JPH0686399B2 - Method for producing acrylic acid - Google Patents

Method for producing acrylic acid

Info

Publication number
JPH0686399B2
JPH0686399B2 JP63125697A JP12569788A JPH0686399B2 JP H0686399 B2 JPH0686399 B2 JP H0686399B2 JP 63125697 A JP63125697 A JP 63125697A JP 12569788 A JP12569788 A JP 12569788A JP H0686399 B2 JPH0686399 B2 JP H0686399B2
Authority
JP
Japan
Prior art keywords
propylene
reaction
volume
acrylic acid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63125697A
Other languages
Japanese (ja)
Other versions
JPS6463543A (en
Inventor
昌博 高田
守 高村
伸一 内田
雅光 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP63125697A priority Critical patent/JPH0686399B2/en
Publication of JPS6463543A publication Critical patent/JPS6463543A/en
Publication of JPH0686399B2 publication Critical patent/JPH0686399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプロピレンを接触気相酸化してアクリル酸を製
造するプロセスに関する。さらに詳しくは、本発明は特
定組成の原料ガスを使用することによってアクリル酸を
高生産性で製造するプロセスに関する。
TECHNICAL FIELD The present invention relates to a process for producing acrylic acid by catalytic vapor-phase oxidation of propylene. More specifically, the present invention relates to a process for producing acrylic acid with high productivity by using a raw material gas having a specific composition.

〔従来の技術〕[Conventional technology]

プロピレンの2段にわたる(第1段反応はプロピレンを
主としてアクロレインに変換する反応であり、第2段酸
化反応はアクロレインを主にアクリル酸に変換する反応
であり、この両反応を組み合せた)接触気相酸化により
アクリル酸を製造するプロセスは公知である。かかるプ
ロセスに於てアクリル酸の生産性をあげようとする場合
次のような問題点が指摘される。(1)空間速度をあげ
る場合触媒の性能(収率や寿命)との関係でむやみにあ
げる事は不可能である。(2)プロピレン転化率を高め
る場合には有効生成物への選択性が低くなる問題が生じ
る。(3)原料であるプロピレン量を増やす場合には反
応熱の除熱の問題、爆発範囲からの回避等の問題があり
限界がある。
Propylene over two stages (first stage reaction is a reaction that mainly converts propylene to acrolein, second stage oxidation reaction is a reaction that mainly converts acrolein to acrylic acid, a combination of both reactions) Processes for producing acrylic acid by phase oxidation are known. The following problems are pointed out when attempting to increase the productivity of acrylic acid in this process. (1) Increasing space velocity It is impossible to raise the space velocity unnecessarily in relation to the performance (yield and life) of the catalyst. (2) When the propylene conversion rate is increased, there arises a problem that the selectivity to an effective product becomes low. (3) When the amount of propylene as a raw material is increased, there is a limit due to problems such as heat removal of reaction heat and avoidance from the explosion range.

従来、このような背景にあってアクリル酸の生産性をあ
げる方法について種々プロセスが検討されている。例え
ば、未反応プロピレンをリサイクルして再利用する方法
がイギリス公告特許第996898号公報明細書に開示されて
いる。また、反応廃ガスの再利用に関する公知文献は多
数ある。例えば、特公昭47−10614号公報明細書によれ
ば、2段階において触媒の活性を変化させて、活性を反
応管の入口から反応管の方向に絶えず又は段階的に100
%まで増大させ、そして第2段反応の出口において得ら
れる凝縮可能なガスを大部分除去した反応廃ガスを不活
性希釈ガスとしての水蒸気の一部又は全部の代りに第1
段階に再供給することが開示されている。この方法によ
れば触媒の希釈が必要であり、実施対応にあたっては不
利である。又プロピレン濃度も低い為に生産性が低く不
満足な水準である。
Against this background, various processes have been studied as a method for increasing the productivity of acrylic acid. For example, a method of recycling unreacted propylene for reuse is disclosed in British Patent Publication No. 996898. In addition, there are many known documents regarding the reuse of reaction waste gas. For example, according to Japanese Patent Publication No. 47-10614, the activity of the catalyst is changed in two steps so that the activity is constantly or stepwise from the inlet of the reaction tube toward the reaction tube.
%, And the reaction waste gas from which the condensable gas obtained at the outlet of the second-stage reaction has been largely removed is replaced by first or second steam instead of part or all of steam as an inert diluent gas.
Resupplying the stage is disclosed. According to this method, it is necessary to dilute the catalyst, which is disadvantageous for implementation. Also, since the propylene concentration is low, the productivity is low and the level is unsatisfactory.

特開昭51−36415号公報明細書によれば、返送される廃
ガスを利用することにより後期反応を抑制するプロセス
であるが、返送されるガスは本質的に窒素であり、その
他少量の未反応プロピレン、酸素、プロパン及び酸化炭
素から成っているものである。
According to the specification of JP-A-51-36415, a process for suppressing the late stage reaction is performed by utilizing the returned waste gas, but the returned gas is essentially nitrogen and other small amount of unreacted gas. The reaction consists of propylene, oxygen, propane and carbon oxide.

特開昭49−134618号公報明細書によれば、循環される運
搬ガスとして反応において生成した二酸化炭素を用いる
事が開示されている。二酸化炭素を運搬ガスとして利用
する利点として爆発範囲の回避及び反応未での反応熱除
去が容易であり、収率の向上に寄与するとしているが、
プロピレンの酸化によるアクリル酸の製法に関して具体
的な開示はない。
JP-A-49-134618 discloses the use of carbon dioxide produced in the reaction as a circulating carrier gas. It is said that the advantage of using carbon dioxide as a carrier gas is that it is easy to avoid the explosive range and to remove the reaction heat without reaction, which contributes to the improvement of the yield.
There is no specific disclosure regarding a method for producing acrylic acid by oxidizing propylene.

特開昭49−70913号公報明細書によれば、少量のインジ
ウム及び(又は)アルミニウム及び(又は)ランタン及
び(又は)ガリウムを酸化物及び(又は)混合酸化物と
して含有するモリブデン及びビスマス及び場合によりさ
らに他の元素を酸化物又は混合酸化物として含有する触
媒の使用下に280〜450℃の温度において場合により水蒸
気及び(又は)アンモニアの存在下に気相においてα−
オレフィンを分子状酸素により酸化もしくはアンモオキ
シデーションして対応するα−βオレフィン性不飽和の
アルデヒド又はニトリルを得る方法が開示されている。
更に当該明細書に於て合成原料ガス中にα−オレフィン
たとえばプロピレン又はイソブチレンの含有量は一般に
0.5〜15容量%、特に酸素を空気の代わりに供給する場
合には2〜6容量%、純酸素を用いかつアクリル酸を分
離したのちの反応ガスの一部を酸化に供給されるガス状
混合物を加える場合(循環法)は6〜15容量%である。
酸素の濃度は多くの場合2〜20容量%、好ましくは5〜
15容量%である。その他混合物は不活性ガス、例えば一
酸化炭素、二酸化炭素及び窒素ならびに多くは少量の希
ガス、水素、エチレン及びプロパンを含有する。更に合
成原料ガスは水蒸気を含有することができる。水蒸気の
割合は一般に約40容量%以下であるが、20容量%以下、
特に10容量%以下、とりわけ2〜8容量%の割合が好ま
しいと開示されている。しかし、当該公報には酸素酸化
によるプロピレン酸化によるアクリル酸の製造に関して
具体的な記載はない。
According to the specification of JP-A-49-70913, molybdenum and bismuth containing small amounts of indium and / or aluminum and / or lanthanum and / or gallium as oxides and / or mixed oxides and According to the use of a catalyst further containing other elements as oxides or mixed oxides at temperatures of 280-450 ° C., optionally in the vapor phase in the presence of steam and / or ammonia, α-
A method of oxidizing or ammoxidating an olefin with molecular oxygen to obtain the corresponding α-β olefinically unsaturated aldehyde or nitrile is disclosed.
Further, in this specification, the content of α-olefin such as propylene or isobutylene in the synthesis raw material gas is generally
Gaseous mixture of 0.5 to 15% by volume, especially 2 to 6% by volume if oxygen is supplied instead of air, using pure oxygen and part of the reaction gas after separating acrylic acid for oxidation. When adding (circulation method), it is 6 to 15% by volume.
The concentration of oxygen is often 2 to 20% by volume, preferably 5 to
It is 15% by volume. Other mixtures contain inert gases such as carbon monoxide, carbon dioxide and nitrogen and often small amounts of noble gases, hydrogen, ethylene and propane. Further, the synthesis raw material gas may contain steam. The proportion of water vapor is generally about 40% by volume or less, but 20% by volume or less,
In particular, it is disclosed that a ratio of 10% by volume or less, particularly 2 to 8% by volume is preferable. However, there is no specific description in this publication regarding the production of acrylic acid by propylene oxidation by oxygen oxidation.

特公昭39−3670号公報明細書によれば、酸素源として純
酸素を使用し、未反応プロピレンよりなる循環ガスを取
り出し新たにプロピレン、酸素及び水蒸気を加えて再び
反応器に送りまた希釈ガスとして反応の際に生じるCO2
およびCO並びに水蒸気を使用するプロセスを開示してい
る。
According to Japanese Patent Publication No. 39-3670, pure oxygen is used as an oxygen source, a circulating gas consisting of unreacted propylene is taken out, propylene, oxygen and steam are newly added, and the mixture is sent again to the reactor as a diluent gas. CO 2 generated during the reaction
And a process using CO and steam is disclosed.

特開昭47−17711号公報明細書によれば酸化剤として純
酸素を用いる場合に、カルボニル化合物、カルボン酸化
合物を取り出した後に残存する生成物混合物は処理して
二酸化炭素を除去し、その残りの未反応オレフィンと酸
素を含有する混合物と水とを反応器に循環するプロセス
が開示されている。
According to the specification of JP-A-47-17711, when pure oxygen is used as an oxidant, the product mixture remaining after taking out the carbonyl compound and the carboxylic acid compound is treated to remove carbon dioxide and leave the rest. A process of circulating a mixture containing unreacted olefin and oxygen and water to a reactor is disclosed.

