NO162238B - ANALOGY PROCEDURES FOR THE PREPARATION OF THERAPEUTIC ACTIVE 1,4-DIHYDRO-4-OXONAFTYRIDE INGREDIATES. - Google Patents

ANALOGY PROCEDURES FOR THE PREPARATION OF THERAPEUTIC ACTIVE 1,4-DIHYDRO-4-OXONAFTYRIDE INGREDIATES. Download PDF

Info

Publication number
NO162238B
NO162238B NO851643A NO851643A NO162238B NO 162238 B NO162238 B NO 162238B NO 851643 A NO851643 A NO 851643A NO 851643 A NO851643 A NO 851643A NO 162238 B NO162238 B NO 162238B
Authority
NO
Norway
Prior art keywords
catalyst
antimony
stated
iron
oxygen
Prior art date
Application number
NO851643A
Other languages
Norwegian (no)
Other versions
NO851643L (en
NO162238C (en
Inventor
Hirokazu Narita
Yoshinori Konishi
Hideyoshi Nagaki
Isao Kitayama
Yoriko Kabayashi
Mikako Shinagawa
Yasuo Watanabe
Akira Yotsuji
Shinzaburo Minami
Isamu Saikawa
Jun Nitta
Original Assignee
Toyama Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13845280&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO162238(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyama Chemical Co Ltd filed Critical Toyama Chemical Co Ltd
Publication of NO851643L publication Critical patent/NO851643L/en
Publication of NO162238B publication Critical patent/NO162238B/en
Publication of NO162238C publication Critical patent/NO162238C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Hydrogenated Pyridines (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

Fremgangsmåte for oksydativ dehydrogenering av olefiner, Process for oxidative dehydrogenation of olefins,

oe katalysator for fremgangsmåtens utførelse. oe catalyst for carrying out the method.

Denne oppfinnelse vedrører den katalytiske oksydative dehydrogenering av olefiner til diolefiner, slik som buten-1 til butadien og tertiære amylener til isopren, under anvendelse av en forbedret oksyda-sjonskatalysator som i det vesentlige består av oksyder av elementene antimon og jern. This invention relates to the catalytic oxidative dehydrogenation of olefins to diolefins, such as butene-1 to butadiene and tertiary amylenes to isoprene, using an improved oxidation catalyst which essentially consists of oxides of the elements antimony and iron.

Fremgangsmåten i henhold til oppfinnelsen er karakterisert ved at en blanding av oksygen og et olefin i gassfase og ved en temperatur innen området fra ca. 325 til 1000° C, bringes i kontakt med en katalysator bestående i alt vesentlig av oksyder av antimon og jern og som har den empiriske formel: The method according to the invention is characterized in that a mixture of oxygen and an olefin in gas phase and at a temperature within the range from approx. 325 to 1000° C, is brought into contact with a catalyst consisting essentially of oxides of antimony and iron and which has the empirical formula:

hvor a har verdien 1—99, b har verdien 50—1 og c er et tall som svarer til metnin-gen av de gjennomsnittlige valenser av antimon og jern i de oksydasjonstilstander, i hvilke de foreligger i katalysatoren. where a has the value 1-99, b has the value 50-1 and c is a number which corresponds to the saturation of the average valences of antimony and iron in the oxidation states in which they exist in the catalyst.

I US-patent 2 904 580 er beskrevet en In US patent 2,904,580, one is described

katalysator sammensatt av antimonoksyd og molybdenoksyd i form av antimonmo-lybdat, og som skal være egnet for omdannelsen av propylen til akrylnitril. catalyst composed of antimony oxide and molybdenum oxide in the form of antimony molybdate, and which should be suitable for the conversion of propylene to acrylonitrile.

Engelsk patent 864 666 beskriver en katalysator sammensatt av et antimonoksyd alene eller i kombinasjon med et molybdenoksyd, et wolframoksyd, et telluroksyd, et kobberoksyd, et titanoksyd eller et ko-boltoksyd. Denne katalysator oppgis å bestå enten av blandinger av disse oksyder eller av oksygeninneholdende forbindelser av antimon og det annet metall, slik som anti-monmolybdat eller molybdenantimonat. Disse katalysatorsystemer oppgis å være nyttige ved fremstilling av umettede alde-hyder slik som akrolein eller metakrolein fra olefiner som propylen eller isobuten og oksygen. English patent 864 666 describes a catalyst composed of an antimony oxide alone or in combination with a molybdenum oxide, a tungsten oxide, a tellurium oxide, a copper oxide, a titanium oxide or a cobalt oxide. This catalyst is stated to consist either of mixtures of these oxides or of oxygen-containing compounds of antimony and the other metal, such as antimony molybdate or molybdenum antimonate. These catalyst systems are said to be useful in the production of unsaturated aldehydes such as acrolein or methacrolein from olefins such as propylene or isobutene and oxygen.

Engelsk patent 876 446 beskriver kata-lysatorer omfattende antimon, oksygen og tinn, hvilke oppgis enten å bestå av blandinger av antimonoksyder med tinnoksyder eller av oksygeninneholdende forbindelser av antimon og tinn, slik som tinnantimo-nat. Denne katalysator oppgis å være nyttig ved fremstilling av umettede alifatiske nitriler slik som akrylnitril fra olefiner som propylen, oksygen og ammoniakk. English patent 876 446 describes catalysts comprising antimony, oxygen and tin, which are stated to consist either of mixtures of antimony oxides with tin oxides or of oxygen-containing compounds of antimony and tin, such as tin ammonate. This catalyst is said to be useful in the production of unsaturated aliphatic nitriles such as acrylonitrile from olefins such as propylene, oxygen and ammonia.

Den i henhold til foreliggende fremgangsmåte anvendte oksydasjonskatalysa-tor består i det vesentlige av oksyder av antimon og jern. Den er ikke bare egnet for oksydasjon av olefiner til oksygenerte hydrokarboner, som akrolein og oksydasjon av olefin-ammoniakkblandinger til umettede nitriler som akrylnitril, men også for den katalytiske oksydative dehydrering av olefiner til diolefiner. The oxidation catalyst used according to the present method essentially consists of oxides of antimony and iron. It is suitable not only for the oxidation of olefins to oxygenated hydrocarbons, such as acrolein and the oxidation of olefin-ammonia mixtures to unsaturated nitriles such as acrylonitrile, but also for the catalytic oxidative dehydration of olefins to diolefins.

