AvaI site, and the DNA promoted at the Aval site was fractionated. After shaping both ends of the NA chain with S1 nuclease to smooth it, EcoRI linker dCTAGAATTCTAG was bound thereto, digested with EcoRI, and religated to construct the expression plasmid pGETt 卬 818-c ( See Figure 3 :).
pGETt卬 818— cは、 C 2領域の 1 2 1アミ ノ酸、 および C末端に、 リンカーの結合により生じた Leu, Glu , Pheを有する分子量 13.000 のペプチ ドをコー ドしている。 このプラス ミ ドは、 N末端に I gE H鎖 に由来しない、 アダプタ一にコードされた Met , Leuを有している。  pGETt 卬 818-c encodes a 121-amino acid in the C2 region and a 13.000 molecular weight peptide having Leu, Glu, and Phe generated at the C-terminus by linker attachment. This plasmid has Met and Leu at the N-terminus, which are not derived from the IgE heavy chain and are encoded by the adapter.
OMPI OMPI
—'-―.. 参考例 2 —'-― .. Reference example 2
ヒ ト I L一 2のペプチドを発現するプラスミ ド pTF 1の構築: (1) (i) ヒ ト I L一 2をコードする mRNAの分離  Construction of plasmid pTF1, which expresses human IL-12 peptide: (1) (i) Isolation of mRNA encoding human IL-12
ヒ ト末梢血より調製したリンパ球を 1 2— 0—テトラデカノィルホル ボ一ノレ一 1 3—アセテー ト 〔 ΤΡΑ ) C 1 5 ng/m£ ) とコンカナパ リ ン A 4 0 μ^Αιί を含む RPMI 1640 培地 1 0 の牛胎児血清を 含む)中、 3 7 °Cで培養し、 I L一 2を誘導させた。 2 4時間後、 この 誘導した 1 X 1010 個のヒ ト リ ンパ球を 5 Mグァニジンチオ ァネート、 5 %メノレ力プトエタノール、 5 0 JnM Tr i s · HC 1 pH7.6 , 1 0 mM EDTA 溶液中でテフロンホモゲナイザーによって破壌変性した 後 N—ラウロイ リルザルコ ン酸ナ ト リゥムを 4 になるように加え、 均質化した混合物を 5.7 M塩化セシウム溶液( 5.7 M塩化セ ウム,0.1 M EDTA) 6 上に重屨し、 ベックマン SW2 8のローターを用いて 1 5 で 24000 rpin 48時間遠心処理を行い、 RN A沈澱を得た。 この RNA沈澱を 0.2 5? βΝ—ラウロイ /レザルコ ン酸ナ ト リ ゥム溶液 にとかした後、 エタノールで沈澱させ、 1 0 の RNAを得た。 この RNAを高塩溶液〔 0.5Μ N a C 1 , 1 0 mM T r i s · HC 1 pH7.6, imM EDTA, 0.3 % SDS J 中でオリゴ( dT J セルロースカラムに 吸着させ、 ポリ ( A )を含む mRNAを低塩溶液( 1 0 mM Tr is— HC 1 . pH 7.6 , 1 mM EDTA, 0.3 ^ S D S )で溶出させることに より、 ポリ A )を含む mRNA 3 0 0 igを分取した。 Lymphocytes prepared from human peripheral blood were treated with 12-0-tetradecanoylphorone 13-acetate (ΤΡΑ) C 15 ng / m £) and concanaparin A 40 μ ^ Αιί The culture was carried out at 37 ° C. in RPMI 1640 medium (containing 10 fetal bovine serum), and IL-12 was induced. 2 After 4 hours, the 1 X 10 10 cells of human lymphocytes obtained by the induced 5 M Guanijinchio Aneto, 5% Menore force script ethanol, 5 0 JnM Tr is · HC 1 pH7.6, 1 0 mM EDTA solution After centrifugation with a Teflon homogenizer, add sodium N-lauroylyl sarconate to 4, and homogenize the mixture on a 5.7 M cesium chloride solution (5.7 M cesium chloride, 0.1 M EDTA) 6. The mixture was centrifuged, and centrifuged at 24,000 rpm for 48 hours at 15 using a Beckman SW28 rotor to obtain an RNA precipitate. 0.25? After dissolving in β-lauroy / sodium lesalconate solution, the mixture was precipitated with ethanol to obtain 10 RNA. This RNA was adsorbed to an oligo (dTJ cellulose column) in a high salt solution [0.5ΜNaC1, 10 mM Tris · HC1 pH7.6, imM EDTA, 0.3% SDS J, and poly (A) was The mRNA containing the poly (A) was eluted with a low salt solution (10 mM Tris—HC1. PH 7.6, 1 mM EDTA, 0.3 ^ SDS) to obtain 300 ig of the mRNA containing poly (A).