ドイツ特許第1793302号公報明細書によれば酸化剤とし
て純粋な酸素を使用している。プロピレン及び酸素のた
めの希釈剤としては第2段の廃ガスがアクリル酸を分離
したのち用いられるが、これは不活性成分としての酸化
炭素及び水蒸気を含有する。しかし明細書に開示された
実施態様は本質的に酸素:プロピレンが1.5未満:1であ
り、酸素不足による触媒の還元が起り易くなりアクロレ
インやアクリル酸への選択率やプロピレン転化率、更に
は触媒寿命を低下させる危険がある。
According to German patent DE 1 733 302, pure oxygen is used as oxidant. A second stage waste gas is used as a diluent for propylene and oxygen after separating acrylic acid, which contains carbon oxides and water vapor as inert components. However, the embodiment disclosed in the specification essentially has an oxygen: propylene ratio of less than 1.5: 1, which facilitates reduction of the catalyst due to oxygen deficiency, selectivity to acrolein and acrylic acid, conversion of propylene, and even catalyst. There is a risk of shortening the life.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

アクリル酸の生産性を高める方法は前述したように原料
であるプロピレン供給量を高め、触媒への負荷として、
触媒上での接触時間を出来るだけ短かくする事である。
反応に供するプロピレン量を増やせば(同時に空間速度
をあげる)酸化反応による発熱量が増大する。又プロピ
レンの転化率をあげようとすれば酸素濃度をあげる必要
があるが、プロピレンの爆発範囲からの回避が困難とな
る。従来これらの対策すなわち、多量の発熱量の除去と
爆発範囲からの回避の目的の為に水蒸気の同伴や触媒の
反応量の多い部分を不活性担体等で希釈する対策が講じ
られてきた。又は廃ガスを再利用して、酸素濃度を下げ
る方法等も講じられてきた。これらの対策に対しては触
媒の希釈のための労力や水蒸気の添加により回収アクリ
ル酸の濃度が低くなり、アクリル酸の分割の為のエネル
ギー損等まぬがれない。又従来の廃ガスに於ても多量の
反応熱の除去は不十分であり、高濃度プロピレン酸化反
応には制限があった。
As mentioned above, the method of increasing the productivity of acrylic acid is to increase the supply amount of propylene, which is a raw material, as a load on the catalyst.
The contact time on the catalyst should be as short as possible.
Increasing the amount of propylene used for the reaction (at the same time increasing the space velocity) increases the amount of heat generated by the oxidation reaction. Further, if the conversion rate of propylene is to be increased, it is necessary to increase the oxygen concentration, but it is difficult to avoid propylene from the explosion range. Conventionally, these measures have been taken, that is, for the purpose of removing a large amount of heat generation and avoiding from the explosive range, measures for entraining water vapor or diluting a portion having a large reaction amount of the catalyst with an inert carrier or the like. Alternatively, a method of reusing waste gas to reduce the oxygen concentration has been taken. To deal with these problems, the concentration of recovered acrylic acid decreases due to the labor for diluting the catalyst and the addition of water vapor, and the energy loss due to the division of acrylic acid cannot be avoided. Further, even in the conventional waste gas, the removal of a large amount of reaction heat is insufficient, and the high-concentration propylene oxidation reaction is limited.

そこで、本発明はこのような問題点を解決するもので、
その目的とするところは触媒に対する高負荷の反応条件
を採用しても安全かつ高収率で長期にわたってアクリル
酸を製造できる高い生産性のプロレスを提供することに
ある。
Therefore, the present invention solves such problems,
It is an object of the invention to provide a wrestling with high productivity, which is capable of producing acrylic acid in a safe and high yield over a long period of time even if a high load reaction condition for a catalyst is adopted.

〔問題点を解決するための手段〕[Means for solving problems]

この目的は本発明によれば、第1段階でプロピレンを酸
化してアクロレインを生成させつかつ第2段階でアクロ
レインを酸化して主としてアクリル酸を生成させること
によなるプロピレを分子状酸素で2段階で接触気相酸化
せしめてアクリル酸を製造する方法において、炭素数1
〜5の飽和脂肪族炭化水素を5〜70容量%および二酸化
炭素を3〜50容量%かつ当該脂肪族炭化水素と二酸化炭
素の合計が20〜80容量%の範囲含有せしめ、水蒸気をプ
ロピレン1モル当たり0.5〜8モルの範囲含有せしめ、
さらに原料ガス中のプロピレン濃度が5〜20容量%の範
囲かつ分子状酸素濃度はプロピレンに対しモル比で1.4
〜4.0の範囲含有せしめてなる原料ガスを第1段反応に
供することよりなるアクリル酸の製造方法によって達成
される。
According to the invention, the object is, according to the invention, to convert propylene with molecular oxygen by oxidising propylene in the first stage to produce acrolein and in the second stage by oxidizing acrolein to produce mainly acrylic acid. In the method for producing acrylic acid by catalytic vapor-phase oxidation in a step, the number of carbon atoms is 1
5 to 70% by volume of saturated aliphatic hydrocarbon, 3 to 50% by volume of carbon dioxide, and 20 to 80% by volume of total of the aliphatic hydrocarbon and carbon dioxide, and 1 mol of water vapor of propylene. In the range of 0.5 to 8 mol,
Furthermore, the propylene concentration in the raw material gas is in the range of 5 to 20% by volume, and the molecular oxygen concentration is 1.4 in molar ratio with respect to propylene.
It is achieved by a method for producing acrylic acid, which comprises subjecting a raw material gas contained in a range of to 4.0 to the first stage reaction.

〔作用〕[Action]

プロピレンを分子状酸素の存在下接触気相酸化するに際
して、本発明は上記の如く希釈ガスとして炭素数1〜5
の飽和脂肪族炭化水素を5〜70容量%および二酸化炭素
を3〜50容量%かつ当該脂肪族炭化水素と二酸化炭素の
合計が20〜80容量%の範囲含有せしめ、水蒸気をプロピ
レン1モル当たり0.5〜8モルの範囲含有せしめ、さら
に原料ガス中のプロピレン濃度が5〜20容量%の範囲か
つ分子状酸素濃度はプロピレンに対しモル比で1.4〜4.0
の範囲含有せしめてなる原料ガスを用いることによっ
て、触媒に対して高負荷の反応条件下においても高生産
性が維持されることを見い出し完成されたものである。
In the catalytic gas-phase oxidation of propylene in the presence of molecular oxygen, the present invention uses a diluent gas having 1 to 5 carbon atoms as described above.
5 to 70% by volume of saturated aliphatic hydrocarbon, 3 to 50% by volume of carbon dioxide and 20 to 80% by volume of the total amount of the aliphatic hydrocarbon and carbon dioxide, and 0.5% of steam per mol of propylene. The content of propylene in the raw material gas is in the range of 5 to 20% by volume, and the molecular oxygen concentration is 1.4 to 4.0 in molar ratio with respect to propylene.
It was found that high productivity can be maintained even under a reaction condition of high load on the catalyst by using the raw material gas contained in the above range.

また、上記組成の原料ガスを調整するに際しては、第2
段反応で得られた反応混合ガスから主としてアクリル酸
を回収して得られる廃ガスを、第1段反応の原料ガスの
成分として再利用するのが工業的に有利であり、本発明
においては前記廃ガスの50容量%以上の量を再利用する
ことによって上記組成に合致した反応原料ガスの調整を
行なうのが好ましい。
In adjusting the source gas of the above composition, the second
It is industrially advantageous to reuse the waste gas obtained by mainly recovering acrylic acid from the reaction mixed gas obtained in the first-step reaction as a component of the raw material gas in the first-step reaction. It is preferable to adjust the reaction raw material gas in conformity with the above composition by reusing 50% by volume or more of the waste gas.

本発明の反応条件を採用することによってえられる効果
の作用機構については、特定組成の原料ガスの熱容量が
従来希釈剤として用いられている水蒸気、窒素等と比較
して大きいために、反応熱の除熱効果が大きいことも一
因であろうと推定される。すなわち、約300℃における
定圧比熱(Kcal/kg mol・deg)はメタン12.5、エタン2
1.3、プロパン30.9、ブタン40.3、二酸化炭素11.5、水
蒸気8.8、酸素7.9、一酸化炭素7.3、窒素7.1、アルゴン
5.0、空気5.0である。
Regarding the mechanism of action of the effect obtained by adopting the reaction conditions of the present invention, since the heat capacity of the raw material gas of the specific composition is larger than that of steam, nitrogen, etc. which are conventionally used as diluents, It is estimated that the large heat removal effect is also a factor. That is, the constant pressure specific heat (Kcal / kg mol · deg) at about 300 ℃ is 12.5 for methane and 2 for ethane.
1.3, propane 30.9, butane 40.3, carbon dioxide 11.5, water vapor 8.8, oxygen 7.9, carbon monoxide 7.3, nitrogen 7.1, argon
5.0 and 5.0.

本発明の実施にあたって有利な点をまとめると、反応ガ
ス自体の熱容量を増やす事により酸化反応により発生す
る発熱量をガス自体が吸収することにより熱の除去効果
は著しく向上する為に触媒層での触媒自体の熱上昇が抑
制されるから触媒の熱負荷が大巾に緩和される。又、反
応原料ガス中の酸化炭素が高濃度に共存する為にプロピ
レンの爆発危険性がやわらげられる事で高濃度プロピレ
ンと高空間速度での反応が可能となり、高生産性が達成
されると共に高濃度のアクリル酸が得られるからアクリ
ル酸の分離・精製に於けるエネルギー消費は低減され
る。次に触媒層と反応温度(外部熱媒)との温度下(△
T)が下る為にアクロレインおよび/又はアクリル酸へ
の選択性が向上することにより収率向上につながると共
に、更に△Tが下がる事から、触媒成分が触媒中に安定
に維持されて触媒の劣化が減じ、触媒寿命が改善され
る。又本プロセスを採用する事により担持触媒の使用が
可能となる。通常、プロピレン酸化用触媒としては例え
ば不活性担体にコーティングないし付着させた触媒を使
用するごく初期は活性が保たれるが時間と共に活性の低
下がはげしくなる傾向にある。これは反応熱による触媒
自体の変質によると考えられるが、本プロセスを採用に
より反応熱の除去がスムーズに行われる為に△Tが下
り、触媒の熱劣化が抑制されるから担持触媒の使用が可
能となる。さらには、廃ガスの循環量が反応器出口ガス
のうち凝縮成分を除く50%以上と多いため、反応用プロ
ピレンの大なる有効利用が可能である。
To summarize the advantages in carrying out the present invention, by increasing the heat capacity of the reaction gas itself, the gas itself absorbs the amount of heat generated by the oxidation reaction, so that the heat removal effect is remarkably improved. Since the heat rise of the catalyst itself is suppressed, the heat load of the catalyst is greatly relaxed. Also, since carbon oxide in the reaction raw material gas coexists in a high concentration, the explosion risk of propylene can be mitigated, so that high-concentration propylene can be reacted at a high space velocity to achieve high productivity and high productivity. Since a high concentration of acrylic acid can be obtained, the energy consumption in the separation and purification of acrylic acid is reduced. Next, under the temperature of the catalyst layer and the reaction temperature (external heating medium) (△
Since T) is lowered, the selectivity to acrolein and / or acrylic acid is improved, which leads to an improvement in yield. Further, ΔT is further lowered, so that the catalyst component is stably maintained in the catalyst and the catalyst is deteriorated. Is reduced and catalyst life is improved. In addition, the use of the supported catalyst becomes possible by adopting this process. Usually, as a catalyst for propylene oxidation, for example, a catalyst coated or attached to an inert carrier is used, but the activity is maintained in the very initial stage, but the activity tends to decrease with time. This is thought to be due to the deterioration of the catalyst itself due to the heat of reaction, but the adoption of this process facilitates removal of the heat of reaction, resulting in a decrease in ΔT and suppression of thermal deterioration of the catalyst. It will be possible. Further, since the circulation amount of the waste gas is as large as 50% or more excluding the condensed components in the reactor outlet gas, the propylene for reaction can be effectively used.