Naturen av de kjemiske forbindelser hvorav katalysatoren er sammensatt, er ikke kjent. Katalysatoren kan være en blanding av antimonoksyd eller -oksyder og jern oksyd eller -oksyder. Det er også mulig at antimonet og jernet er forbundet med oksygenet i form av et antimonat. Røntgenundersøkelser av katalysatorsyste-met har indikert nærværet av en struktu-relt vanlig fase av antimontypen, sammensatt av antimonoksyder, og en eller annen form av jernoksyd. Antimontetroksyd er også blitt påvist som tilstedeværende. Ved beskrivelsen av oppfinnelsen vil dette katalysatorsystem bli omtalt som en blanding av antimon- og jernoksyder, men dette må ikke oppfattes dithen at katalysatoren enten helt eller delvis er sammensatt av disse forbindelser. The nature of the chemical compounds of which the catalyst is composed is not known. The catalyst can be a mixture of antimony oxide or oxides and iron oxide or oxides. It is also possible that the antimony and the iron are connected to the oxygen in the form of an antimonate. X-ray examinations of the catalyst system have indicated the presence of a structurally common phase of the antimony type, composed of antimony oxides, and some form of iron oxide. Antimony troxide has also been demonstrated to be present. In the description of the invention, this catalyst system will be referred to as a mixture of antimony and iron oxides, but this must not be taken to mean that the catalyst is either wholly or partly composed of these compounds.

Andelene av antimon og jern i kata-lysatorsystemet kan variere innenfor vide grenser. Atomforholdet Sb : Fe kan variere fra omtrent 1 : 50 til omtrent 99 : 1. Imidlertid viser det seg at optimal aktivitet oppnås ved atomforhold Sb : Fe innenfor området fra 1 : 1 til 25 : 1. The proportions of antimony and iron in the catalyst system can vary within wide limits. The Sb : Fe atomic ratio can vary from about 1 : 50 to about 99 : 1. However, optimal activity is found to be achieved at Sb : Fe atomic ratios within the range of 1 : 1 to 25 : 1.

Katalysatoren kan anvendes uten bærer, og oppviser utmerket aktivitet. Den kan også kombineres med en bærer, og i så fall utgjør fortrinnsvis bæreren minst 10 og opp til 90 vektprosent av hele kombinasjonen. Hvilke som helst av de kjente bærermate-rialer kan anvendes, slik som f. eks. sili-siumoksyd, aluminiumoksyd, zirkoniumok-syd, «Alundum», silisiumkarbid, aluminiumoksyd-sillsiumoksyd, og de uorganiske fosfater, silikater, aluminater, borater og karbonater som er stabile under de reak-sjonsbetingelser som påtreffes ved kataly-satorens bruk. The catalyst can be used without a support, and exhibits excellent activity. It can also be combined with a carrier, in which case the carrier preferably makes up at least 10 and up to 90 percent by weight of the entire combination. Any of the known carrier materials can be used, such as e.g. silicon oxide, aluminum oxide, zirconium oxide, "Alundum", silicon carbide, aluminum oxide-silicon oxide, and the inorganic phosphates, silicates, aluminates, borates and carbonates which are stable under the reaction conditions encountered when the catalyst is used.

Antimonoksydet og jernoksydet kan blandes med hverandre, de kan fremstilles hver for seg og derefter sammenblandes eller fremstilles hver for seg eller sammen in situ. Som utgangsmaterialer for anti-monoksydkomponenten, f. eks., kan et hvil-ket som helst antimonoksyd brukes, såle-des antimontrioksyd, antimontetroksyd og antimonpentoksyd, eller blandinger av disse, eller et antimonoksydhydrat, meta-antimonsyre, ortoantimonsyre eller pyro-antimonsyre; eller et hydrolyserbart eller dekomponerbart antimonsalt, slik som et antimonhalogenid, f. eks. antimontriklorid, The antimony oxide and the iron oxide can be mixed with each other, they can be prepared separately and then mixed together or prepared separately or together in situ. As starting materials for the antimony oxide component, for example, any antimony oxide can be used, such as antimony trioxide, antimony troxide and antimony pentoxide, or mixtures thereof, or an antimony oxide hydrate, meta-antimonic acid, orthoantimonic acid or pyro-antimonic acid; or a hydrolyzable or decomposable antimony salt, such as an antimony halide, e.g. antimony trichloride,

-trifluorid eller -tribromid, antimonpenta-klorid og antimonpentafluorid, som er hydrolyserbare i vann og danner oksyd-hydrater. Metallisk antimon kan også anvendes, idet oksydhydratet dannes ved å oksydere metallet med en oksyderende syre slik som salpetersyre. Jernoksydkomponentene kan tilveie-bringes i form av ferro-, ferri- eller ferro-ferrioksyder eller ved utfelling in situ fra et oppløselig jernsalt slik som nitratet, ace-tatet eller et halogenid som kloridet. Metallisk jern kan nyttes som utgangsmate- riale, og dersom metallisk antimon også brukes, kan på samme tid antimonet over-føres til oksyd og jernet til nitrat ved oksydasjon i varm salpetersyre. En oppslemming av antimonoksydhydrat i salpetersyre kan blandes med en oppløsning av et jernsalt, slik som ferrinitrat, som så utfelles in situ som hydroksydet ved å gjøre oppløs-ningen alkalisk med ammoniumhydroksyd, ammoniumnitratet og de andre ammo-niumsalter fjernes ved filtrering av den resulterende oppslemming. Det vil forståes av ovenstående at ferro- og ferribromider, -klorider, -fluori-der og -jodider, -nitritter, -acetater, -sul-fitter, -sulfater, -fosfater, -thiocyanater, -oksalater, -formiater og -hydroksyder kan brukes som kilde for jernoksydkompo-nenten. -trifluoride or -tribromide, antimony pentachloride and antimony pentafluoride, which are hydrolyzable in water and form oxide hydrates. Metallic antimony can also be used, as the oxide hydrate is formed by oxidizing the metal with an oxidizing acid such as nitric acid. The iron oxide components can be provided in the form of ferrous, ferric or ferro-ferric oxides or by precipitation in situ from a soluble iron salt such as the nitrate, acetate or a halide such as the chloride. Metallic iron can be used as output feed- riale, and if metallic antimony is also used, the antimony can at the same time be transferred to oxide and the iron to nitrate by oxidation in hot nitric acid. A slurry of antimony oxide hydrate in nitric acid can be mixed with a solution of an iron salt, such as ferric nitrate, which is then precipitated in situ as the hydroxide by making the solution alkaline with ammonium hydroxide, the ammonium nitrate and the other ammonium salts being removed by filtering the resulting slurry . It will be understood from the above that ferrous and ferric bromides, chlorides, fluorides and iodides, nitrites, acetates, sulphites, sulphates, phosphates, thiocyanates, oxalates, formates and hydroxides can be used as a source for the iron oxide component.