この mRNAを更にエタノールで沈澱させ、 0.2πの溶液( 1 OmM Tr is-HCI pH 7.6 , 2 mM EDTA, 0.3 ^ SDS に溶かし、 65 で 2分間処理して 1 0〜 3 5 %ショ糖密度勾配遠心処理〔ベックマン SW 2 8のローターを用いて 2 0 , 25000 rpmで 2 1時間遠心分 ^ 離:)することにより分画して 2 2分画を得た。 この各分画につき RNA の一部ずつを、 アフリカッメガエルの卵母細胞に注入し、 合成される蛋 白質中の I L一 2活性を測定し、 分画 1 1〜 1 5 (沈降定数 8 S〜 1 5 S )に I L一 2の活性を検出した。 この分画の IL— 2 mRNAは約 25 であった。 This mRNA was further precipitated with ethanol, dissolved in a 0.2π solution (1 OmM Tris-HCI pH 7.6, 2 mM EDTA, 0.3 ^ SDS), treated with 65 for 2 minutes, and subjected to a 10 to 35% sucrose gradient. Centrifugation (centrifugation at 20 and 25000 rpm for 21 hours using a Beckman SW 28 rotor ^ Separation :) to obtain 22 fractions. A portion of the RNA from each of these fractions was injected into the oocytes of Lactobacillus frogs, the IL-12 activity in the synthesized protein was measured, and fractions 11 to 15 (sedimentation constant 8 S ~ 15S), the activity of IL-12 was detected. The IL-2 mRNA in this fraction was about 25.
(ii) 単鎖 DN Aの合成:  (ii) Synthesis of single chain DNA:
上記で得た mRNAおよび逆転写酵素を用い、 100 の反応液 ( 5 / の mRNA , 50 igォ リゴ( d T ) , 1 0 0ュニッ トの逆転写酵素, 1 111丄1ずっの 1 ?, d C T P , 01 1>ぉょび411 ? , 8 mM MgC 12 , 5 0 mM KC 1 , l o mMジチオス レィ 卜 一ル , 5 0 mMUsing the mRNA and reverse transcriptase obtained above, 100 reaction solutions (5 / mRNA, 50 ig oligo (dT), 100 units of reverse transcriptase, 1 111 丄 1 of 1 ?, d CTP, 01 1 >ぉ 41 1 ?, 8 mM MgC 12, 50 mM KC 1, lo mM dithiothreitol, 50 mM
Tris—HC l pH8.3 中で 4 2 °C , 1時間インキュベートした後に、 フエノ一ルで除蛋白し、 0.1 Νの NaOH で 7 0。c, 2 0分処理して R NAを分解除去した。 After incubating for 1 hour at 42 ° C in Tris-HCl pH 8.3, deproteinize with phenol and 70 with 0.1 ml NaOH. c, 20 minutes treatment to decompose and remove RNA.
二重鎖 DNAの合成:  Double-stranded DNA synthesis:
ここで合成された単鎖の相補 DN Aを 50 / の反応液( mR NAとォ リゴ d Tを含まない以外は上記と同じ反応液)中で 4 2 "C 2時間反応さ せることにより二重鎖 I) N Aを合成した。  The single-stranded complementary DNA synthesized here was reacted in a 50/50 reaction solution (the same reaction solution as described above except that mRNA and oligo dT were not contained) to react for 2 hours at 42 ° C. Heavy chain I) NA was synthesized.
(iv) dCティルの付加: (iv) Addition of dC till:
この二重鎖 DN Aにヌクレアーゼ S 1を 50 ^の反応液 (:二重鎖 DN A 0.1 M酢酸ナト リウム pH 4.5 , 0.2 5 M NaC 1 , 1.5mM ZnS04, 6 0ュニッ 卜の S 1ヌク レアーゼ〕中で室温 3 0分間作用させ、 フエノ —ルで除蛋白し、 エタノールで DNAを沈澱させた後、 これにタ一ミナ ル ト ランスフェラ一ゼを 50 ^の反応液(二重鎖 D N A , 0.1 4 Mカコ ジル酸力リ , 0.3M Tris (塩基) ρΗ 7.6 , 2 mMジチォスレイ ト一 ル, 1 mM Co C 12 , 0.1 5 mM d CTP , 3 0ュニッ トターミナル ト ランスフヱラーゼ)中で 3分間 3 7。Cで作用させ二重鎖 DN Aの 3'両端 に約 1 5個のデォキ シチジン鎖を伸長させた。 これらの一連の反応で 約 300 ngのデォキシシチジン鎖をもつた二重鎖 DN Aを得た。 Nuclease S 1 50 ^ of the reaction solution to this duplex DN A (: duplex DN A 0.1 M sodium acetate pH 4.5, 0.2 5 M NaC 1 , 1.5mM ZnS0 4, 6 0 Yuni' Bok of S 1 quinuclidine Reactase] at room temperature for 30 minutes, deproteinize with phenol, precipitate the DNA with ethanol, and add 50% reaction solution (double-stranded DNA) , 0.1 4 M Kako Gilles acid strength Li, 0.3 M Tris (base) ρΗ 7.6, 2 mM Jichiosurei DOO one le, 1 mM Co C 1 2, 0.1 5 mM d CTP, 3 0 Yuni' preparative terminal DOO 3 minutes in translanase). C to extend about 15 deoxytidine chains at both 3 'ends of the double-stranded DNA. These series of reactions yielded about 300 ng of double-stranded DNA with a deoxycytidine chain.
(V) 大腸菌プラス ドの開裂ならびに dGティルの付加: (V) Cleavage of E. coli plasmid and addition of dG till:
一方、 10 igの大腸菌プラス ミ ド pBR 3 2 2 DNAに制限酵素 Pst On the other hand, the restriction enzyme Pst was added to 10 ig of E. coli plasmid pBR322 DNA.