本プロセスで第1段反応ガス中に二酸化炭素と共に水蒸
気を共存させる事は不可欠である。一つには、水蒸気は
プロピレンの接触気相酸化反応で生成する主生成物であ
るアクロレインや他の有用な化合物であるアクリル酸は
もとより、特に高沸点性の生成物の脱離、或は反応への
直接関与もある為か有効である。この効果は他の共存ガ
スである二酸化炭素や飽和炭化水素の存在だけでは達成
されない。水蒸気がプロピレン1モルに当たり0.5モル
以上含有されない場合は特に副生成物の脱離効果が顕著
でない為に、反応温度の上昇が速くなり(従って触媒寿
命が短くなる)工業触媒としては不都合である。又、こ
の水蒸気の触媒寿命に与える影響は、ポリブデン酸化
物、バナジウム酸化物を主体とするアクロレイン酸化用
触媒にも大きく作用する。又、水蒸気共存効果として二
酸化炭素が水蒸気により酸性ガス化される事によりプロ
ピレンからアクロレインへの生成・選択率が向上するか
らである。理由は不明であるが、酸性ガスの為に触媒の
酸塩基のコントロールに関与していると考えられる。
In this process, it is indispensable for water vapor to coexist with carbon dioxide in the first stage reaction gas. First, water vapor is the main product produced in the catalytic gas phase oxidation reaction of propylene, acrolein, and other useful compounds, acrylic acid, and the elimination or reaction of particularly high-boiling products. It is effective because there is a direct involvement in This effect cannot be achieved only by the presence of other coexisting gases, carbon dioxide and saturated hydrocarbons. When steam is not contained in an amount of 0.5 mol or more per 1 mol of propylene, the desorption effect of by-products is not particularly remarkable, so that the reaction temperature rises quickly (and therefore the catalyst life becomes short), which is inconvenient for an industrial catalyst. Further, the influence of the water vapor on the catalyst life also greatly affects the catalyst for acrolein oxidation mainly composed of polybutene oxide and vanadium oxide. Further, as a steam coexisting effect, carbon dioxide is acidified by steam to improve the production / selectivity of propylene to acrolein. Although the reason is unknown, it is considered that it is involved in the control of the acid-base of the catalyst due to the acidic gas.

しかし、逆に水蒸気の添加が多すぎると高濃度のアクリ
ル酸水溶液が得られないばかりか、本発明の一実施態様
である方法に基づいて水蒸気を反応系にリサイクルさせ
る場合、アクリル酸捕集器塔頂の温度をたかめなければ
ならない場合が起こり、多量の不純物が反応系に再循環
されて不都合が生じる。
However, on the contrary, if too much water vapor is added, a high-concentration acrylic acid aqueous solution cannot be obtained, and when water vapor is recycled to the reaction system based on the method of one embodiment of the present invention, an acrylic acid collector is used. In some cases, it is necessary to raise the temperature at the top of the column, and a large amount of impurities are recycled to the reaction system, which causes inconvenience.

本発明に使用される原料プロピレンの純度はプロパンが
含まれる方が熱容量が大きい事から反応熱の除去の効果
が大きく好ましい。好ましいプロピレン純度は97容量%
以下(残部はプロパン)である。例えばプロパンの酸化
脱水素で得られたプロパン含量の多いプロピレンの使用
は都合がよい。しかしあまりプロパンの含量が多すぎて
も循環使用廃ガス量が少なくなり未反応プロピレンの有
効利用が少なくなりかえって不利である。
As for the purity of the raw material propylene used in the present invention, it is preferable that propane contains propane because the heat capacity is larger and the effect of removing reaction heat is large. Preferred propylene purity is 97% by volume
Below (the balance is propane). The use of propane-rich propylene obtained, for example, by the oxidative dehydrogenation of propane, is convenient. However, if the content of propane is too large, the amount of waste gas recycled and used will be small, and the effective utilization of unreacted propylene will be reduced, which is disadvantageous.

本発明に使用される触媒として第1段反応用としてMo、
Fe、Biを含有する酸化物触媒が好ましいが、一般式とし
て次のものが特に好ましい。MoaWbBicFedAeBfCgDhOx
(ここでMoはモリブデン、Biはビスマス、Wはタングス
テン、Feは鉄、Oは酸素、Aはニッケルおよびコバルト
よりなる群から選ばれた少なくとも一種の元素、Bはア
ルカリ金属、アルカリ土類金属およびタリウムよりなる
群から選ばれた少なくとも一種の元素、Cはリン、ヒ
素、ホウ素およびニオブの中から選ばれた少なくとも一
種の元素、Dは硅素、アルミニウムおよびチタニウムよ
りなる群から選ばれた少なくとも一種の元素を表わす。
また添字のa、b、c、d、e、f、g、h、xはそれ
ぞれMo、W、Bi、Fe、A、B、C、DおよびOの原子数
を表わし、a=2〜10、b=0〜10、a+b=12とした
ときc=0.1〜10.0、d=0.1〜10、e=2〜20、f=0.
005〜3.0、g=0〜4、h=0.5〜15、xは各々の元素
の原子価によって定まる数値をとる。) ここで酸化物触媒の形態は例えば打錠成形機や押し出し
成形機等で成形されたペレット状、球状或いは貫通孔を
有するリング状等々いずれも可能であるし、さらに耐火
性担体にこれら触媒物質を担持せしめてなる形態も有用
である。
Mo for the first stage reaction as the catalyst used in the present invention,
Oxide catalysts containing Fe and Bi are preferable, but the following general formulas are particularly preferable. MoaWbBicFedAeBfCgDhOx
(Here, Mo is molybdenum, Bi is bismuth, W is tungsten, Fe is iron, O is oxygen, A is at least one element selected from the group consisting of nickel and cobalt, B is an alkali metal, an alkaline earth metal and At least one element selected from the group consisting of thallium, C is at least one element selected from phosphorus, arsenic, boron and niobium, and D is at least one element selected from the group consisting of silicon, aluminum and titanium. Represents an element.
The subscripts a, b, c, d, e, f, g, h and x respectively represent the numbers of atoms of Mo, W, Bi, Fe, A, B, C, D and O, and a = 2 to 10 , B = 0 to 10 and a + b = 12, c = 0.1 to 10.0, d = 0.1 to 10, e = 2 to 20, f = 0.
005 to 3.0, g = 0 to 4, h = 0.5 to 15, and x is a value determined by the valence of each element. ) Here, the oxide catalyst may be in the form of, for example, a pellet formed by a tablet molding machine or an extrusion molding machine, a spherical shape, or a ring shape having a through-hole. It is also useful to support the above.

第2段目反応用に使用される触媒はモリブデンとバナジ
ウムを含有する酸化物触媒が好ましく、特に次の一般式
で示されるものが好ましい。
The catalyst used for the second stage reaction is preferably an oxide catalyst containing molybdenum and vanadium, and particularly preferably one represented by the following general formula.

MomVnQqRrSsTtOy (ここでMoはモリブデン、Vはバナジウム、Qはタング
ステンおよびニオブからなる群から選ばれた少なくとも
一種の元素、Rは鉄、銅、ビスマス、クロム、アンチモ
ンからなる群から選ばれた少なくとも一種の元素、Sは
アルカリ金属およびアルカリ土類からなる群から選ばれ
た少なくとも一種の元素、Tはケイ素、アルミニウムお
よびチタンからなる群から選ばれた少なくとも一種の元
素及びOは酸素を表わす。またm、n、q、r、s、
t、yはそれぞれ原子数を表わし、m=12s、t、yは
それぞれ原子数を表わし、m=12のとき、n=2〜14、
q=0〜12、r=0〜6、s=0〜6、t=0〜30およ
びyは各々の元素の酸化状態によって定まる数値をと
る。) もちろんこの触媒物質も耐火性担体に保持せしめて使用
して可である。
MomVnQqRrSsTtOy (where Mo is molybdenum, V is vanadium, Q is at least one element selected from the group consisting of tungsten and niobium, and R is at least one element selected from the group consisting of iron, copper, bismuth, chromium and antimony. The element, S is at least one element selected from the group consisting of alkali metals and alkaline earths, T is at least one element selected from the group consisting of silicon, aluminum and titanium, and O represents oxygen, and m, n, q, r, s,
t and y respectively represent the number of atoms, m = 12s, t and y respectively represent the number of atoms, and when m = 12, n = 2 to 14,
q = 0 to 12, r = 0 to 6, s = 0 to 6, t = 0 to 30 and y are numerical values determined by the oxidation state of each element. ) Of course, this catalyst substance can also be used by holding it on a refractory carrier.

反応条件としては第1段反応において反応温度250〜450
℃、好ましくは270〜370℃である。反応ガス組成として
プロピレン5〜20容量%、より、好ましくは7〜15容量
%、酸素は8〜40容量%、好ましくは12〜30容量%、炭
素数1〜5好ましくは1〜3の飽和脂肪族炭化水素5〜
70容量%、好ましくは10〜60容量%、二酸化炭素3〜50
容量%、好ましくは5〜40容量%(ただし該炭化水素と
二酸化炭素との和は30〜80容量%、好ましくは30〜70容
量%である。)、水蒸気は3〜50容量%、好ましくは5
〜40容量%(ただし水蒸気のプロピレンに対するモル比
は0.5〜8、好ましくは0.6〜5である。)、酸素とプロ
ピレンのモル比は1.4〜4.0、好ましくは1.6〜3.0の範
囲、接触時間は1.0〜7.2秒、好ましくは1.8〜6秒であ
る。そして触媒としてプロピレン転化率70モル%以上、
好ましくは80モル%以上達成し得る触媒が使用される。
第2段酸化反応条件としては反応温度180〜350℃、好ま
しくは200〜320℃、接触時間1.0〜7.2秒、好ましくは1.
6〜6秒である。そして第1段酸化反応から総合してプ
ロピレンからアクリル酸への単流収率70モル%以上、好
ましくは80モル%以上を達成しうる触媒が2段目触媒に
使用される。
The reaction conditions include a reaction temperature of 250 to 450 in the first stage reaction.
C., preferably 270 to 370.degree. Propylene as a reaction gas composition is 5 to 20% by volume, more preferably 7 to 15% by volume, oxygen is 8 to 40% by volume, preferably 12 to 30% by volume, and saturated fat having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. Group hydrocarbon 5
70% by volume, preferably 10-60% by volume, carbon dioxide 3-50
%, Preferably 5 to 40% by volume (however, the sum of the hydrocarbon and carbon dioxide is 30 to 80% by volume, preferably 30 to 70% by volume), and water vapor is 3 to 50% by volume, preferably 5
-40% by volume (however, the molar ratio of steam to propylene is 0.5 to 8, preferably 0.6 to 5), the molar ratio of oxygen and propylene is 1.4 to 4.0, preferably 1.6 to 3.0, and the contact time is 1.0. -7.2 seconds, preferably 1.8-6 seconds. And as a catalyst, the propylene conversion rate is 70 mol% or more,
A catalyst that can achieve 80 mol% or more is preferably used.
As the second stage oxidation reaction conditions, the reaction temperature is 180 to 350 ° C., preferably 200 to 320 ° C., the contact time is 1.0 to 7.2 seconds, and preferably 1.
6 to 6 seconds. A catalyst capable of achieving a single-flow yield of propylene to acrylic acid of 70 mol% or more, preferably 80 mol% or more in total from the first-stage oxidation reaction is used for the second-stage catalyst.

また、上記組成の原料ガスを調整するに際しては、第2
段反応で得られた反応混合ガスから主としてアクリル酸
を回収して得られる廃ガスを、第1段反応の原料ガスの
成分として再利用するのが工業的に有利であり、本発明
においては前記廃ガスの50容量%以上の量を再利用する
ことによって上記組成に合致した反応原料ガスの調整を
行なうのが好ましい。
In adjusting the source gas of the above composition, the second
It is industrially advantageous to reuse the waste gas obtained by mainly recovering acrylic acid from the reaction mixed gas obtained in the first-step reaction as a component of the raw material gas in the first-step reaction. It is preferable to adjust the reaction raw material gas in conformity with the above composition by reusing 50% by volume or more of the waste gas.

次に実施例及び比較例によって本発明を更に詳細に説明
するが、本発明はこれら実施例に限定されるものではな
い。本発明における転化率、単流収率、リサイクル収率
はそれぞれ次の様に定義される。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The conversion rate, single-flow yield, and recycle yield in the present invention are defined as follows.