Systemets katalytiske aktivitet forster-kes ved opphetning ved en forhøyet temperatur. Fortrinnsvis blir katalysatorblan-dingen tørket og opphetet ved en temperatur mellom ca. 260 og 265°C, og foretrukket mellom 375 og 485° C i et tidsrom av 2 til 24 timer. Dersom aktiviteten ikke er til-strekkelig etter denne behandling, kan katalysatoren opphetes videre ved en temperatur over ca. 525° C, men under en tempe-raturgrense som er skadelig for katalysatoren og ved hvilken den smelter eller spaltes; fortrinnsvis opphetes den til en temperatur mellom ca. 750 og 1050° C i et tidsrom av 1 til 48 timer i nærvær av luft eller oksygen. Nevnte grense nåes vanligvis ikke før 1100° C og i noen tilfeller kan denne temperatur overskrides. The catalytic activity of the system is enhanced by heating at an elevated temperature. Preferably, the catalyst mixture is dried and heated at a temperature between approx. 260 and 265°C, and preferably between 375 and 485°C for a period of 2 to 24 hours. If the activity is not sufficient after this treatment, the catalyst can be heated further at a temperature above approx. 525° C, but below a temperature limit which is harmful to the catalyst and at which it melts or decomposes; preferably it is heated to a temperature between approx. 750 and 1050° C for a period of 1 to 48 hours in the presence of air or oxygen. The mentioned limit is usually not reached before 1100° C and in some cases this temperature can be exceeded.

Generelt gjelder at jo høyere aktivi-seringstemperaturen er, desto kortere tid krever aktiveringen. Man kan forsikre seg om aktiveringens tilstrekkelighet ved hvilke som helst gitte betingelser ved å undersøke den katalytiske aktivitet av en prøve av materialet. Aktiveringen gjennomføres best i et åpent kammer som tillater sirkulasjon av luft eller oksygen, så at forbrukt oksygen kan bli erstattet. In general, the higher the activation temperature, the shorter the activation time. One can make sure of the adequacy of the activation under any given conditions by examining the catalytic activity of a sample of the material. The activation is best carried out in an open chamber that allows the circulation of air or oxygen, so that consumed oxygen can be replaced.

I samsvar med foreliggende oppfinnelse blir dette katalysatorsystem anvendt ved den katalytiske oksydative dehydrogenering av olefiner til diolefiner og aromatiske forbindelser. Ved denne prosess blir mat-ningsstrømmen i dampform, inneholdende olefinet som skal dehydrogeneres og oksygen, ledet over katalysatoren ved en for-holdsvis lav temperatur for fremstilling av det tilsvarende diolefin eller den tilsvarende aromatiske forbindelse. In accordance with the present invention, this catalyst system is used in the catalytic oxidative dehydrogenation of olefins to diolefins and aromatic compounds. In this process, the feed stream in vapor form, containing the olefin to be dehydrogenated and oxygen, is passed over the catalyst at a relatively low temperature to produce the corresponding diolefin or the corresponding aromatic compound.

Med «olefin» menes her olefiner med åpen kjede, såvel som cykliske olefiner. Olefiner som dehydrogeneres i samsvar med oppfinnelsen, har minst 4 og opp til ca. 8 ikke-kvartære karbonatomer, av hvilke minst 4 er anordnet i rekkefølge i en rett kjede eller ring. Denne definisjon uteluk-ker isobutylen. Olefinene er fortrinnsvis enten normale rettkjedede eller tertiære olefiner. Både cis- og transisomerer, hvor disse forekommer, kan dehydrogeneres. By "olefin" here is meant olefins with an open chain, as well as cyclic olefins. Olefins that are dehydrogenated in accordance with the invention have at least 4 and up to approx. 8 non-quaternary carbon atoms, of which at least 4 are arranged in sequence in a straight chain or ring. This definition excludes isobutylene. The olefins are preferably either normal straight chain or tertiary olefins. Both cis and trans isomers, where these occur, can be dehydrogenated.

Blant de mange olefiniske forbindelser som kan dehydrogeneres på denne måte, er buten-1, buten-2, penten-1, penten-2, tertiære pentener som har ett tertiært kar-bonatom slik som 2-metylpenten-l, 3-metylbuten-1, 2-metylbuten-2, heksen-1, heksen-2, 4-metylpenten-l, 3,4-dimetylpen-ten-1, 4-metyl-penten-2, hepten-1, okten-1, cyklopenten, cykloheksen, 3-metylcyklo-heksen og cyklohepten.. Among the many olefinic compounds that can be dehydrogenated in this way are butene-1, butene-2, pentene-1, pentene-2, tertiary pentenes having one tertiary carbon atom such as 2-methylpentene-1, 3-methylbutene- 1, 2-methylbutene-2, hexene-1, hexene-2, 4-methylpentene-1, 3,4-dimethylpentene-1, 4-methyl-pentene-2, heptene-1, octene-1, cyclopentene, cyclohexene, 3-methylcyclohexene and cycloheptene..