Iを 50 の反応液〔 10 g DNA , 50 mM N a C 1 , 6 mM Tris. HC1 · pH7.4 , 6 mM MgC 12 , 6 mM 2—メルカプトエタノ ール, 100 μ / M 牛血清アルブミン , 2 0ュニッ 卜の Ps t I J中で 3時間 37 °Cで作用させて PBR322D N A中に 1ケ所存在する Ps 11認識部位を 切断し、 フヱノ ールで除蛋白した後、 ター ミナル ト ランスフ -ラ一ゼを 50 の反応液〔 DNA 10 ig, 0.14M力コジル酸カ リ , O. SMTris •塩基 pH 7.6 , 2 mMジチオスレィ 卜 一ル , 1 mM CaCl2, 0.15 mM GTP , 3 0ュニッ トター ミナル ト ランスフェラ一ゼ:)中で 3分間The reaction solution 50 I ## 10 g DNA, 50 mM N a C 1, 6 mM Tris. HC1 · pH7.4, 6 mM MgC 1 2, 6 mM 2- mercaptoethanol, 100 μ / M bovine serum albumin , 20 units of Pst IJ for 3 hours at 37 ° C to cleave one Ps11 recognition site in PBR322 DNA, deproteinize it with phenol, and then conduct terminal transfection. the reaction solution La one peptidase 50 [DNA 10 ig, 0.14 M force prying oxide Li, O. SMTris • base pH 7.6, 2 mM Jichiosurei Bok Ichiru, 1 mM CaCl 2, 0.15 mM GTP, 3 0 Yuni' Tota Terminal 3 minutes in Transferase :)
3 7 で作用させ上記プラス ミ ド PB R 3 2 2 DNAの 3両端に約 1 Ί 個のデォキングァニン鎖を延長させた。 The DNA was allowed to act with 37 to extend approximately 1 デ of the blocking guanine chain to the three ends of the plasmid PBR 3 222 DNA.
(vi) cDNAの会合ならびに大腸菌の形質転換:  (vi) cDNA association and E. coli transformation:
このようにして得られた合成二重鎖 DNA o.l ig と上記プラス ミ ド pBR 3 2 2 , 0.5 を。. lM NaCl, 5 0 mM Tr i s -HC1 p H 7.6 , imM EDTAよりなる溶液中で 6 5°C2分間、 45 °C 2時間加熱 しその後除冷して会合させ Eneaらの方法〔 J. Mo 1. B iol. , 96 , The thus obtained synthetic double-stranded DNA o.lig and the above plasmid pBR322,0.5. In a solution consisting of 1M NaCl, 50 mM Tris-HC1 pH 7.6 and imM EDTA, the mixture was heated at 65 ° C for 2 minutes and 45 ° C for 2 hours, then cooled and allowed to associate with each other, according to the method of Enea et al. [J. 1. B iol., 96,
495 C 1975 :)に従って大腸菌 MM 2 9 4を形質転換させた。 E. coli MM294 was transformed according to 495 C1975 :).
(vii) cDNA含有プラス ミ ドの単離 :  (vii) Isolation of plasmid containing cDNA:
このようにして約 20,000個のテトラサイク リン耐 f生株が単離され、 これら各々の DN Aを二ト ロセルロースフィ ルタ一の上に固定した。 次 レ、で Taniguchi らの報告!: Nature , 302, 305〔 1983 )〕した I L— 2のァミノ酸配列をもとにしてァミノ酸^ 7 4〜7 8 ( Lys74- Hi s-Leu-Gln-Cys )およびァミノ酸 £ 122〜126〔Thr122— Phe - Met— Cys— Glu )に対応する塩基配例( 5AAA CAT CTT CAG TGT3 および5 ACA TTC ATG TGT GAA3 をト リエステル法〔 C r sa , R. ら Proc .Natl. Acad. S ci. USA . 75 , 5765 ( 1978〕 〕に より化学合成した。 In this way, about 20,000 tetracycline-resistant f strains were isolated, and each of these DNAs was immobilized on a ditrocellulose filter. Next report from Taniguchi et al. : Nature, 302, 305 (1983)] IL- 2 of Amino acid sequences based on Amino acid ^ 7 4~7 8 (Lys 74 - Hi s-Leu-Gln-Cys) and Amino Acid £ 122-126 [Thr 122 - Phe - Met- Cys- Glu) ( 5 AAA CAT CTT CAG TGT 3 and 5 ACA TTC ATG TGT GAA 3 by the ester method [Crsa, R. et al. Proc. Natl. Acad. Sci. USA. 75, 5765 (1978)].