実施例−1 前段触媒の調製 水15を加熱しつつモリブデン酸アンモニウム10.62K
g、パラタングステ酸アンモニウム3.24Kgを加えはげし
く攪拌した(これをA液とする。) 別に硝酸コバルト7.00Kgを2の水に、硝酸第2鉄2.43
Kgを2の水に、硝酸ビスマス2.92Kgを濃硝酸0.6を
加えて酸性とした水3に、それぞれ溶解させ、この3
種の硝酸塩溶液を混合した液を上記A液に滴下した。つ
いで二酸化ケイ素換算で20重量%を含有するシリカゾル
2.44Kgおよび水酸化カリウム20.2gを1.5の水に溶解し
た液をそれぞれ加え、かくして生じた懸濁液を加熱蒸発
せしめた後、成型し空気流通下450℃で6時間焼成して
触媒を調製した。
Example-1 Preparation of first-stage catalyst Ammonium molybdate 10.62K while heating water 15
g, ammonium paratungstate (3.24 Kg) and stirred vigorously (this is referred to as liquid A) Separately, 7.00 Kg of cobalt nitrate was added to 2 of water, and ferric nitrate 2.43 was added.
Kg was dissolved in 2 of water and 2.92 Kg of bismuth nitrate was dissolved in 3 of acidified acid by adding 0.6 of concentrated nitric acid.
A liquid obtained by mixing the nitrate solution of the seed was added dropwise to the liquid A. Then, silica sol containing 20% by weight in terms of silicon dioxide.
A solution prepared by dissolving 2.44 Kg and 20.2 g of potassium hydroxide in 1.5 of water was added, and the suspension thus formed was heated and evaporated, and then molded and calcined at 450 ° C for 6 hours under air flow to prepare a catalyst. .

この触媒の酸素以外の元素による組成は、原子比で Co4Fe1Bi1W2Mo10Si1.350.06 であった。The composition of this catalyst with elements other than oxygen was Co 4 Fe 1 Bi 1 W 2 Mo 10 Si 1.35 K 0.06 in atomic ratio.

後段触媒の調製 水60を加熱攪拌しつつその中にパラタングステン酸ア
ンモニウム1.25Kg、メタバナジン酸アンモニウム1.03K
g、モリブデン酸アンモニウム4.06Kg、ついで重クロム
酸アンモニウム0.14Kgをそれぞれ混合溶解し、別に硝酸
銅103Kgを0.72の水に溶解された水溶液を作成し、両
液を混合した。かくしてえられた混合溶液を蒸気加熱器
付のステンレス製蒸発器に入れ、担体基材がα−アルミ
ナからなり、表面積1m2/g以下、気孔率42%、75〜250ミ
クロンの孔径を有する細孔の占める容積が全細孔容積の
92%を占める直径3〜5mmの粒状担体12を加え攪拌し
つつ蒸発乾固して担体に付着せしめたのち、400℃で5
時間焼成して触媒を調製した。この触媒の担体を除く酸
素以外の元素による組成は、原子比で Mo12V4.6Cu2.2Cr0.62.4 であった。
Preparation of second-stage catalyst Ammonium paratungstate 1.25Kg, ammonium metavanadate 1.03K
g, ammonium molybdate 4.06 Kg, and then ammonium dichromate 0.14 Kg were mixed and dissolved, and 103 Kg of copper nitrate was dissolved in 0.72 of water to prepare an aqueous solution, and both solutions were mixed. The mixed solution thus obtained was placed in a stainless steel evaporator equipped with a steam heater, and the carrier substrate consisted of α-alumina, and had a surface area of 1 m 2 / g or less, a porosity of 42%, and a fine pore size of 75 to 250 microns. The volume occupied by pores is
Granular carrier 12 having a diameter of 3 to 5 mm occupying 92% was added and evaporated to dryness with stirring to adhere to the carrier.
The catalyst was prepared by calcination for an hour. The composition of elements other than oxygen excluding the carrier of this catalyst was Mo 12 V 4.6 Cu 2.2 Cr 0.6 W 2.4 in atomic ratio.

反応及びアクリル酸の捕集 上記前段触媒12.0を内径25mm、長さ3,000mmの鋼鉄製
反応管10本からなり、シェル側は溶融塩を循環すること
により熱交換が可能な多管式反応器に均等に充填し、32
5℃に加熱した。
Reaction and collection of acrylic acid The pre-catalyst 12.0 consists of 10 steel reaction tubes with an inner diameter of 25 mm and a length of 3,000 mm, and the shell side is a multi-tube reactor capable of heat exchange by circulating molten salt. Fill evenly, 32
Heated to 5 ° C.

別に前記後段触媒9.0を内径25mm、長さ3,000mmの鋼鉄
製反応管10本からなり、シェル側は溶融塩を循環するこ
とにより熱交換が可能な多管式反応器に均等に充填し、
260℃に加熱した。
Separately, the latter catalyst 9.0 is composed of 10 steel reaction tubes having an inner diameter of 25 mm and a length of 3,000 mm, and the shell side is uniformly filled in a multi-tubular reactor capable of heat exchange by circulating a molten salt,
Heated to 260 ° C.

2つの反応器は、熱交換器を備えた導管で連結し、前段
触媒を含む反応器から出る反応生成ガスを前後触媒を含
む反応器へ導入されるようにした。前段触媒を含む反応
器から出る反応生成ガスは、内径200mmのステンレス製
の塔で外壁に温水ジャケットを有する20段の泡鐘棚を備
え、その下部に多管式の冷却器を備えており、塔の最上
部から重合防止剤(ハイドロキノンを主成分とする)を
含む水を流下させることによってアクリル酸をアクリル
酸水溶液として捕集しさらに塔頂温度により定められた
濃度の水蒸気を含有する廃ガスが排出されるようにされ
たアクリル酸捕集装置に導入されるようにした。アクリ
ル酸捕集装置から排出される水蒸気を含むガスは濃縮す
ることなく一部をパージすること以外は送風機により前
段触媒を含む反応器入口に戻され、新たに純度95.0%
(残部は主としてプロパンである)のプロピレンと純度
95.7%の酸素(残部は主としてアルゴンである)を加え
混合し、前段触媒を含む反応器に導入するようにした。
The two reactors were connected by a conduit equipped with a heat exchanger so that the reaction product gas leaving the reactor containing the pre-catalyst was introduced into the reactor containing the front and rear catalysts. The reaction product gas emitted from the reactor containing the pre-catalyst is a stainless steel column having an inner diameter of 200 mm, equipped with 20 stages of bubble cap racks having a hot water jacket on the outer wall, and equipped with a multitubular cooler at the bottom thereof. Waste gas containing acrylic acid as an aqueous solution of acrylic acid by flowing down water containing a polymerization inhibitor (mainly composed of hydroquinone) from the top of the column and further containing water vapor at a concentration determined by the column top temperature. Was introduced into an acrylic acid collector that was designed to be discharged. The gas containing water vapor discharged from the acrylic acid collector is returned to the inlet of the reactor containing the pre-catalyst by a blower except that a part of it is not concentrated and purged, and the purity is newly 95.0%.
Propylene and purity (the balance is mainly propane)
95.7% oxygen (the balance was mainly argon) was added and mixed, and introduced into the reactor containing the pre-catalyst.

前段反応器へプロピレン7.0容量%、酸素12.6容量%、
水蒸気7.0容量%、二酸化炭素26.0容量%、一酸化炭素1
3.0容量%、プロパン14.0容量%、残部アルゴンからな
る混合ガスを16.2m3/Hr(NTP換算)で導入した。この時
プロピレン転化率95.0%の時にアクリル酸の収率は最高
であった。
Propylene 7.0% by volume, oxygen 12.6% by volume,
Water vapor 7.0% by volume, carbon dioxide 26.0% by volume, carbon monoxide 1
A mixed gas consisting of 3.0% by volume, 14.0% by volume of propane, and the balance of argon was introduced at 16.2 m 3 / Hr (NTP conversion). At this time, the yield of acrylic acid was highest when the propylene conversion rate was 95.0%.

この時廃ガスの前段反応器への循環率は97.6%であっ
た。その結果第1段反応器の触媒層の最高温度と反応温
度(熱媒である溶融塩温度)の差△Tは43℃であった。
そして、供給プロピレンに対するアクリル酸の収率は9
2.0%であり、空時収率は159.8gアクリル酸/hr・触媒
であった。
At this time, the circulation rate of the waste gas to the former reactor was 97.6%. As a result, the difference ΔT between the maximum temperature of the catalyst layer of the first stage reactor and the reaction temperature (the temperature of the molten salt as the heating medium) was 43 ° C.
The yield of acrylic acid based on the supplied propylene is 9
It was 2.0% and the space-time yield was 159.8 g acrylic acid / hr.catalyst.

尚、この反応を8000時間にわたり連続させた。8000時間
時点で前段反応ナイター浴温度330℃、後段反応ナイタ
ー浴温度266℃となった。プロピレン転化率及びアクリ
ル酸の収率はそれぞれ95.0%、91.7%であり安定してい
る事がわかる。
The reaction was continued for 8000 hours. At 8000 hours, the temperature of the first stage reaction night bath was 330 ° C and the temperature of the second stage reaction night bath was 266 ° C. It can be seen that the propylene conversion rate and the acrylic acid yield are 95.0% and 91.7%, respectively, and are stable.

比較例−1−1 実施例−1において酸素源として空気を用いた。この時
廃ガスの前段反応器への循環率は零であった。
Comparative Example-1-1 In Example-1, air was used as the oxygen source. At this time, the circulation rate of the waste gas to the former reactor was zero.

第1段入口ガス組成はプロピレン7.0容量%、酸素12.6
容量%、水蒸気7.0容量%、残部は窒素と少量のアルゴ
ン、プロパンであった。又、水蒸気は原料プロピレンや
空気と充分に混合して供給された。アクリル酸の最高収
率を与えるプロピレン転化率は95.5%の時であり、前
段、後段の溶融塩温度はそれぞれ320℃と260℃であっ
た。
First-stage inlet gas composition is propylene 7.0 vol%, oxygen 12.6
% By volume, 7.0% by volume of water vapor, and the balance was nitrogen and a small amount of argon and propane. Further, the steam was supplied after being sufficiently mixed with the raw material propylene and air. The propylene conversion yielding the highest yield of acrylic acid was 95.5%, and the molten salt temperatures of the first and second stages were 320 ° C and 260 ° C, respectively.

その結果、△Tは65℃と高く供給プロピレンに対するア
クリル酸収率は84.5モル%であり、空時収率は146.8gア
クリル酸/hr・触媒であった。なお、未反応プロピレ
ンはそのままの損失であった。
As a result, ΔT was as high as 65 ° C., the acrylic acid yield to the supplied propylene was 84.5 mol%, and the space-time yield was 146.8 g acrylic acid / hr · catalyst. The unreacted propylene was lost as it was.

比較例−1−2 比較例−1−1に於て第1段入口ガス組成はプロピレン
7.0容量%、酸素12.6容量%、水蒸気7.0容量%、二酸化
炭素10.0容量%、残部は窒素と少量のアルゴン、プロパ
ンであった。それ以外は比較例−1−1と同じ条件で反
応を行った。
Comparative Example-1-2 In Comparative Example-1-1, the first stage inlet gas composition was propylene.
It was 7.0% by volume, 12.6% by volume of oxygen, 7.0% by volume of water vapor, 10.0% by volume of carbon dioxide, and the balance was nitrogen and a small amount of argon and propane. Other than that, the reaction was performed under the same conditions as in Comparative Example-1-1.

その結果、△Tは63℃と高いが供給プロピレンに対する
アクリル酸収率は86.6モル%であり、比較例−1−1に
比べ収率が向上したのは二酸化炭素の添加効果であり、
それは二酸化炭素の窒素より大きい熱容量のためよりも
二酸化炭素の酸性ガスとしての効果による。
As a result, ΔT was as high as 63 ° C., but the acrylic acid yield to the supplied propylene was 86.6 mol%, and it was the effect of carbon dioxide addition that the yield was improved compared to Comparative Example-1-1.
It is due to the effect of carbon dioxide as an acid gas, rather than due to the larger heat capacity of carbon dioxide.