Olefiner med åpen kjede gir diolefiner og i alminnelighet gir olefiner med 6-ring aromatiske ringforbindelser. Åpenkjedede olefiner med høyere molekylvekt kan cyk-liseres til aromatiske ringforbindelser. Open-chain olefins give diolefins and, in general, 6-ring olefins give aromatic ring compounds. Open-chain olefins with higher molecular weight can be cyclized to aromatic ring compounds.

I tillegg til olefin og oksygen kan matningen inneholde en eller flere paraffiniske eller nafteniske hydrokarbonater med opp til 10 karbonatomer, hvilke kan være til stede som forurensninger i enkelte petro-leum-hydrokarbonkilder, og som også kan dehydrogeneres i noen tilfeller. Propen og isobutylen bør ikke forefinnes i vesentlige mengder. In addition to olefin and oxygen, the feed may contain one or more paraffinic or naphthenic hydrocarbons with up to 10 carbon atoms, which may be present as contaminants in some petroleum hydrocarbon sources, and which may also be dehydrogenated in some cases. Propene and isobutylene should not be present in significant quantities.

Mengden av oksygen bør ligge innenfor området fra 0,3 til 3 mol pr. mol olefin. Støkiometrisk kreves det 0,5 til 1,5 mol oksygen pr. mol olefin for dehydrogenering til diolefiner henholdsvis aromatiske forbindelser. Det foretrekkes å anvende et overskudd, fra 1 til 2 mol pr. mol olefin for å sikre et høyere utbytte av diolefiner pr. gjennomløp. Oksygenet kan tilføres som rent eller i det vesentlige rent oksygen eller som luft eller i form av hydrogenperoksyd. The amount of oxygen should lie within the range from 0.3 to 3 mol per moles of olefin. Stoichiometrically, 0.5 to 1.5 mol of oxygen per moles of olefin for dehydrogenation to diolefins or aromatic compounds. It is preferred to use an excess, from 1 to 2 mol per mole of olefin to ensure a higher yield of diolefins per throughput. The oxygen can be supplied as pure or essentially pure oxygen or as air or in the form of hydrogen peroxide.

Når rent oksygen anvendes, kan det være ønskelig å tilsette blandingen et for-tynningsmiddel, slik som vanndamp, karbondioksyd eller nitrogen. Den katalytiske dehydrogenering av matningen finner fortrinnsvis sted i nærvær av vanndamp, men dette er ikke vesentlig. I alminnelighet anvendes fra 0,1 til 6 mol vanndamp pr. mol olefinreaktant, men større mengder enn dette kan anvendes. When pure oxygen is used, it may be desirable to add a diluent to the mixture, such as water vapour, carbon dioxide or nitrogen. The catalytic dehydrogenation of the feed preferably takes place in the presence of steam, but this is not essential. In general, from 0.1 to 6 mol of water vapor is used per moles of olefin reactant, but larger amounts than this can be used.

Dehydrogeneringen forløper ved temperaturer innenfor området fra 325 til 1000° C. Optimalt utbytte oppnåes ved temperaturer innenfor området fra 400 til 550° C. Da reaksjonen er eksoterm, bør imidlertid temperaturer høyere enn 550° C ikke anvendes, med mindre det er sørget for midler som kan bortføre den varme som frigjøres under reaksjonsforløpet. Som følge av reaksjonens eksoterme natur kan temperaturen av den gassformige reaksjons-blanding være opp til 75° C høyere enn temperaturen av den tilførte matning. De nevnte temperaturer refererer seg til den gassformige matning ved innløpet til reaktoren. The dehydrogenation proceeds at temperatures within the range from 325 to 1000° C. Optimum yield is achieved at temperatures within the range from 400 to 550° C. As the reaction is exothermic, however, temperatures higher than 550° C should not be used, unless means are provided which can remove the heat released during the course of the reaction. Due to the exothermic nature of the reaction, the temperature of the gaseous reaction mixture can be up to 75° C higher than the temperature of the added feed. The mentioned temperatures refer to the gaseous feed at the inlet to the reactor.

Reaksjonsblandingen har fortrinnsvis tilnærmet atmosfæretrykk, innenfor området fra 0,35 til 5,25 kg/cm- (absolutt). Høy-ere trykk opp til ca. 21 kg/cm<2> (absolutt) kan anvendes og har den fordel å forenkle produktoppsamlingen. The reaction mixture preferably has approximately atmospheric pressure, within the range from 0.35 to 5.25 kg/cm- (absolute). Higher pressure up to approx. 21 kg/cm<2> (absolute) can be used and has the advantage of simplifying product collection.

Det kreves bare en kort kontakttid med katalysatoren for å oppnå effektiv dehydrogenering. Den tilsynelatende kontakttid med katalysatoren kan strekke seg fra 0,5 til 50 sekunder, men lengre kontakttider kan eventuelt brukes. Den «tilsynelatende kontakttid» kan defineres som den tid i sekunder en volumenhet gass målt ved reaksjonsbetingelsene er i kontakt med den tilsynelatende volumenhet av katalysatoren. Den kan beregnes, eksempelvis fra det tilsynelatende volum av katalysatorlaget, gjennomsnittlig temperatur og trykk i reaktoren og strømningshastighetene for de mange komponenter i reaksjonsblandingen. Ved disse kontakttider kan forholds-vis små reaktorer og små mengder katalysator bli effektivt utnyttet. Only a short contact time with the catalyst is required to achieve effective dehydrogenation. The apparent contact time with the catalyst may range from 0.5 to 50 seconds, but longer contact times may optionally be used. The "apparent contact time" can be defined as the time in seconds a unit volume of gas measured at the reaction conditions is in contact with the apparent unit volume of the catalyst. It can be calculated, for example, from the apparent volume of the catalyst layer, the average temperature and pressure in the reactor and the flow rates of the many components in the reaction mixture. At these contact times, relatively small reactors and small amounts of catalyst can be efficiently utilized.