このオ リゴヌク レチォ ドに対して T 4ポリ ヌク レオチ ドカイネ一スを 用いて 50 の反応液( オ リゴヌク レオチ ド 0.2 O ug , 5 0 mM Tr is • HC1 Η 8.0 , 1 0 mM MgC 12 , 10 mMメルカプトエタノール , 50 μ Cir- 32ΡΑΤΡ, 3ュニッ ト Τ 4ポリヌク レオチ ド力イネ一ス 中で 1時間 3 7 °Cで反応させ、 5'末端を 32 Pで標識した。 この標識されたォ リゴヌク レオチ ドをプロ一ブとして Lawnらの方法〔Nucleic Acids Res.. 9 , 6103 ( 1981 ) 〕に従って上記の二 トロセル口一スフィ ルター上に固定した DN Aに会合させ、 オー トラジオグラフィ 一によつ て上記二種類のォリゴヌク レオチドプローブに反応する菌株を 4個単離 した。 これらの菌株の各々の菌体からプラス ミ ド DNAをアルカリ法〔 Birncoim H. C. & Doly, J . Nucl eic Ac ids Re s . , 7 , 1513 ( 1979 )〕によつて単離した。 次にプラス ミ ド DN Aの揷入部 を制限酵素 Pst Iにより切り出し、 分離したプラス ミ ドのうちでその揷 入部の長さの最も長い断片を含むものをえらび、 このプラスミ ドを PILOT 1 35— 8と名づけた。 The O Rigonuku Rechio 50 reaction solution by using of T 4 poly quinuclidine Reochi Dokaine Ichisu against de (O Rigonuku Reochi de 0.2 O ug, 5 0 mM Tr is • HC1 Η 8.0, 1 0 mM MgC 1 2, 10 mM mercaptoethanol, 50 μ Cir- 32 ΡΑΤΡ, 3 Yuni' preparative Τ reacted with 4 Porinuku Reochi de force rice in Ichisu 1 hour 3 7 ° C, was labeled at the 5 'end with 32 P. the labeled O The lignonucleotide was used as a probe to associate with the DNA fixed on the nitrocell filter according to the method of Lawn et al. [Nucleic Acids Res., 9, 6103 (1981)], and the autoradiography was performed. Thus, four strains that responded to the above two types of oligonucleotide probes were isolated, and plasmid DNA was isolated from the cells of each of these strains by the alkaline method [Birncoim HC & Doly, J. Nucleic Acids Reagents]. , 7, 1513 (1979)]. The insert of rasmid DNA was excised with the restriction enzyme PstI, and among the separated plasmids, the one containing the fragment with the longest insert was selected, and this plasmid was designated PILOT 135-8. I named it.
(2) プラス ミ ド PTF 1の構築: (2) Construction of PlusMid PTF 1:
前記 (1)で得られたプラス ミ ド PILOT 1 3 5— 8を制限酵素 Hgi AI で切断し、 1294 bpの DNA断片を得た。 この DNA断片を T4DNA ポリメラ―ゼで処理して平滑末端とした後 EcoRIリ ンカー dTGCCAT GAATTCATGGCAを T 4 DMAリガーゼを用いて結合し、51coRI リンカ一の重複連結したプラスミ ドを除くため、 結合物を EcoRI で消 化し、 さらにこの断片を制限酵素 Pst Iで消化して、 ヒ ト I L— 2遺伝 子の読み取り にそろえて翻訳開始コドン " ATG "を付加した DNA 断片を作製した。 The plasmid PILOT 135-8 obtained in the above (1) was digested with the restriction enzyme HgiAI to obtain a 1294 bp DNA fragment. This DNA fragment was treated with T4 DNA polymerase to make blunt ends, and then EcoRI linker dTGCCAT GAATTCATGGCA was ligated using T4 DMA ligase, the ligated product was digested with EcoRI to remove the duplicated plasmid of the 51coRI linker, and this fragment was digested with the restriction enzyme PstI to obtain human IL— A DNA fragment with the translation initiation codon "ATG" added was prepared in accordance with the reading of the two genes.
この DNA断片を制限酵素 EcoRIと Pst Iで消化した発現用プラス ミ ド ptrp 781「 Nuc 1 e i c Ac ids Research 11 , .3077— 3085 C 1983 J Jに T4DNAリガーゼにより結合させた。 この反応に より trpプロモータ—の下流に翻訳開始コ ドンを有し、 読み取り枠を一 致させてヒ ト I L— 2発現プラス ミ ド pTFlを構築した。〔第4図参照 このプラスミ ドを用いて大腸菌 DH 1を形質転換させることにより、 求 めるプラス ミ ド PTFIを含む菌株を得た。 This DNA fragment was ligated to the expression plasmid ptrp 781 "Nuc 1 eic Acids Research 11, .3077-3085 C 1983 JJ digested with the restriction enzymes EcoRI and Pst I using T4 DNA ligase. This reaction resulted in the trp promoter. The human IL-2 expression plasmid pTFl was constructed by matching the reading frame with the translation initiation codon downstream of-(See Fig. 4. This plasmid was used to transform Escherichia coli DH1). As a result, a strain containing the desired plasmid PTFI was obtained.
実施例 1. Example 1.