比較例−1−3 実施例−1いおいて前段反応器へプロピレン7.0容量
%、酸素12.6容量%、水蒸気2.0容量%、二酸化炭素31.
5容量%、一酸化炭素19.7容量%、プロパン10.9容量
%、残部はアルゴンからなる混合ガスを16.2m3/hr(NTP
換算)で導入した。但し、水蒸気量の調節はアクリル酸
捕集装置の廃ガス出口温度で行い、第1段反応器の反応
温度325℃、第2段反応器の反応温度は260℃を採用し
て、この時のプロピレン転化率94.0%の時にアクリル酸
の収率は最高であった。
Comparative Example-1-3 In Example-1, propylene 7.0% by volume, oxygen 12.6% by volume, water vapor 2.0% by volume, carbon dioxide 31.
A mixed gas consisting of 5% by volume, 19.7% by volume of carbon monoxide, 10.9% by volume of propane, and the balance of argon at 16.2 m 3 / hr (NTP
(Conversion) was introduced. However, the amount of water vapor is adjusted at the exhaust gas outlet temperature of the acrylic acid trap, the reaction temperature of the first stage reactor is 325 ° C, and the reaction temperature of the second stage reactor is 260 ° C. The yield of acrylic acid was highest when the propylene conversion was 94.0%.

この時廃ガスの前段反応器への循環率は96.9%であっ
た。その結果第1段反応器の△Tは45℃であり、供給プ
ロピレンに対するアクリル酸の収率は85.7%であり、空
時収率は148.9gアクリル酸/hr・触媒であった。
At this time, the circulation rate of the waste gas to the front-stage reactor was 96.9%. As a result, the ΔT of the first-stage reactor was 45 ° C., the yield of acrylic acid with respect to the propylene fed was 85.7%, and the space-time yield was 148.9 g acrylic acid / hr · catalyst.

なお、この反応を4000時間にわたり連続させた。4000時
間時点で前段反応ナイター浴温度335℃、後段反応ナイ
ター浴温度270℃までそれぞれあげなければならなかっ
た。その時点でのプロピレ転化率及びアクリル酸の収率
はそれぞれ93.8%、84.8%で触媒活性劣化が大きい為に
いつも反応条件が変化し、反応のコントロールが困難で
あった。この原因は添加水蒸気の量が少なすぎて副生成
物等の触媒表面からの脱離が容易に進行せず、過反応気
味となり触媒の還元等によるものと思われる。
The reaction was continued for 4000 hours. It was necessary to raise the temperature of the first-stage reaction night bath to 335 ° C and the second-stage reaction night bath temperature of 270 ° C at 4000 hours. At that time, the conversion of propylene and the yield of acrylic acid were 93.8% and 84.8%, respectively, and the reaction conditions were constantly changing due to the large deterioration of the catalyst activity, making it difficult to control the reaction. It is considered that this is because the amount of the added steam is too small and the desorption of by-products from the surface of the catalyst does not proceed easily, resulting in overreaction and reduction of the catalyst.

比較例−2 実施例−1に於て酸素源として空気を利用した。前段入
口部の水蒸気源はアクリル酸捕集装置の塔頂温度を調整
して確保した。前段、後段の溶融塩温度はそれぞれ320
℃、260℃であった。その時廃ガス循環率は36.7%であ
った。又、前段入口部での二酸化炭素濃度は0.57容量
%、プロパン0.59容量%、一酸化炭素0.28容量%、アル
ゴン0.9容量%、残部は窒素であった。
Comparative Example-2 In Example-1, air was used as the oxygen source. The water vapor source at the inlet of the first stage was secured by adjusting the column top temperature of the acrylic acid collector. The molten salt temperature in the first and second stages is 320 each
℃ and 260 ℃. At that time, the waste gas circulation rate was 36.7%. The carbon dioxide concentration at the front inlet was 0.57% by volume, propane 0.59% by volume, carbon monoxide 0.28% by volume, argon 0.9% by volume, and the balance nitrogen.

その結果、△Tは64℃であった。供給プロピレンに対す
るリサイクルアクリル酸収率は85.6%であり、空時収率
は148.7gアクリル酸/hr・触媒であった。
As a result, ΔT was 64 ° C. The recycled acrylic acid yield based on the propylene fed was 85.6%, and the space-time yield was 148.7 g acrylic acid / hr.catalyst.

比較例−3 実施例−1において95.7純度の酸素の代りに酸素80.0
%、窒素20.0%からなる酸素源を使用した。第1段酸化
反応に供されるガス組成はプロピレン7.0容量%、酸素1
2.6容量%、二酸化炭素14.0容量%、一酸化炭素7.0容量
%、水蒸気7.0容量%、プロパン0.6容量%、残部は窒素
であった。最高収率を与える反応温度は第1段酸化反応
で325℃、第2段酸化反応では265℃の時であり、その時
のプロピレン転化率95.0%であった。
Comparative Example-3 Oxygen 80.0 instead of 95.7 purity oxygen in Example-1
%, An oxygen source consisting of 20.0% nitrogen was used. The composition of gas used for the first-stage oxidation reaction is 7.0% by volume of propylene and 1% of oxygen.
2.6% by volume, carbon dioxide 14.0% by volume, carbon monoxide 7.0% by volume, water vapor 7.0% by volume, propane 0.6% by volume, and the balance being nitrogen. The reaction temperature giving the highest yield was 325 ° C. in the first stage oxidation reaction and 265 ° C. in the second stage oxidation reaction, and the propylene conversion rate at that time was 95.0%.

その結果、△Tは60℃で廃ガスの循環率は94.2%であ
り、供給プロピレンに対するアクリル酸収率は89.2%、
空時収率は155.0g/アクリル酸/hr・触媒であった。
As a result, ΔT was 60 ° C, the circulation rate of waste gas was 94.2%, the yield of acrylic acid was 89.2% with respect to the supplied propylene,
The space-time yield was 155.0 g / acrylic acid / hr.catalyst.

実施例−2 実施例−1に於て前段触媒12を8.1に後段触媒9
を8.1にそれぞれ減らした。アクリル酸収率を最大に
するにはプロピレン転化率95.0%でその時前段、後段そ
れぞれの溶融塩温度は330℃と270℃とした。
Example-2 In Example-1, the pre-stage catalyst 12 was changed to 8.1 and the post-stage catalyst 9 was used.
Were reduced to 8.1 respectively. In order to maximize the acrylic acid yield, the propylene conversion was 95.0% and the molten salt temperatures of the first and second stages were 330 ° C and 270 ° C, respectively.

前段反応ガス組成は、プロピレン11.0容量%、酸素は1
9.8容量%、水蒸気7.0容量%で二酸化炭素22.5容量%、
一酸化炭素13.0容量%、プロパン11.0容量%、残部アル
ゴンからなる混合ガス16.2m3/Hr(NTP換算)で導入し
た。
The composition of the first-stage reaction gas is 11.0% by volume of propylene and 1 for oxygen.
9.8% by volume, 7.0% by volume of water vapor, 22.5% by volume of carbon dioxide,
A mixed gas consisting of 13.0% by volume of carbon monoxide, 11.0% by volume of propane, and the balance of argon was introduced at 16.2 m 3 / Hr (NTP conversion).

その結果、△Tは51℃であり、廃ガスの循環率は95.1%
であり、供給プロピレン対するアクリル酸収率は90.3%
であり空時収率は323.5gアクリル酸/hr・触媒であっ
た。
As a result, △ T was 51 ℃ and the circulation rate of waste gas was 95.1%.
And the acrylic acid yield based on propylene supply is 90.3%.
The space-time yield was 323.5 g acrylic acid / hr.catalyst.

実施例−3 前段触媒の調製 実施例−1において水酸化カリウムにかえて硝酸タリウ
ムと硝酸バリウムを用い実施例−1と同様に調製して酸
素を除く元素組成Co4Bi1Fe1W2Mo10Si1.35Tl0.04Ba0.05
を得た。
Example-3 Preparation of pre-catalyst In the same manner as in Example-1, except that thallium nitrate and barium nitrate were used instead of potassium hydroxide in Example-1, the elemental composition excluding oxygen Co 4 Bi 1 Fe 1 W 2 Mo was prepared. 10 Si 1.35 Tl 0.04 Ba 0.05
Got

後段触媒の調製 水60を加熱攪拌しつつ、その中にメタバナジン酸アン
モニウム897gに、モリブデン酸アンモニウム4060g溶解
し、その二酸化ケイ素換算で20重量%を含有するシリカ
ゾル575gを加え、別に硝酸銅926gと硝酸第2鉄155gを水
3.8に溶解した溶液を混合した。こうして得られた混
合溶液を蒸気加熱器付のステンレス製蒸発器に入れ担体
基材として実施例−1で使用した粒状担体12を加え攪
拌しつつ蒸発乾固して担体に付着せしめた後、400℃で
6時間焼成して触媒を調製した。この触媒の担体を除く
酸素以外の元素による組成は原子比で Mo12V4Cu2Fe0.2Si1 であった。
Preparation of second-stage catalyst While stirring water 60 under heating, ammonium metavanadate 897 g was dissolved therein, ammonium molybdate 4060 g was dissolved, silica sol 575 g containing 20 wt% in terms of silicon dioxide was added, and copper nitrate 926 g and nitric acid were added separately. 155g ferric iron in water
The solution dissolved in 3.8 was mixed. The mixed solution thus obtained was placed in a stainless steel evaporator equipped with a steam heater, and the granular carrier 12 used in Example 1 was added as a carrier substrate, and the mixture was evaporated to dryness with stirring to adhere to the carrier. A catalyst was prepared by calcining at ℃ for 6 hours. The composition of elements other than oxygen excluding the carrier of this catalyst was Mo 12 V 4 Cu 2 Fe 0.2 Si 1 in atomic ratio.

反応及びアクリル酸の捕集方法は実施例−2に従った。
その結果を表−1に示す。尚、反応温度はアクリル酸収
率が最高となるところを選んだ。
The reaction and collection method of acrylic acid were in accordance with Example-2.
The results are shown in Table-1. The reaction temperature was selected such that the acrylic acid yield was the highest.

実施例−4 前段触媒の調製 実施例−1において水酸化カリウムに代えて硝酸セシウ
ムを加えること、および20重量%シリカゾルと同時に二
酸化チタンを加えること以外は全く実施例−1と同様に
調製して、酸素を除く元素組成Co4Bi1Fe1W2Mo10Si1.35C
s0.02Ti1を得た。
Example-4 Preparation of pre-catalyst Prepared in the same manner as in Example-1 except that cesium nitrate was added in place of potassium hydroxide in Example-1 and titanium dioxide was added simultaneously with the 20 wt% silica sol. , Elemental composition excluding oxygen Co 4 Bi 1 Fe 1 W 2 Mo 10 Si 1.35 C
I got s 0.02 Ti 1 .