Katalysatoren kan anvendes i form av The catalyst can be used in the form of

tabletter eller pellets egnet for bruk i et fluidisert lag, hvor katalysatoren anvendes i pulverform. tablets or pellets suitable for use in a fluidized bed, where the catalyst is used in powder form.

Reaktoren kan opphetes til reaksjons-temperaturen før eller efter innføringen av dampene som skal bringes til å reagere. Ved drift i stor målestokk foretrekkes det å gjennomføre prosessen kontinuerlig og i dette system er resirkulering av ureagert olefin og/eller oksygen tatt med i betrakt-ning. Denne kan eksempelvis gjennomføres ved å bringe katalysatoren i kontakt med luft ved en forhøyet temperatur. The reactor can be heated to the reaction temperature before or after the introduction of the vapors to be reacted. When operating on a large scale, it is preferred to carry out the process continuously and in this system recycling of unreacted olefin and/or oxygen is taken into account. This can, for example, be carried out by bringing the catalyst into contact with air at an elevated temperature.

Utstrømningsproduktet fra reaksjons-sonen kan bråkjøles, men normalt er dette ikke nødvendig, ettersom det er liten ten-dens til sidereaksjoner, særlig innenfor det foretrukne temperaturområde. Produktet kan derefter vaskes med en fortynnet alkalisk oppløsning for å nøytralisere even-tuelle tilstedeværende syrer og fjerne vann-dampen. Dersom luft er brukt som oksy-genkilde, blir produktet deretter kompri-mert og vasket med olje for å skille hydrokarbonene fra nitrogenet, karbondioksydet og karbonmonoksydet. Hydrokarbonene kan så befries fra oljen og underkastes ekstrak-tiv destillasjon eller en kobberammonium-acetat-behandling for å skille og utvinne diolefinene. Ubrukt olefin kan resirkuleres til reaktoren. The outflow product from the reaction zone can be quenched, but normally this is not necessary, as there is little tendency for side reactions, especially within the preferred temperature range. The product can then be washed with a dilute alkaline solution to neutralize any acids present and remove the water vapour. If air is used as the oxygen source, the product is then compressed and washed with oil to separate the hydrocarbons from the nitrogen, carbon dioxide and carbon monoxide. The hydrocarbons can then be freed from the oil and subjected to extractive distillation or a copper ammonium acetate treatment to separate and recover the diolefins. Unused olefin can be recycled to the reactor.

Eksempel. Example.

Den følgende fremgangsmåte ble an- The following procedure was an-

vendt for å tilberede en katalysator med et atomforhold Sb : Fe på 8,7 : 1. 200 g metallisk antimon (under 270 mesh) ble opphetet i 826,7 cm<;l> konsentrert salpeter- turned to prepare a catalyst with an atomic ratio Sb : Fe of 8.7 : 1. 200 g of metallic antimony (under 270 mesh) was heated in 826.7 cm<;l> of concentrated nitrous

syre inntil alle røde nitrogenoksyder var avgitt. Derefter ble tilsatt en vandig opp- acid until all red oxides of nitrogen had been given off. An aqueous solution was then added

løsning av 76 g ferrinitratnonahydrat. Oppslemmingen ble fortynnet med omtrent 400 solution of 76 g of ferric nitrate nonahydrate. The slurry was diluted by approximately 400

ml vann. Omtrent 500 ml 28 %'s ammoniumhydroksyd ble tilsatt og bragte pH til å stige fra 7,6 til 8,0. Oppslemmingen ble filtrert og vasket med 4000 ml, fordelt på 3 porsjoner, av 2,5 %'s ammoniumhydrok-sydoppløsning. Etter siste vasking ble luft sugd gjennom filterkaken i 15 minutter. Katalysatoren ble tørket over natten ved ml of water. About 500 ml of 28% ammonium hydroxide was added and brought the pH to rise from 7.6 to 8.0. The slurry was filtered and washed with 4000 ml, divided into 3 portions, of 2.5% ammonium hydroxide solution. After the last wash, air was sucked through the filter cake for 15 minutes. The catalyst was dried overnight at

130° C, kalsinert over natten ved 430° C og varmebehandlet over natten ved 760° C i en ovn som var åpen mot atmosfæren. 130° C, calcined overnight at 430° C and heat treated overnight at 760° C in a furnace open to the atmosphere.

Aktiviteten av denne katalysator ved The activity of this catalyst at

den oksydative dehydrogenering av buten- the oxidative dehydrogenation of butene-

1, til butadien ble bestemt idet det ble an- 1, until butadiene was determined as it was an-

vendt en reaktor med en kapasitet på om- turned a reactor with a capacity of about

trent 100 ml katalysator i et fast lag. Mat-ningsgassene ble målt med rotametere, og vann ble tilført gjennom kapillarrør av kobber ved hjelp av en pumpe. Ved prøvene ble det anvendt en katalysatorcharge på train 100 ml of catalyst in a solid layer. The feed gases were measured with rotameters, and water was supplied through copper capillary tubes by means of a pump. A catalyst charge was used in the tests

90 ml. Tilmatningsforholdet buten-1 : luft : 90 ml. The feed ratio butene-1 : air :

nitrogen : vann var 1:3:4:1. Kontakt- nitrogen : water was 1:3:4:1. Contact-

tiden var 10 sekunder og temperaturen ble holdt ved 488—505° C ved atmosfæretrykk. the time was 10 seconds and the temperature was maintained at 488-505° C at atmospheric pressure.

Den totale omdannelse av buten var 53,5 %, omdannelsen til butadien var 41 %, og res- The total conversion of butene was 53.5%, the conversion to butadiene was 41%, and res-

ten var karbondioksyd og spor av andre materialer. was carbon dioxide and traces of other materials.