IGL— EC22のポリペプチド発現プラス ミ ド pGEL l 028の構築 および形質転換体の製造:  Construction of IGL-EC22 polypeptide expression plasmid pGEL1028 and production of transformants:
プラスミ ド pGET trp 818-C を制限酵素 C 1 alおよび EcoRIで 切断して約3 Kbpの DNA断片を得た。 また、 プラスミ ド pTF iを制 限酵素 EcoRIおよび P st 1で切断して約 500 bpの DNA断片を得た。 これらの 2つの DNA断片を T 4DNAリガーゼで結合させた。 この反 応により trpプロモーターの下流に翻訳開始コドンを有し、 読み取り枠 を一致させて IGL— EC 22発現プラスミ ド pGEL 1028を構築した 第5図参照)。 このプラスミ ドを用いて大腸菌 DE 1を形質転換させ、 プラス ミ ド PGEL 1028を含む形質転換体 Ε· coli DHl/ GEL 1028 ( 1 FO 14332 , FERM P— 7568 )を得た。 Plasmid pGET trp818-C was digested with restriction enzymes C1al and EcoRI to obtain a DNA fragment of about 3 Kbp. In addition, the plasmid pTFi was digested with restriction enzymes EcoRI and Pst1 to obtain a DNA fragment of about 500 bp. These two DNA fragments were joined by T 4 DNA ligase. By this reaction, a translation initiation codon was provided downstream of the trp promoter, and an IGL-EC22 expression plasmid pGEL1028 was constructed in the same reading frame (see FIG. 5 ). Escherichia coli DE1 was transformed with this plasmid to obtain a transformant Ε · DH1 / GEL1028 (1FO14332, FERM P-7568) containing the plasmid PGEL1028.
実施例 2. ゥ ΜΡΪ (i) IGL— EC22を含む菌体抽出液の調製: Example 2. ゥ ΜΡΪ (i) Preparation of cell extract containing IGL-EC22:
IGL-EC 22発現プラス ミ ド pGEL l 028を含む大腸菌 E. co 1 i DH 1/pGJjlL 1028 C IFO 14332 , FERM P— 75 68)を 20 m の 1 %グルコース , 0.4 %カザミ ノ酸を含む M 9培地で 3 7。C 4時間 培養した後、 イ ン ドールァク リル酸を 3 0 μ / Uに加え、 さらに 3 7 °C 3時間培養した。 菌体を集め、 食塩水で洗ったのち、 0.5^の溶菌液( 1 0 mM Tr i s .HC1 , pH 8.0 , 1 0 mM EDTA 0.2 M NaCl , 1 mM フエ二ルメチルスルホニルフルオラィ ド , 0.0 2 % ト リ ト ン X l O O , 0.1 /ni リ ゾチーム ) に懸濁し、 0。Cにて 4 5分, 3 7 °Cにて 2分放 置して溶菌させた。 これをさらに軽く 〔 3 0秒)超音波処理を行って、 溶出した菌体の DN Aを切断した後、 4°Cで 15000 rpm〔サ—バル SS 34 ロータ—,デュポン社製) , 3 0分間の遠心分離操作によって 上澄み液を得た。 この上澄み液を菌体抽出液とした。  E. coli containing IGL-EC 22 expression plasmid pGEL1028 E.co1iDH1 / pGJjlL 1028 C IFO 14332, FERM P— 7568) containing 20 m 1% glucose, 0.4% casamino acid M 3 in 9 media. After culturing for 4 hours at C, indoleacrylic acid was added to 30 µ / U, and culturing was further performed at 37 ° C for 3 hours. After collecting the cells and washing with saline, a 0.5 ^ lysate (10 mM Tris. HC1, pH 8.0, 10 mM EDTA 0.2 M NaCl, 1 mM phenylmethylsulfonyl fluoride, 0.02 % Triton X lOO, 0.1 / ni lysozyme). The cells were allowed to stand for 45 minutes at 37 ° C and 2 minutes at 37 ° C for lysis. This was further gently sonicated (30 seconds) to cut the DNA of the eluted cells, and then cut at 15,000 rpm at 4 ° C (Sabal SS 34 rotor, manufactured by DuPont), 30 A supernatant was obtained by centrifugation for minutes. This supernatant was used as a cell extract.
(2) 菌体抽出液の IgE活性の測定:  (2) Measurement of IgE activity of bacterial cell extract:
菌体抽出液の IgE活性を IgE測定キッ ト 〔 IgEテス ト ' シオノギ, 塩野義製薬製. 日本:)を用いた RIST法 !: Radio immuno sorbent test, Immunology.14 , 265 ( 1968 ) 〕により定量した。  RIST method using IgE assay kit [IgE test 'Shionogi, Shionogi & Co., Japan: Japan!] !: Radio immunosorbent test, Immunology. 14, 265 (1968)] did.
I GL— EC 22の I gE活性は 42 x 103単位/^培養液であつた。I gE activity I GL- EC 22 was found to be 42 x 10 3 units / ^ culture.
(3) 菌体抽出液の I L一 2活性: (3) IL-1 activity of bacterial cell extract:
ヒ ト I L一 2活性の測定は、 マウスの TCGF 依存性細胞株 NKC 3 Human IL-12 activity was measured using the mouse TCGF-dependent cell line NKC3.