後段触媒の調製 モリブデン酸アンモニウム10.00Kgを75の水に加熱溶
解した。この溶液にメタバナジン酸アンモニウム1.38K
g、水酸化ニオブ7.058Kg、ショウ酸第1鉄1.02Kg、塩化
第1銅0.56Kg、硫酸カリウム0.28Kgを十分に攪拌しなが
ら順次加えた。加熱攪拌後SiO2粉末4.25Kgを加え蒸発乾
固の後、粉砕し外径6.0mm、長さ6.6mm、貫通孔内径2.0m
mに成型、420℃で5時間焼成した。この触媒酸化物の組
成は原子比で Mo12V2.5Nb8.4Cu1.2Fe1.20.6Si15 であった。
Preparation of second-stage catalyst 10.00 Kg of ammonium molybdate was dissolved in 75 water by heating. Ammonium metavanadate 1.38K in this solution
g, niobium hydroxide 7.058 Kg, ferrous oxalate 1.02 Kg, cuprous chloride 0.56 Kg, and potassium sulfate 0.28 Kg were sequentially added while sufficiently stirring. After heating and stirring, add 4.25Kg of SiO 2 powder, evaporate to dryness, and then pulverize to outer diameter 6.0mm, length 6.6mm, through hole inner diameter 2.0m.
It was molded into m and baked at 420 ° C. for 5 hours. The composition of this catalyst oxide was Mo 12 V 2.5 Nb 8.4 Cu 1.2 Fe 1.2 K 0.6 Si 15 in atomic ratio.

反応及びアクリル酸の捕集方法は実施例−2に従った。
反応結果は表−1に示す。
The reaction and collection method of acrylic acid were in accordance with Example-2.
The reaction results are shown in Table 1.

実施例−5 前段触媒の調製 実施例1において水酸化カリウムにかえて硝酸ストロン
チウムを用いる事以外は全く実施例−1と同様に調製
し、酸素を除く元素組成が原子比でCo4Bi1Fe1Mo10W2Si
1.35Sr0.06なる触媒酸化物を外径6.0mm、長さ6.6mm、貫
通孔内径2.0mmに成型し、リング状触媒とした。
Example-5 Preparation of pre-catalyst Prepared in the same manner as in Example-1 except that potassium hydroxide was used instead of potassium hydroxide in Example-1, and the elemental composition except oxygen was Co 4 Bi 1 Fe in atomic ratio. 1 Mo 10 W 2 Si
A catalyst oxide of 1.35 Sr 0.06 was molded into an outer diameter of 6.0 mm, a length of 6.6 mm, and a through hole inner diameter of 2.0 mm to obtain a ring-shaped catalyst.

後段触媒の調製 実施例−1においてパラタングステン酸アンモニウム、
重クロム酸アンモニウム、硝酸銅の代りにアンチモン源
として五酸化アンチモン、マグネシウム源として硝酸マ
グネシウム、アルミニウムとしてその酸化物を用いた。
その酸素を除く元素組成はMo12V4Sb0.5Mg2Al5であっ
た。
Preparation of second-stage catalyst Ammonium paratungstate in Example-1
Instead of ammonium dichromate and copper nitrate, antimony pentoxide was used as an antimony source, magnesium nitrate was used as a magnesium source, and its oxide was used as aluminum.
The elemental composition excluding oxygen was Mo 12 V 4 Sb 0.5 Mg 2 Al 5 .

反応及びアクリル酸の捕集方法は実施例−2に従った。
反応結果は表−1に示す。
The reaction and collection method of acrylic acid were in accordance with Example-2.
The reaction results are shown in Table 1.

実施例−6 前段触媒の調製 実施例−1において水酸化カリウムにかえて硝酸カルシ
ウムを用いることと、シリカゾル及び硝酸カルシウムを
加えた後に五酸化ニオブを添加する以外は全く実施例−
1と同様に調製し、酸素を除く元素組成が原子比でCo4B
i1Fe1Mo10W2Si1.35Ca0.06Nb0.5なる触媒酸化物を外径6.
0mm、長さ6.6mm、貫通孔内径2.0mmのリング状に成型し
た。
Example-6 Preparation of First Stage Catalyst Except for using calcium nitrate in place of potassium hydroxide in Example-1, and adding niobium pentoxide after adding silica sol and calcium nitrate.
Prepared in the same manner as in No. 1, and the elemental composition except oxygen is Co 4 B in atomic ratio.
i 1 Fe 1 Mo 10 W 2 Si 1.35 Ca 0.06 Nb 0.5 catalyst oxide with outer diameter 6.
It was molded into a ring shape with a length of 0 mm, a length of 6.6 mm, and an inner diameter of a through hole of 2.0 mm.

後段触媒の調製 水75を加熱攪拌しつつ、その中にパラタングステン酸
アンモニウム2..54、メタバナジン酸アンモニウム2.2
1、モリブデン酸アンモニウム10.00Kg、それぞれ混合溶
解し別に硝酸ストロンチウム2.68Kgと硝酸銅2.28Kgを水
13に溶解させた水溶液を作成し、両液混合して加熱攪
拌後、酸化チタン粉末0.38Kgを加え蒸発乾固の後、粉下
し外径6.0mm、長さ6.6mm、貫通孔内径2.0mmに成型、400
℃で5時間焼成した。この触媒酸化物の組成は原子比で
Mo12V4W2Cu2Sr2Ti1であった。
Preparation of second-stage catalyst While stirring water 75 under heating, ammonium paratungstate 2.55 and ammonium metavanadate 2.2 were added.
1. Ammonium molybdate 10.00Kg, mixed and dissolved separately, strontium nitrate 2.68Kg and copper nitrate 2.28Kg in water
Prepare an aqueous solution dissolved in 13, mix both solutions, heat and stir, add 0.38 Kg of titanium oxide powder and evaporate to dryness, then powder down outer diameter 6.0 mm, length 6.6 mm, through hole inner diameter 2.0 mm Molded into 400
Calcination was carried out for 5 hours. The composition of this catalyst oxide is atomic ratio
It was Mo 12 V 4 W 2 Cu 2 Sr 2 Ti 1 .

反応及びアクリル酸の捕集方法は実施例−2に従った。
反応結果は表−1に示す。
The reaction and collection method of acrylic acid were in accordance with Example-2.
The reaction results are shown in Table 1.

実施例−7 前段触媒の調製 硝酸コバルトと同時に硝酸ニッケルを添加すること、硝
酸ストロンチウムにかえて硝酸ルビジウムを用いること
およびパラタングステン酸アンモニウムの代りにリン酸
を添加すること以外は全く実施例−5と同じ方法で元素
組成Co3Ni1Bi1Fe2Mo12Si4.7P1Rb0.1なる触媒酸化物を外
径6.0mm、長さ6.6mm、貫通孔内径2.0mmに成型し、空気
流通下500℃で6時間焼成した。
Example-7 Preparation of pre-catalyst Example 5 except that nickel nitrate was added simultaneously with cobalt nitrate, rubidium nitrate was used instead of strontium nitrate, and phosphoric acid was added instead of ammonium paratungstate. By the same method as above, a catalyst oxide having an elemental composition of Co 3 Ni 1 Bi 1 Fe 2 Mo 12 Si 4.7 P 1 Rb 0.1 was molded into an outer diameter of 6.0 mm, a length of 6.6 mm, and a through hole inner diameter of 2.0 mm, and air was passed through 500 It was calcined at ℃ for 6 hours.

後段触媒の調製 実施例−6に於て硝酸ストロンチウム、酸化チタンの代
りに鉄源に硝酸第2鉄を、ナトリウム源に硝酸ナトリウ
ム、アルミニウム源に酸化アルミニウムを用いた。元素
組成はMo12V6W4Cu1Fe1Na0.5Al5なる触媒酸化物を外径6.
0mm、長さ6.6mm、貫通孔内径2.0mmに成型し、400℃で5
時間焼成した。
Preparation of second-stage catalyst In Example 6, strontium nitrate and titanium oxide were replaced with ferric nitrate as an iron source, sodium nitrate as a sodium source, and aluminum oxide as an aluminum source. The elemental composition of the catalyst oxide is Mo 12 V 6 W 4 Cu 1 Fe 1 Na 0.5 Al 5 with an outer diameter of 6.
Molded to 0mm, length 6.6mm, through hole inner diameter 2.0mm, 5 at 400 ℃
Burned for hours.

反応及びアクリル酸の捕集方法は実施例−2に従った。
反応結果は表−1に示す。
The reaction and collection method of acrylic acid were in accordance with Example-2.
The reaction results are shown in Table 1.

実施例−8 前段触媒の調製 硝酸コバルトと同時に硝酸ニッケル及び硝酸アルミニウ
ムを添加すること、パラタングステン酸アンモニウムの
代りに硝酸カリウムを用いること、硝酸ストロンチウム
の代わりにホウ酸を用いること以外は実施例−5と同じ
方法で、酸素を除く元素組成Mo12Bi1Fe2Ni1Co3Si4.7B2K
0.2Al1なる触媒酸化物を外径6.0mm、長さ6.6mm、開孔内
径2.0mmに成型し、空気流通下500℃で6時間焼成した。
Example-8 Preparation of pre-catalyst Example-5 except that nickel nitrate and aluminum nitrate were added simultaneously with cobalt nitrate, potassium nitrate was used instead of ammonium paratungstate, and boric acid was used instead of strontium nitrate. In the same way as in the above, the elemental composition excluding oxygen Mo 12 Bi 1 Fe 2 Ni 1 Co 3 Si 4.7 B 2 K
A catalyst oxide of 0.2 Al 1 was molded into an outer diameter of 6.0 mm, a length of 6.6 mm, and an opening inner diameter of 2.0 mm, and was calcined at 500 ° C. for 6 hours under air flow.

後段触媒の調製 実施例−7に於て硝酸第2鉄の代りに硝酸ビスマス、硝
酸ナトリウムの代りに硝酸ルビジウム、酸化アルミニウ
ムの代りに酸化硅素を使用した。元素組成はMo12V8W4Cu
1Bi0.05Rb0.05Si5なる触媒酸化物を外径6.0mm、長さ6.6
mm、貫通孔内径2.0mmに成型し、400℃で5時間焼成し
た。
Preparation of Second Stage Catalyst In Example-7, bismuth nitrate was used instead of ferric nitrate, rubidium nitrate was used instead of sodium nitrate, and silicon oxide was used instead of aluminum oxide. Elemental composition is Mo 12 V 8 W 4 Cu
1 Bi 0.05 Rb 0.05 Si 5 catalyst oxide with an outer diameter of 6.0 mm and a length of 6.6
mm, through hole inner diameter 2.0 mm, and baked at 400 ° C. for 5 hours.

反応及びアクリル酸の捕集方法は実施例−2に従った。
反応結果は表−1に示す。
The reaction and collection method of acrylic acid were in accordance with Example-2.
The reaction results are shown in Table 1.

実施例−9 前段触媒の調製 実施例−7に於て燐酸の代りに亜砒酸を用い硝酸ルビジ
ウムの代りに硝酸タリウムを用いた。元素組成は酸素を
除く原子比で表わせば、Co3Ni1Bi1Fe2Mo12Si4.7As0.5Tl
0.05であり、この触媒酸化物を外径6.0mm、長さ6.6mm.
貫通孔内径2.0mmに成型し、空気流通下500℃で6時間焼
成した。
Example-9 Preparation of first-stage catalyst In Example-7, arsenous acid was used instead of phosphoric acid, and thallium nitrate was used instead of rubidium nitrate. The elemental composition is Co 3 Ni 1 Bi 1 Fe 2 Mo 12 Si 4.7 As 0.5 Tl
0.05, the catalyst oxide outer diameter 6.0 mm, length 6.6 mm.
A through hole having an inner diameter of 2.0 mm was formed and fired at 500 ° C. for 6 hours while circulating air.