Omdannelsesprosenten kan uttrykkes The conversion percentage can be expressed

som: as:

Claims (9)

1. Fremgangsmåte for oksydativ dehydrogenering av olefiner, karakteri-1. Process for oxidative dehydrogenation of olefins, charac- sert ved at en blanding av oksygen og et olefin i gassfase og ved en temperatur innen området fra ca. 325 til 1000° C, bringes i kontakt med en katalysator som består i alt vesentlig av oksyder av antimon og jern og oppviser den empiriske sammensetning: hvor a har verdien 1—99, b har verdien 50—1, og c er et slikt tall at det tilfreds-stiller de gjennomsnittlige valenser av antimon og jern i de oksydasjonstilstander i hvilke de foreligger i katalysatoren. served by a mixture of oxygen and an olefin in gas phase and at a temperature in the range from approx. 325 to 1000° C, is brought into contact with a catalyst which consists essentially of oxides of antimony and iron and exhibits the empirical composition: where a has the value 1-99, b has the value 50-1, and c is such a number that it satisfies the average valences of antimony and iron in the oxidation states in which they exist in the catalyst. 2. Fremgangsmåte som angitt i påstand 1, karakterisert ved at katalysatoren har et Sb : Fe-atomforhold mellom 1 : 1 og 25 : 1. 2. Method as stated in claim 1, characterized in that the catalyst has a Sb:Fe atomic ratio between 1:1 and 25:1. 3. Fremgangsmåte som angitt i påstand 1 eller 2, karakterisert ved at oksygenmengden i blandingen holdes på 0,5 til 2,5 mol pr. mol olefin. 3. Method as stated in claim 1 or 2, characterized in that the amount of oxygen in the mixture is kept at 0.5 to 2.5 mol per moles of olefin. 4. Fremgangsmåte som angitt i en av de foregående påstander, karakterisert ved at reaksjonen utføres i nærvær av vanndamp. 4. Method as stated in one of the preceding claims, characterized in that the reaction is carried out in the presence of of water vapor. 5. Fremgangsmåte som angitt i en av de foregående påstander, karakterisert ved at katalysatoren er kombinert med en bærer, fortrinnsvis silisiumdioksyd. 5. Method as stated in one of the preceding claims, characterized in that the catalyst is combined with a carrier, preferably silicon dioxide. 6. Katalysator for utførelse av fremgangsmåten som angitt i påstandene 1—5, karakterisert ved at den består av en blanding av oksyder av antimon og jern og oppviser den empiriske sammensetning: hvor a har verdien 1—99, b har verdien 50—1, og c er et slikt tall at det tilfreds-stiller de gjennomsnittlige valenser av antimon og jern i de oksydasjonstilstander i hvilke de foreligger i katalysatoren, og den er eventuelt kombinert med en bærerfor-bindelse. 6. Catalyst for carrying out the method as stated in claims 1-5, characterized in that it consists of a mixture of oxides of antimony and iron and exhibits the empirical composition: where a has the value 1-99, b has the value 50-1, and c is such a number that it satisfies the average valences of antimony and iron in the oxidation states in which they exist in the catalyst, and it is possibly combined with a carrier bond. 7. Katalysator som angitt i påstand 6, karakterisert ved at Sb : Fe-atomforholdet i nevnte sammensetning ligger mellom 1 : 1 og 25 : 1. 7. Catalyst as stated in claim 6, characterized in that the Sb : Fe atomic ratio in said composition is between 1 : 1 and 25 : 1. 8. Katalysator som angitt i påstand 6—7, karakterisert ved at bærer-forbindelsen utgjør mellom 10 og 90 vektprosent av komposisjonen, og fortrinnsvis består av silisiumdioksyd. 8. Catalyst as stated in claims 6-7, characterized in that the carrier compound makes up between 10 and 90 percent by weight of the composition, and preferably consists of silicon dioxide. 9. Katalysator som angitt i en av på standene 6—8, karakterisert ved at den er aktivert ved opphetning til en temperatur over 260° C, men under en temperatur som er skadelig for katalysatoren.9. Catalyst as indicated in one of on positions 6-8, characterized in that it is activated by heating to a temperature above 260° C, but below a temperature which is harmful to the catalyst.
NO851643A 1984-04-26 1985-04-24 ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE 1,4-DIHYDRO-4-OXONAFTYRIDINE INGREDIATES. NO162238C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59084963A JPS60228479A (en) 1984-04-26 1984-04-26 1,4-dihydro-4-oxonaphthyridine derivative and salt thereof

Publications (3)

Publication Number Publication Date
NO851643L NO851643L (en) 1985-10-28
NO162238B true NO162238B (en) 1989-08-21
NO162238C NO162238C (en) 1989-12-06

Family

ID=13845280

Family Applications (1)

Application Number Title Priority Date Filing Date
NO851643A NO162238C (en) 1984-04-26 1985-04-24 ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE 1,4-DIHYDRO-4-OXONAFTYRIDINE INGREDIATES.

Country Status (30)