〔日本免疫学会総会記録,第 1 1巻 2 7 7頁( 1 9 8 1年:) 〕を用いて 行った。 即ち、 まず 2段階稀釈により稀釈された種々の濃度のサンプル 50 をとり、 平底マイクロプレート (: ファルコン社製 ) に入れた。 次 いで 3 X 104個の NKC 3細胞を含む、 1 0 牛胎児血清 C 1 0 ^ F C S 含有 RPMI— 1640 液 50 ^を加え、 炭酸ガスふ卵器内で 3 7 °C, [Records of the General Meeting of the Immunology Society of Japan, Vol. 11, p. 277 (1989):] were used. That is, first, samples 50 of various concentrations diluted by two-step dilution were taken and placed in a flat-bottom microplate (manufactured by Falcon). Next, add 50 ^ ^ RPMI-1640 solution containing 3 x 10 4 NKC3 cells and 10 fetal calf serum C10 ^ FCS, and in a CO2 incubator at 37 ° C,
" っ 、 - - ― 2 0時間培養した。 さらに3 H—チミジン 1 iCiを加えて、 4時間培養し たのち、 セルハ ^スター(和研薬ェ橥社製, 日本 を用いて、 細胞を ガラスフィルタ一にトラップし、 洗争, 過,乾燥の後、 シンチレーシ ヨンカウンタ一により放射活性を測定した。 サンプル中の I GL -EC 22 の I L一 2活性は、 16 X 103単位 培養液であつた。 "Well,--- The culture was performed for 20 hours. Further, after adding 3 H-thymidine 1 iCi and culturing for 4 hours, the cells were trapped in a glass filter using a cell filter (Wake Chemical Co., Japan), and the cells were washed, dried, and dried. After that, the radioactivity was measured by a scintillation counter 1. The IL-12 activity of IGL-EC22 in the sample was 16 × 10 3 units of the culture solution.
なお、 上記活性は、 日本特開昭 5 8— 116498号公報に記載された 算出方法を基準として測定された。  The activity was measured based on the calculation method described in Japanese Patent Application Laid-Open No. 58-116498.
(4) 1(31^— 〇22の精製: (4) Purification of 1 (31 ^ —〇22:
日本特開昭 58— 96028号公報に記載されている方法により坑ヒ ト I E モノクローナル抗体を水不溶性担体アブイゲル 1 0 (Bio—Rad 社製 に結合させた。 抗ヒ ト IgEモノクローナル抗体一アブイゲル 1 0 カラム ΐπ に前項 (3)で得られた E. col i DHl pGELi 028を含む 菌体抽出液 5 πをかけ、 2 0 %デキス ト ロースを含む P B S ( 2 0 mM リン酸緩衝液, pH 6.8 , 0.1 5 M NaCl 50 を用いてカラムを洗浄 したのち、 0.2 M酢酸, 0.1 5MNaCl溶液 5 を用いて、 カラムに吸 着した I GL— EC 22 をカラムから溶出し、 溶出液をただちに中和し たのち、 PB S 1 に対して 5 °Cで 2 4時間透析した。 この操作により 純度 8 0 以上の I GL— EC 2 2 のポリぺプチドが約 5 0 の回収率 で得られた。 By the method described in Japanese JP 58 - 9 6028 JP and the Anahi preparative IE monoclonal antibodies conjugated to 1 0 (Bio-Rad Inc. water-insoluble carrier Abuigeru. Kohi preparative IgE monoclonal antibody has one Abuigeru 1 0 Apply 5 π of the cell extract containing E. coli DHl pGELi 028 obtained in the previous section (3) to column ΐπ, and add PBS containing 20% dextrose (20 mM phosphate buffer, pH 6.8). After washing the column with 0.15 M NaCl 50, the IGL-EC22 adsorbed on the column was eluted from the column with 0.2 M acetic acid and 0.15 M NaCl solution 5, and the eluate was immediately neutralized. After that, it was dialyzed against PBS 1 for 24 hours at 5 ° C. By this operation, a polypeptide of IGL-EC22 with a purity of 80 or more was obtained with a recovery of about 50.
産業上の利用可能性 ' Industrial applicability ''
本発明の新規 DNA^組み込んだプラス ミ ドで形質転換された形質転 換体を培養することにより、 抗体認識部位を含むぺプチドとヒ 卜インタ 一ロイキン 2のぺプチドとを結合したポリぺプチ ドを製造することがで き、 該ポリペプチドは、 ヒ トイ ンターロイキン 2抗体を精製する際の試 薬として有用である。  By culturing the transformant transformed with the plasmid into which the novel DNA ^ of the present invention has been incorporated, a polypeptide comprising a peptide containing an antibody recognition site and a human interleukin-2 peptide is bound. The polypeptide is useful as a reagent when purifying human interleukin 2 antibody.

Claims

請 求 の 範 囲 The scope of the claims
1. 抗体認識部位を含むぺプチドをコ一ドする構造遺伝子を有する DN Aおよびヒ ト イ ンターロイ キン 2のぺプチ ドをコ一 ドする構造遺伝子を 有する DN Aをそれぞれの読み取り枠をそろえて連結してなる; DNA。  1. Alignment of the open reading frames for DNA having a structural gene encoding a peptide containing an antibody recognition site and DNA having a structural gene encoding a peptide for human interleukin 2 Ligated; DNA.
2. 両構造遺伝子の上流にプロモータ—を連結してなる請求の範囲第 1 項記載の DNA。  2. The DNA according to claim 1, wherein a promoter is linked upstream of both structural genes.
3. 両構造遺伝子の間にリソカーを介してなる請求の範囲第 1項記載の DNA。  3. The DNA according to claim 1, wherein a lysocar is interposed between the two structural genes.