後段触媒の調製 実施例−6に於て硝酸銅の代りに硝酸ビスマスを用い硝
酸ストロンチウムの代りに硝酸セシウム、酸化チタンの
代りに二酸化硅素を用いた。この触媒の酸化物の組成は
酸素を除いた原子比でMo12V8W1Bi1Cs0.05Si5であった。
Preparation of second-stage catalyst In Example 6, bismuth nitrate was used instead of copper nitrate, cesium nitrate was used instead of strontium nitrate, and silicon dioxide was used instead of titanium oxide. The oxide composition of this catalyst was Mo 12 V 8 W 1 Bi 1 Cs 0.05 Si 5 in terms of atomic ratio excluding oxygen.

反応及びアクリル酸捕集は実施例−2に従う。反応結果
は表−1に示す。
The reaction and acrylic acid collection follow Example-2. The reaction results are shown in Table 1.

実施例−10 前段反応器入口側に火焔伝播遮断装置としてデミスター
をとりつけ、その装置と前段反応器入口部との空間に空
間密度を少なくするように充填物を充填したり、又前段
反応器と前段反応器を分離せずに単一反応器内にそれぞ
れ反応温度を選択できる様に工夫された装置を使ってプ
ロピレン又はアクロレインの燃焼範囲を回避する装置を
用いて次の反応条件にて反応を行った。
Example-10 A demister is installed as a flame propagation blocking device on the inlet side of the pre-reactor, and the space between the device and the pre-reactor inlet is filled with a packing so as to reduce the space density, or the pre-reactor is used. Use the equipment designed to avoid the combustion range of propylene or acrolein by using the equipment designed to select the reaction temperature in a single reactor without separating the first-stage reactor. went.

前段触媒並びに後段触媒の調製 実施例−1で調製されたものと同様の触媒を調製した。Preparation of First Stage Catalyst and Second Stage Catalyst A catalyst similar to that prepared in Example-1 was prepared.

反応及びアクリル酸の捕集法 実施例−2に於てアクリル酸収率を最大にするにはプロ
ピレ転化率95.0%でその時前段、後段それぞれの溶融塩
温度は335℃と275℃とした。前段反応ガス組成はプロピ
レン15容量%、酸素27.0量%、水蒸気10.0容量%、二酸
化炭素17.7容量%、一酸化炭素10.1容量%、プロパン8.
4容量%、残部アルゴンからなる混合ガス 16.2m3Hr(NTP換算)で導入した。その結果を表−1に
示す。
Reaction and Collection Method of Acrylic Acid In Example 2, in order to maximize the acrylic acid yield, the propylene conversion was 95.0%, and the molten salt temperatures of the first and second stages were 335 ° C. and 275 ° C., respectively. The composition of the first-stage reaction gas is propylene 15% by volume, oxygen 27.0% by volume, water vapor 10.0% by volume, carbon dioxide 17.7% by volume, carbon monoxide 10.1% by volume, propane 8.
A mixed gas consisting of 4% by volume and the balance of argon was introduced at 16.2 m 3 Hr (NTP conversion). The results are shown in Table-1.

実施例−11 実施例−1においてプロピレン原料としてプロピレン5
5.0容量%、プロパン45.0容量%のものを使用した以外
は実施例−1に従って実施した。第1段反応器へプロピ
レン7.0容量%、酸素12.6容量%、水蒸気7容量%、プ
ロパン58.8容量%、二酸化炭素5.6容量%、一酸化炭素
3.6容量%、残部アルゴンからなる混合ガスを16.2m3/Hr
(NTP換算)で導入した。アクリル酸収率はプロピレン
転化率95.0%の時に最適であった。その結果を表−1に
示す。
Example-11 In Example-1, propylene 5 was used as a propylene raw material.
It carried out according to Example-1 except that 5.0% by volume and 45.0% by volume of propane were used. To the 1st stage reactor 7.0% by volume propylene, 12.6% by volume oxygen, 7% by volume steam, 58.8% by volume propane, 5.6% by volume carbon dioxide, carbon monoxide
A mixed gas consisting of 3.6% by volume and the balance of argon was 16.2 m 3 / Hr.
(NTP conversion) was introduced. The acrylic acid yield was optimum when the propylene conversion rate was 95.0%. The results are shown in Table-1.

実施例−12 実施例−10においてプロピレン原料としてプロピレン5
5.0容量%、プロパン45.0容量%のものを使用した以外
は実施例−10に従って実施した。第1段反応器へプロピ
レン15.0容量%、酸素27.0容量%、水蒸気10.0容量%、
プロパン37.4容量%、二酸化炭素5.2容量%、一酸化炭
素3.0容量%、残部アルゴンからなる混合ガスを16.2m3/
Hr(NTP換算)で導入した。アクリル酸の収率はプロピ
レン転化率95.0%の時に最高であった。その結果を表−
1に示す。
Example-12 In Example-10, propylene 5 was used as the propylene raw material.
Example 10 was repeated except that 5.0% by volume of propane and 45.0% by volume of propane were used. To the first-stage reactor, propylene 15.0% by volume, oxygen 27.0% by volume, steam 10.0% by volume,
A mixed gas consisting of propane 37.4% by volume, carbon dioxide 5.2% by volume, carbon monoxide 3.0% by volume, and the balance argon 16.2 m 3 /
It was introduced by Hr (NTP conversion). The yield of acrylic acid was highest when the propylene conversion was 95.0%. Table of the results
Shown in 1.

実施例−13 実施例−1の前段触媒の調製を次のようにかえた。 Example-13 The preparation of the pre-stage catalyst of Example-1 was changed as follows.

水15を加熱しつつモリブデン酸アンモニウム10.62K
g、パラタングステン酸アンモニウム3.24Kgを加えはげ
しく攪拌した(これをA液とする)。
Ammonium molybdate 10.62K while heating water 15.
g and ammonium paratungstate (3.24 Kg) were added and the mixture was vigorously stirred (this is referred to as liquid A).

別に硝酸コバルト7.00Kgを2の水に、硝酸第2鉄2.43
Kgを2の水に、硝酸ビスマス2.92Kgを濃硝酸0.60を
加えて酸性とした水3に、それぞれ溶解させ、この3
種の硝酸塩溶液を混合した液を上記A液に滴下した。つ
いで二酸化ケイ素換算で20重量%を含有するシリカゾル
2.44Kgおよび水酸化カリウム20.2gを1.5の水に溶解し
た液をそれぞれ加え、かくして生じた懸濁液を加熱蒸発
せしめた後、150℃で空気流通下乾燥器にて16時間乾燥
した。その後、約100メッシュの粒度に粉砕し粉体とな
した。次に、この粉体2.4Kgと3〜5mmφのシリカアルミ
ナ不活性担体を用い、転動造粒装置を使用し、不活性担
体に触媒成分を固着させる方法をとった。この際結合剤
として蒸留水を用いた。この固着物質を120℃で12時間
乾燥器中で乾燥後、空気流通下450℃で6時間焼成し触
媒を調製した。
Separately, 7.00 kg of cobalt nitrate is added to 2 parts of water, and ferric nitrate 2.43
Kg was dissolved in 2 of water, 2.92 Kg of bismuth nitrate was dissolved in 3 of acidified acid by adding 0.60 of concentrated nitric acid.
A liquid obtained by mixing the nitrate solution of the seed was added dropwise to the liquid A. Then, silica sol containing 20% by weight in terms of silicon dioxide.
A liquid prepared by dissolving 2.44 Kg and 20.2 g of potassium hydroxide in 1.5 of water was added thereto, and the suspension thus formed was heated and evaporated, and then dried at 150 ° C. for 16 hours in a dryer under air flow. Then, the powder was pulverized to a particle size of about 100 mesh. Next, 2.4 kg of this powder and a silica-alumina inert carrier having a diameter of 3 to 5 mm were used, and a rolling granulator was used to fix the catalyst component to the inert carrier. At this time, distilled water was used as a binder. The adhered substance was dried in a dryer at 120 ° C. for 12 hours, and then calcined at 450 ° C. for 6 hours in an air stream to prepare a catalyst.

反応方法は実施例−1に従った。但し、前段触媒用の溶
融塩温度(反応器内循環溶融塩の温度)は330℃に加熱
した。その結果第1段反応器の触媒層の最高温度と反応
温度の差△Tは38℃であった。前段触媒用溶融塩温度33
0℃はアクリル酸の収率が最高値を与える温度であり、
その時のプロピレン転化率95.7%、アクリル酸収率は9
1.3%であった。
The reaction method was according to Example-1. However, the molten salt temperature for the pre-stage catalyst (the temperature of the molten salt circulated in the reactor) was heated to 330 ° C. As a result, the difference ΔT between the maximum temperature of the catalyst layer of the first stage reactor and the reaction temperature was 38 ° C. Molten salt temperature for pre-catalyst 33
0 ° C is the temperature at which the yield of acrylic acid gives the highest value,
At that time, the propylene conversion rate was 95.7% and the acrylic acid yield was 9
It was 1.3%.

尚、この反応を8000時間にわたり連続させた。8000時間
で前段反応ナイター浴温度は343℃、後段反応ナイター
浴温度は266℃となった。そしてその時点でのプロピレ
ン転化率及びアクリル酸の収率はそれぞれ93.1%、88.8
モル%であった。
The reaction was continued for 8000 hours. After 8000 hours, the temperature of the first stage reaction night bath was 343 ° C and the temperature of the second stage reaction night bath was 266 ° C. The propylene conversion rate and acrylic acid yield at that point were 93.1% and 88.8%, respectively.
It was mol%.

比較例−4 実施例−13の前段触媒(転動造粒機にて触媒成分を不活
性担体に固着させた触媒)を用いて比較例−1−1の実
施態様で反応を行った。但し、前段触媒用の溶融塩(ナ
イター)温度は330℃に加熱した。その結果△Tは58℃
で、プロピレンの転化率95.3%であり、アクリル酸収率
は86.0%であった。
Comparative Example-4 The reaction was carried out in the embodiment of Comparative Example-1-1 using the pre-stage catalyst of Example-13 (catalyst in which the catalyst components were fixed to the inert carrier by a tumbling granulator). However, the molten salt (nighter) temperature for the pre-stage catalyst was heated to 330 ° C. As a result, ΔT is 58 ℃
The conversion rate of propylene was 95.3%, and the yield of acrylic acid was 86.0%.

尚、この反応を4000時間にわたり連続させた。4000時間
の時点で前段反応ナイター浴温度355℃、後段ナイター
浴温度264℃となった。その時点でプロピレン転化率90.
6%、アクリル酸収率は81.8%と低下した。通常の反応
方法では特に前段触媒の活性低下が著しい事がわかる。
The reaction was continued for 4000 hours. At 4000 hours, the temperature of the first stage reaction night bath was 355 ° C and the temperature of the second stage night bath was 264 ° C. At that time, the propylene conversion rate was 90.
The yield of acrylic acid was 6% and the yield of acrylic acid was 81.8%. It can be seen that the decrease in the activity of the pre-catalyst is particularly remarkable in the ordinary reaction method.

実施例−14 実施例−1において前段反応器へプロピレン7.0容量
%、酸素12.6容量、水蒸気35.0容量%、二酸化炭素16.8
容量%、一酸化炭素5.6容量%、プロパン9.3容量%、残
部アルゴンからなる混合ガス16.2m3/hr(NTP換算)で導
入した。この時水蒸気量の調節はアクリル酸補集装置の
塔頂廃ガス出口温度で行ない、第1段反応器の反応温度
は325℃、第2段反応器の反応温度は260℃を採用した。
この時のプロピレンの転化率94.5%で、アクリル酸の収
率は最高であった。
Example-14 In Example-1, propylene 7.0 vol%, oxygen 12.6 vol, steam 35.0 vol%, carbon dioxide 16.8
A mixed gas consisting of vol.%, Carbon monoxide 5.6 vol.%, Propane 9.3 vol.%, And the balance argon was introduced at 16.2 m 3 / hr (NTP conversion). At this time, the amount of water vapor was adjusted at the temperature of the outlet gas from the top of the acrylic acid collector, and the reaction temperature of the first-stage reactor was 325 ° C and the reaction temperature of the second-stage reactor was 260 ° C.
At this time, the conversion of propylene was 94.5%, and the yield of acrylic acid was the highest.