Country Link
JP (1) JPS60228479A (en)
KR (1) KR870001693B1 (en)
AR (1) AR241911A1 (en)
AT (2) AT389698B (en)
AU (2) AU565087B2 (en)
BE (1) BE902279A (en)
CH (1) CH673458A5 (en)
CS (1) CS250684B2 (en)
DD (1) DD238795A5 (en)
DE (2) DE3514076A1 (en)
DK (1) DK165877C (en)
EG (1) EG17339A (en)
ES (2) ES8700256A1 (en)
FI (1) FI80453C (en)
FR (2) FR2563521B1 (en)
GB (2) GB2158825B (en)
HU (2) HU194226B (en)
ID (1) ID21142A (en)
IL (1) IL75021A (en)
IT (1) IT1209953B (en)
LU (1) LU85871A1 (en)
NL (2) NL187314C (en)
NO (1) NO162238C (en)
NZ (1) NZ211895A (en)
PH (3) PH22801A (en)
PL (1) PL147392B1 (en)
PT (1) PT80349B (en)
RO (2) RO91871B (en)
SE (2) SE463102B (en)
ZA (1) ZA853102B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172753A (en) * 1984-09-18 1986-04-14 Dainippon Pharmaceut Co Ltd Pyridyl ketone derivative
AU576657B2 (en) * 1985-01-23 1988-09-01 Toyama Chemical Co. Ltd. Naphthyridine and pyridine derivatives
AT392789B (en) 1985-01-23 1991-06-10 Toyama Chemical Co Ltd METHOD FOR PRODUCING 1-SUBSTITUTED ARYL-1,4-DIHYDRO-4-OXONAPHTHYRIDINE DERIVATIVES
DE3525108A1 (en) * 1985-06-07 1986-12-11 Bayer Ag, 5090 Leverkusen ANTIBACTERIAL EFFECT OF CHINOLON CARBON ACID ESTERS
EP0207420B1 (en) * 1985-06-26 1992-05-06 Daiichi Pharmaceutical Co., Ltd. Pyridonecarboxylic acid derivatives
IE62600B1 (en) * 1987-08-04 1995-02-22 Abbott Lab Naphtyridine antianaerobic compounds
US4962112A (en) * 1987-08-04 1990-10-09 Abbott Laboratories 7-(2-methyl-4-aminopyrrolidinyl)naphthryidine and quinoline compounds
US4859776A (en) * 1988-03-11 1989-08-22 Abbott Laboratories (S)-7-(3-aminopyrrolidin-1-yl)-1-(ortho, para-difluorophenyl)-1,4-dihydro-6-fluoro-4-oxo-1,8-naphthyridine-3-carboxylic acid and method for its preparation
JP2844079B2 (en) * 1988-05-23 1999-01-06 塩野義製薬株式会社 Pyridonecarboxylic acid antibacterial agent
DE3934082A1 (en) * 1989-10-12 1991-04-18 Bayer Ag CHINOLON CARBONIC ACID DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS AN ANTIVIRAL AGENT
AU1161492A (en) * 1991-01-14 1992-08-17 Hanmi Pharmaceutical Co., Ltd. Novel quinolone compounds and processes for preparation thereof
FR2692577B1 (en) * 1992-05-26 1996-02-02 Bouchara Sa NOVEL FLUORINATED QUINOLONES, THEIR PREPARATION PROCESS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME.
KR940014395A (en) * 1992-12-09 1994-07-18 강박광 Novel quinolone derivatives and preparation methods thereof
KR0148277B1 (en) * 1993-01-18 1998-11-02 채영복 Novel fluoroquinolone derivatives and process for the preparation thereof
WO1994025464A1 (en) * 1993-04-24 1994-11-10 Korea Research Institute Of Chemical Technology Novel quinolone carboxylic acid derivatives and process for preparing the same
KR950018003A (en) * 1993-12-09 1995-07-22 스미스클라인 비참 피엘씨 Novel quinolone derivatives and methods for their preparation
EP0787720B1 (en) * 1994-10-20 2003-07-16 Wakunaga Seiyaku Kabushiki Kaisha Pyridonecarboxylate derivative or salt thereof and antibacterial containing the same as active ingredient
US6211375B1 (en) 1996-04-19 2001-04-03 Wakunaga Pharmaceutical Co., Ltd. Pyridonecarboxylic acid derivatives or salts thereof and antibacterial agents containing the same as the active ingredient
PL332941A1 (en) * 1996-10-30 1999-10-25 Bayer Ag Method of obtaining naphtyridinic compounds and novel intermediate compounds
DE19713506A1 (en) 1997-04-01 1998-10-08 Bayer Ag Process for the preparation of 2,6-dichloro-5-fluoronicotinonitrile and the chemical compound 3-cyano-2-hydroxy-5-fluoropyrid-6-one monosodium salt and its tautomers
EP2275141A1 (en) 1999-03-17 2011-01-19 Daiichi Pharmaceutical Co., Ltd. Tastemasked pharmaceutical compositions
DE19926400A1 (en) 1999-06-10 2000-12-14 Bayer Ag Improved process for the preparation of 2,6-dichloro-5-fluoro-nicotinic acid and coarse and particularly pure 2,6-dichloro-5-fluoro-nicotinic acid
JP3477466B2 (en) 1999-09-02 2003-12-10 湧永製薬株式会社 Quinolinecarboxylic acid derivatives or salts thereof
WO2002018345A1 (en) * 2000-08-29 2002-03-07 Chiron Corporation Quinoline antibacterial compounds and methods of use thereof
KR100981351B1 (en) * 2003-10-29 2010-09-10 주식회사 엘지생명과학 Process for preparing 7-chloro-1-cyclopropyl-6- fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid
CN101792443A (en) * 2010-03-09 2010-08-04 北京欧凯纳斯科技有限公司 Fluoro-carbostyril derivative as well as preparation method and application thereof
JOP20190045A1 (en) 2016-09-14 2019-03-14 Bayer Ag 7-substituted 1-aryl-naphthyridine-3-carboxylic acid amides and use thereof
CN114369092A (en) * 2021-12-20 2022-04-19 赤峰万泽药业股份有限公司 Tosufloxacin tosylate and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2125310A1 (en) * 1971-05-21 1972-11-30 Sterling Drug Inc , New York, NY (V St A) 1-alkyl-1,4-dihydro-4-oxo-1,8-naphtyridine 3-carboxylic acids antibac
AR223983A1 (en) * 1978-08-25 1981-10-15 Dainippon Pharmaceutical Co A PROCEDURE FOR PREPARING 6-HALOGEN-4-OXO-7- (1-PIPERAZINYL) -1,8-NAFTIRIDIN-3-CARBOXYLIC ACID DERIVATIVES
DE3033157A1 (en) * 1980-09-03 1982-04-01 Bayer Ag, 5090 Leverkusen 7-AMINO-1-CYCLOPROPYL-4-OXO-1,4-DIHYDRO-NAPHTHYRIDINE-3-CARBONIC ACIDS, METHOD FOR THE PRODUCTION THEREOF AND THE ANTIBACTERIAL AGENTS CONTAINING THEM
US4382937A (en) * 1981-02-27 1983-05-10 Dainippon Pharmaceutical Co., Ltd. Naphthyridine derivatives and their use as anti-bacterials
IE55898B1 (en) * 1982-09-09 1991-02-14 Warner Lambert Co Antibacterial agents
IL74064A (en) * 1984-01-26 1988-09-30 Abbott Lab 1,7-disubstituted-1,4-dihydro-6-fluoro-4-oxo-1,8-naphthyridine-3-carboxylic acid derivatives and antibacterial compositions containing them
NZ210847A (en) * 1984-01-26 1988-02-29 Abbott Lab Naphthyridine and pyridopyrimidine derivatives and pharmaceutical compositions
AU576657B2 (en) * 1985-01-23 1988-09-01 Toyama Chemical Co. Ltd. Naphthyridine and pyridine derivatives
DE3525108A1 (en) * 1985-06-07 1986-12-11 Bayer Ag, 5090 Leverkusen ANTIBACTERIAL EFFECT OF CHINOLON CARBON ACID ESTERS