4. 抗体認識部位を含むぺプチドが抗ヒ ト免疫グロブリ ン E抗体認識部 位を含むベプチドである請求の範囲第 1項記載の DNA。  4. The DNA according to claim 1, wherein the peptide containing an antibody recognition site is a peptide containing an anti-human immunoglobulin E antibody recognition site.
5. 抗体認識部位を含むぺプチドをコ—ドする構造遺伝子を有する DN Aおよびヒ ト イ ンタ—ロイ キン 2のぺプチ ドをコ一ドする構造遺伝子を 有する D N Aをそれぞれ読み取り枠をそろえて連絡してなる D N Aが組 み込まれたプラスミ ド。  5. Alignment of reading frames for DNA containing a structural gene encoding a peptide containing an antibody recognition site and DNA containing a structural gene encoding a peptide for human interleukin 2 A plasmid containing the DNA from which it was contacted.
6. I NAが構造遺伝子 O上流にプロモーターを連結してなる DNAで ある請求の範囲第 5項記載のプラスミ ド。  6. The plasmid according to claim 5, wherein the DNA is a DNA obtained by ligating a promoter upstream of the structural gene O.
7. DNAが構造遺伝子の間にリンカ—を介してなる DNAである請求 の範囲第 5項記載のプラス ミ ド。  7. The plasmid according to claim 5, wherein the DNA is a DNA formed by interposing a linker between structural genes.
8. 抗体認識 »を含むぺプチドが抗ヒ ト免疫グロブリン E抗体認識部 位を含むぺプチドである請求の範囲第 5項記載のプラス ミ ド。  8. The plasmid according to claim 5, wherein the peptide containing antibody recognition »is a peptide containing an anti-human immunoglobulin E antibody recognition site.
9. 抗体認識部位を含むぺプチドをコ一ドする構造遺伝子を有する DN Aおよびヒ トイ ンタ一ロイキン 2のペプチ ドをコードする構造遺伝子を 有する DN Aをそれぞれの読み取り枠をそろえて連結してなる 1 N Aが 組み込まれたプラス ミ ドで形質転換された形質転換体。  9. DNA having a structural gene encoding a peptide containing an antibody recognition site and DNA having a structural gene encoding a peptide of human interleukin 2 are ligated in the same reading frame. A transformant transformed with a plasmid having integrated therein 1 NA.
10. 形質転換体の宿主がェシエリヒア属菌である請求の範囲第 9項記載 の形質転換体。 10. The claim according to claim 9, wherein the host of the transformant is a genus Escherichia. Transformants.
1 1. Aが構造遺伝子の上流にプロモータ—を連結してなる D N Aで ある請求の範囲第 9項記載の形質転換体。  11. The transformant according to claim 9, wherein A is DNA obtained by linking a promoter upstream of a structural gene.
1 2. D N Aが構造遺伝子の間にリンカ一を介してなる D N Aである請求 の範囲第 9項記載の形質転換体。  12. The transformant according to claim 9, wherein the DNA is a DNA comprising a linker between structural genes.
1 3. 抗体認識部位を含むぺプチドが抗ヒト免疫グロプリン: E抗体認識部 位を含むぺプチ ドである請求の範囲第 9項記載の形質転換体。  13. The transformant according to claim 9, wherein the peptide containing the antibody recognition site is an anti-human immunoglobulin: a peptide containing the E antibody recognition site.
1 4. 抗体認識部位を含むぺプチ ドとヒ ト イ ンターロイキン 2のペプチ ド とを結合したポ リぺプチ ド。  1 4. A polypeptide that combines a peptide containing an antibody recognition site with a human interleukin-2 peptide.
1 5. 抗体認識部位を含むぺプチドが抗ヒト免疫グロブリ ン E抗体認識部 位を含むぺプチドである請求の範囲第 1 4項記載のポリぺプチド。 15. The polypeptide according to claim 14, wherein the peptide containing an antibody recognition site is a peptide containing an anti-human immunoglobulin E antibody recognition site.
1 6. 抗体認識部位を含むペプチ ドをコードする構造遺伝子を有する D N Aおよびヒ トィンタ一ロイキン 2のぺプチドをコ一ドする構造遺伝子を 有する D N Aをそれぞれ読み取り枠をそろえて連結してなる D N Aが組 み込まれたプラスミ ドで形質 された形質転換体を培地に培養し、 培 養物中に抗体認識部位を含むぺプチ ドとヒ トイ ンターロイ キン 2のぺプ チドとを結合したポリペプチドを生成蓄積せしめ、 これを採取すること を特徴とする該ポリぺプチ ドの製造法。  1 6. A DNA comprising a structural gene encoding a peptide containing an antibody recognition site and a DNA comprising a structural gene encoding a peptide of human leukin 2 are ligated together in reading frame. The transformant transformed with the integrated plasmid is cultured in a medium, and a polypeptide in which the peptide containing the antibody recognition site and the polypeptide of human interleukin 2 are bound in the culture medium. A method for producing the polypeptide, comprising producing, accumulating, and collecting the same.
1 7. 形質転換体の宿主がェ エリヒア属菌である請求の範囲苐 1 6項記 載のポリぺプチドの製造法。  17. The method for producing a polypeptide according to claim 16, wherein the host of the transformant is a genus E. coli.