この時の廃ガスの前段(第1段)反応器への循環率は9
6.4%であった。その結果第1段反応器の△Tは46℃で
あった。そして供給プロピレンに対するアクリル酸の収
率は91.9%であり、空時収率は159.6gアクリル酸/hr・
触媒であった。
At this time, the circulation rate of the waste gas to the front stage (first stage) reactor is 9
It was 6.4%. As a result, the ΔT of the first stage reactor was 46 ° C. The yield of acrylic acid with respect to the propylene supplied was 91.9%, and the space-time yield was 159.6 g acrylic acid / hr.
It was a catalyst.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 雅光 兵庫県姫路市網干区興浜字西沖992番地の 1 日本触媒化学工業株式会社触媒研究所 内 審査官 唐木 以知良 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Masamitsu Sasaki 1 992, Nishikioki, Kamahama, Aboshi-ku, Himeji-shi, Hyogo 1 Ichira Karaki

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】第1段階でプロピレンを酸化してアクロレ
インを生成させかつ第2段階でアクロレインを酸化して
主としてアクリル酸を生成させることによりなるプロピ
レンを分子状酸素で2段階で接触気相酸化せしめてアク
リル酸を製造する方法において、炭素数1〜5の飽和脂
肪族炭化水素を5〜70容量%および二酸化炭素を3〜50
容量%かつ当該脂肪族炭化水素と二酸化炭素の合計が20
〜80容量%の範囲含有せしめ、水蒸気をプロピレン1モ
ル当たり0.5〜8モルの範囲含有せしめ、さらに原料ガ
ス中のプロピレン濃度が5〜20容量%の範囲かつ分子状
酸素濃度はプロピレンに対しモル比で1.4〜4.0の範囲含
有せしめてなる原料ガスを第1段反応に供することより
なるアクリル酸の製造方法。
1. Propylene obtained by oxidizing propylene in the first stage to produce acrolein and in the second stage to oxidize acrolein to mainly produce acrylic acid, and catalytic vapor phase oxidation of propylene with molecular oxygen in two stages. In a method for producing acrylic acid at least, 5-70% by volume of a saturated aliphatic hydrocarbon having 1 to 5 carbon atoms and 3 to 50% of carbon dioxide are used.
% By volume and the total of the aliphatic hydrocarbon and carbon dioxide is 20
-80% by volume, water vapor in the range of 0.5-8 mol per 1 mol of propylene, propylene concentration in the raw material gas in the range of 5-20% by volume, and molecular oxygen concentration in molar ratio to propylene. 1. A method for producing acrylic acid, which comprises subjecting a raw material gas contained in the range of 1.4 to 4.0 to the first stage reaction.
【請求項2】第1段反応におけるプロピレン転化率が少
なくとも70%である請求項1記載の方法。
2. The method according to claim 1, wherein the propylene conversion in the first stage reaction is at least 70%.
【請求項3】分子状酸素は少なくとも90容量%の純度の
分子状酸素含有ガスとして供給される請求項1記載の方
法。
3. The method according to claim 1, wherein the molecular oxygen is supplied as a molecular oxygen-containing gas having a purity of at least 90% by volume.
【請求項4】飽和脂肪族炭化水素が、メタン、エタンお
よびプロパンよりなる群から選ばれる少なくとも1種で
ある請求項1記載の方法。
4. The method according to claim 1, wherein the saturated aliphatic hydrocarbon is at least one selected from the group consisting of methane, ethane and propane.
【請求項5】第2段反応でえられた反応混合ガスからア
クリル酸を分離してえられる廃ガスを第1段反応の原料
ガスとして再利用してなる請求項1記載の方法。
5. The method according to claim 1, wherein the waste gas obtained by separating acrylic acid from the reaction mixed gas obtained in the second stage reaction is reused as a raw material gas for the first stage reaction.
【請求項6】第1段反応に供給される水蒸気が、第2段
反応でえられた反応混合ガスからアクリル酸を分離して
えられる廃ガス中に含有される水蒸気である請求項5記
載の方法。
6. The steam supplied to the first stage reaction is steam contained in a waste gas obtained by separating acrylic acid from the reaction mixed gas obtained in the second stage reaction. the method of.
【請求項7】酸素とプロピレンのモル比は1.4〜4.0であ
る請求項1記載の方法。
7. The method according to claim 1, wherein the molar ratio of oxygen to propylene is 1.4 to 4.0.
【請求項8】水蒸気の量はプロピレン1モル当たり0.6
〜5モルである請求項7記載の方法。
8. The amount of water vapor is 0.6 per mole of propylene.
The method according to claim 7, which is -5 mol.
【請求項9】第1段階の反応温度は250〜450℃であり、
また第2段階の反応温度は180〜350℃である請求項7記
載の方法。
9. The reaction temperature in the first step is 250 to 450 ° C.,
The method according to claim 7, wherein the reaction temperature in the second step is 180 to 350 ° C.
【請求項10】第1段階の反応はモリブデン、ビスマス
および鉄を含有する酸化物触媒の存在下で行われ、また
第2段階の反応はモリブデンおよびバナジウムを含有す
る酸化物触媒の存在下に行なわれる請求項1記載の方
法。
10. The first step reaction is carried out in the presence of an oxide catalyst containing molybdenum, bismuth and iron, and the second step reaction is carried out in the presence of an oxide catalyst containing molybdenum and vanadium. The method according to claim 1, wherein
JP63125697A 1987-05-27 1988-05-25 Method for producing acrylic acid Expired - Lifetime JPH0686399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63125697A JPH0686399B2 (en) 1987-05-27 1988-05-25 Method for producing acrylic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-127958 1987-05-27
JP12795887 1987-05-27
JP63125697A JPH0686399B2 (en) 1987-05-27 1988-05-25 Method for producing acrylic acid

Publications (2)

Publication Number Publication Date
JPS6463543A JPS6463543A (en) 1989-03-09
JPH0686399B2 true JPH0686399B2 (en) 1994-11-02

Family

ID=26462050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63125697A Expired - Lifetime JPH0686399B2 (en) 1987-05-27 1988-05-25 Method for producing acrylic acid

Country Status (1)

Country Link
JP (1) JPH0686399B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610090B2 (en) * 1993-03-12 1997-05-14 株式会社日本触媒 How to remove solid organic matter
KR100204729B1 (en) 1997-03-17 1999-06-15 성재갑 Preparation of ctalyst for partially oxidizing of acrolein
US6632772B2 (en) 1998-09-23 2003-10-14 Lg Chemical, Ltd. Method of coating a catalyst to a support for use in acrolein oxidation
MY121878A (en) * 1999-03-10 2006-02-28 Basf Ag Method for the catalytic gas-phase oxidation of propene into acrylic acid
MY119958A (en) * 1999-03-10 2005-08-30 Basf Ag Catalytic gas-phase oxidation of propene to acrylic acid
US6500353B1 (en) * 1999-06-25 2002-12-31 Fitel Usa Corp. Disposable device for end finishing of plastic optical fiber
US6639106B1 (en) * 1999-07-23 2003-10-28 Rohm And Haas Company Process for preparing and purifying acrylic acid from propylene having improved capacity
US6620968B1 (en) * 1999-11-23 2003-09-16 Rohm And Haas Company High hydrocarbon space velocity process for preparing unsaturated aldehydes and acids
JP2003238485A (en) * 2001-12-10 2003-08-27 Nippon Shokubai Co Ltd Method and equipment for collecting (meth)acrylic acid
JP4813758B2 (en) 2003-02-27 2011-11-09 株式会社日本触媒 Composite oxide catalyst and method for producing acrylic acid using the same
JP5006507B2 (en) 2004-01-30 2012-08-22 株式会社日本触媒 Acrylic acid production method
US20060122055A1 (en) * 2004-12-06 2006-06-08 Gaffney Anne M (Amm)oxidation catalyst and catalytic (amm)oxidation process for conversion of lower alkanes
TWI522092B (en) * 2005-02-28 2016-02-21 贏創德固賽有限責任公司 Acrylic acid and water-absorbing polymer structures based upon renewable raw materials and process for their preparation
JP4947917B2 (en) * 2005-04-18 2012-06-06 株式会社日本触媒 Fixed bed reactor for gas phase catalytic oxidation and method for producing acrolein or acrylic acid
FR2897059B1 (en) * 2006-02-07 2008-04-18 Arkema Sa PROCESS FOR THE PREPARATION OF ACRYLIC ACID
US7884235B2 (en) 2006-07-20 2011-02-08 Nippon Shokubai Co., Ltd. Method for gas-phase catalytic oxidation using a fixed bed reactor
JP2010083899A (en) * 2009-12-29 2010-04-15 Nippon Shokubai Co Ltd Method for producing acrylic acid
KR101554318B1 (en) 2013-05-24 2015-09-18 주식회사 엘지화학 Catalyst for producing acrolein and acrylic acid and preparation method thereof
WO2023063349A1 (en) * 2021-10-14 2023-04-20 日本化薬株式会社 Catalyst for production of unsaturated carboxylic acid, method for producing same, and method for producing unsaturated carboxylic acid
JP7237268B1 (en) * 2021-10-14 2023-03-10 日本化薬株式会社 Catalyst for producing unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated carboxylic acid

Also Published As

Publication number Publication date
JPS6463543A (en) 1989-03-09

Similar Documents

Publication Publication Date Title
KR920010470B1 (en) Process for production of acrylic acid
JPH0686399B2 (en) Method for producing acrylic acid
US5218146A (en) Process for production of acrylic acid
US5212137A (en) Catalyst for the manufacture of acrylonitrile and methacrylonitrile
US7132384B2 (en) Process for producing composite oxide catalyst
US4155938A (en) Oxidation of olefins
JP4346822B2 (en) Molybdenum-vanadium catalyst for the low temperature selective oxidation of propylene, its production and use
JPH0710802A (en) Production of acrylic acid
JP2012524105A (en) Process for producing unsaturated carboxylic acids from alkanes
US4186152A (en) Oxidation of olefins
US7015354B2 (en) Preparation of (meth)acrolein and/or (meth)acrylic acid
US7439389B2 (en) Process for preparing at least one organic target compound by heterogeneously catalyzed gas phase partial oxidation
US4487962A (en) Preparation of methacrylic acid by gas phase oxidation of methacrolein
EP1276559B1 (en) Catalysts for the oxidation of unsaturated aldehydes to produce carboxylic acids, methods of making and using the same
JP2010260793A (en) Catalyst for oxidative dehydrogenation of alkane, method for producing the catalyst, and method for producing unsaturated hydrocarbon compound and/or oxygen-containing hydrocarbon compound with the catalyst, or method for producing unsaturated acid
EP0146099A2 (en) A process for producing acrylic acid by oxidation of acrolein and a novel catalyst useful thereof
JP2003171340A (en) Method for producing acrylic acid
GB2029721A (en) Catalytic oxidation of methacrolein
JP2988660B2 (en) Method for producing methacrolein and methacrylic acid
JPH1135519A (en) Production of acrylic acid
US3467716A (en) Oxidation of 1,2-olefins to oxygenated products
JP2659839B2 (en) Method for producing methacrolein and methacrylic acid
JPH07107016B2 (en) Method for producing acrylic acid
JP2000169420A (en) Production of acrylic acid
JPH0912489A (en) Production of unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14