Also Published As

Publication number Publication date
NZ211895A (en) 1988-07-28
GB8510297D0 (en) 1985-05-30
NO851643L (en) 1985-10-28
DD238795A5 (en) 1986-09-03
NO162238C (en) 1989-12-06
IT8548002A0 (en) 1985-04-26
RO91871A (en) 1987-07-30
PL253108A1 (en) 1985-12-17
ES542584A0 (en) 1986-09-16
SE501412C2 (en) 1995-02-13
ES8706673A1 (en) 1987-07-01
GB2191776A (en) 1987-12-23
HUT38634A (en) 1986-06-30
SE463102B (en) 1990-10-08
FI80453B (en) 1990-02-28
EG17339A (en) 1989-06-30
IL75021A0 (en) 1985-08-30
DK165877B (en) 1993-02-01
ATA267888A (en) 1989-09-15
AU8180487A (en) 1988-03-24
DK185685A (en) 1985-10-27
HU194226B (en) 1988-01-28
CS250684B2 (en) 1987-05-14
PH22801A (en) 1988-12-12
FI80453C (en) 1990-06-11
IT1209953B (en) 1989-08-30
DE3514076C2 (en) 1989-03-30
LU85871A1 (en) 1985-12-16
SE8804586D0 (en) 1988-12-20
FR2563521B1 (en) 1989-02-03
CH673458A5 (en) 1990-03-15
ES8700256A1 (en) 1986-09-16
AT390258B (en) 1990-04-10
AU4165085A (en) 1985-10-31
NL9100648A (en) 1991-08-01
GB2158825A (en) 1985-11-20
BE902279A (en) 1985-10-25
FI851637A0 (en) 1985-04-25
AU612993B2 (en) 1991-07-25
DE3546658C2 (en) 1992-04-02
KR870001693B1 (en) 1987-09-24
PT80349A (en) 1985-05-01
AT389698B (en) 1990-01-10
PH25046A (en) 1991-01-28
FR2614620B1 (en) 1990-03-09
ES551538A0 (en) 1987-07-01
ID21142A (en) 1999-04-29
HU197571B (en) 1989-04-28
DK165877C (en) 1993-06-21
SE8502017L (en) 1985-10-27
IL75021A (en) 1994-01-25
FI851637L (en) 1985-10-27
RO91871B (en) 1987-07-31
PT80349B (en) 1987-09-30
JPS6320828B2 (en) 1988-04-30
AR241911A1 (en) 1993-01-29
FR2614620A1 (en) 1988-11-04
DK185685D0 (en) 1985-04-25
RO95509B (en) 1988-10-01
ATA122485A (en) 1989-06-15
KR850007596A (en) 1985-12-07
FR2563521A1 (en) 1985-10-31
PH25228A (en) 1991-03-27
SE8804586L (en) 1988-12-20
PL147392B1 (en) 1989-05-31
SE8502017D0 (en) 1985-04-25
NL8501172A (en) 1985-11-18
GB2191776B (en) 1990-03-28
GB2158825B (en) 1989-01-25
RO95509A (en) 1988-09-30
GB8716897D0 (en) 1987-08-26
NL187314C (en) 1991-08-16
JPS60228479A (en) 1985-11-13
ZA853102B (en) 1986-12-30
DE3514076A1 (en) 1985-10-31
AU565087B2 (en) 1987-09-03

Similar Documents

Publication Publication Date Title
NO162238B (en) ANALOGY PROCEDURES FOR THE PREPARATION OF THERAPEUTIC ACTIVE 1,4-DIHYDRO-4-OXONAFTYRIDE INGREDIATES.
US3198750A (en) Mixed antimony oxide-uranium oxide oxidation catalyst
US3338952A (en) Process for the catalytic ammoxidation of olefins to nitriles
CA2763317C (en) Production process of conjugated diene
JP5621305B2 (en) Method for producing conjugated diene
SA03240312B1 (en) Preparation of at least one partial oxidation and/or ammoxidation product of propylene
JP2010090082A (en) Method of producing conjugated diene
US3546138A (en) Promoted antimony-iron oxidation catalyst
JP5780072B2 (en) Method for producing conjugated diene
JPH0686399B2 (en) Method for producing acrylic acid
US3200081A (en) Mixed antimony oxide-manganese oxide oxidation catalyst
US3542842A (en) Ammoxidation of propylene or isobutylene to acrylonitrile or methacrylonitrile
KR840000413B1 (en) Frances irene rakta sn-sb oxide catalysts
Bhattacharyya et al. Oxidative dehydrogenation of n-butane to butadiene: effect of different promoters on the performance of vanadium-magnesium oxide catalysts
JP5682130B2 (en) Method for producing conjugated diene
US3544616A (en) Ammoxidation of propylene or isobutylene to acrylonitrile or methacrylonitrile
US3200084A (en) Mixed antimony oxide-cerium oxide oxidation catalysts
JP2012106942A (en) Method for producing conjugated diene
US3251899A (en) Process for the dehydrogenation of olefins
NO148936B (en) Vapor trap with free-flowing floats
US3409697A (en) Process for oxidative dehydrogenation of olefins
US3264225A (en) Mixed antimony oxide-thorium oxide oxidation catalyst
US3929899A (en) Process for the oxidation of olefins to unsaturated aldehydes and catalysts therefore
US3666822A (en) Uranium-molybdenum oxidation catalysts
US3251900A (en) Oxidative dehydrogenation of olefins with an antimony oxide-cerium oxide catalyst

Legal Events

Date Code Title Description
MK1K Patent expired