1 8. D N Aが構造遺伝^"の上流にプロモーターを連結してなる D N Aで ある請求の範囲苐 1 6項記載のボリぺプチドの製造法。  18. The method for producing a polypeptide according to claim 16, wherein the DNA is a DNA obtained by linking a promoter upstream of a structural gene.
19. D NAが構造遺伝子の間に!;ンカーを介してなる!) ] ΝΓΑである特許 請求の範囲第 1 6項記載のポリぺプチドの製造法。  19. DNA is between structural genes! Through the car! )] The method for producing a polypeptide according to claim 16, wherein:
2 0. 抗体認識部位を含むぺプチドが抗ヒト免疫グロブリ ン E抗体認識部 20. Peptide containing antibody recognition site is anti-human immunoglobulin E antibody recognition part
/ c "'/ c "'
、' 85/04673 , ' 85/04673
27- ドである請求の範囲第 1 6項記載のポリペプチ ドの製造 位を含むぺプチ 27. A peptide containing the production position of the polypeptide according to claim 16, which is a 27-peptide.
0  0
、ν? - , Ν ? -
PCT/JP1984/000181 1984-04-10 1984-04-10 Novel dna and its use WO1985004673A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1984/000181 WO1985004673A1 (en) 1984-04-10 1984-04-10 Novel dna and its use
JP60075910A JPS61181380A (en) 1984-04-10 1985-04-09 Novel dna and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1984/000181 WO1985004673A1 (en) 1984-04-10 1984-04-10 Novel dna and its use

Publications (1)

Publication Number Publication Date
WO1985004673A1 true WO1985004673A1 (en) 1985-10-24

Family

ID=13818296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000181 WO1985004673A1 (en) 1984-04-10 1984-04-10 Novel dna and its use

Country Status (2)

Country Link
JP (1) JPS61181380A (en)
WO (1) WO1985004673A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0269455A2 (en) * 1986-11-28 1988-06-01 Takeda Chemical Industries, Ltd. Highly purified fused protein comprising human IgE Fc fragment and production thereof
EP0288809A1 (en) * 1987-04-16 1988-11-02 Hoechst Aktiengesellschaft Bifunctional proteins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116498A (en) * 1981-12-28 1983-07-11 Takeda Chem Ind Ltd Novel messenger rna coding il-2, its preparation and preparation of il-2 using it
JPS5944399A (en) * 1982-09-07 1984-03-12 Takeda Chem Ind Ltd Novel dna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116498A (en) * 1981-12-28 1983-07-11 Takeda Chem Ind Ltd Novel messenger rna coding il-2, its preparation and preparation of il-2 using it
JPS5944399A (en) * 1982-09-07 1984-03-12 Takeda Chem Ind Ltd Novel dna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nature, vol. 302, issued 1983, TANIGUCHI, T; "Structure and expression of a cloned CDNA for human interleukin 2" R305 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0269455A2 (en) * 1986-11-28 1988-06-01 Takeda Chemical Industries, Ltd. Highly purified fused protein comprising human IgE Fc fragment and production thereof
EP0288809A1 (en) * 1987-04-16 1988-11-02 Hoechst Aktiengesellschaft Bifunctional proteins

Also Published As

Publication number Publication date
JPS61181380A (en) 1986-08-14

Similar Documents

Publication Publication Date Title
JP3073440B2 (en) Production and expression of large structural genes
Schimmel Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs
KR960011919B1 (en) Process for enzymatical cleavage of recombinant proteins by means of iga proteases
JP4907542B2 (en) Protein complexes for use in therapy, diagnosis and chromatography
JP2686090B2 (en) Novel fusion protein and purification method thereof
JPH0789934B2 (en) Manufacture and expression of structural genes
JPS62265986A (en) Human immune interferon
Parker et al. Peptide binding to HLA-A2 and HLA-B27 isolated from Escherichia coli. Reconstitution of HLA-A2 and HLA-B27 heavy chain/beta 2-microglobulin complexes requires specific peptides.
Eisenmesser et al. Expression, purification, refolding, and characterization of recombinant human interleukin-13: utilization of intracellular processing
JP4088584B2 (en) A method for separating a target protein from a fusion protein.
JPH0446559B2 (en)
WO1985004673A1 (en) Novel dna and its use
KR0161656B1 (en) Method for the production of glucagon
JPH025866A (en) Human alha fetoprotein domain i gene, corresponding plasmid, corresponding transformant, production of said domain i and produced said domain i
EP0126230A1 (en) Novel DNA and use thereof
Roberts et al. [24] The use of synthetic oligodeoxyribonucleotides in the examination of calmodulin gene and protein structure and function
JPH02200189A (en) Gene coding polypeptide having interleukin 2 activity
WO2021034971A1 (en) Methods and compositions for analyte detection and quantification
EP1981978A2 (en) Affinity polypeptide for purification of recombinant proteins
RIGGS et al. Synthesis, cloning, and expression of hormone genes in Escherichia coli
WO1985004420A1 (en) Novel dna and its use
JP2023508893A (en) Method for enhancing water solubility of target protein by WHEP domain fusion
JPS6152293A (en) Novel dna and use thereof
JPS62142121A (en) Antitumor active substance
JPH0673095A (en) Polypeptidfe having human interleukin 1 activity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): MC

Designated state(s): MC