NO141099B - DEVICE AT WATER TOILET. - Google Patents

DEVICE AT WATER TOILET. Download PDF

Info

Publication number
NO141099B
NO141099B NO254673A NO254673A NO141099B NO 141099 B NO141099 B NO 141099B NO 254673 A NO254673 A NO 254673A NO 254673 A NO254673 A NO 254673A NO 141099 B NO141099 B NO 141099B
Authority
NO
Norway
Prior art keywords
alginic acid
acid
alginate
algae
water
Prior art date
Application number
NO254673A
Other languages
Norwegian (no)
Other versions
NO141099C (en
Inventor
Rolf Allon Hans De Jounge
Arne Sassar Walhstroem
Original Assignee
Ifoe Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifoe Ab filed Critical Ifoe Ab
Publication of NO141099B publication Critical patent/NO141099B/en
Publication of NO141099C publication Critical patent/NO141099C/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D1/00Water flushing devices with cisterns ; Setting up a range of flushing devices or water-closets; Combinations of several flushing devices
    • E03D1/02High-level flushing systems
    • E03D1/22Twin or multiple flushing cisterns

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Sanitary Device For Flush Toilet (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)

Description

Fremgangsmåte til fremstilling av alginsyre. Process for the production of alginic acid.

Alginsyre er en polyuronsyre som fore-kommer i brunalger, og det er kjent at denne polyuronsyre lar seg ekstrahere som vannløselig natriumalginat ved tilsetning av overskudd av alkali. Ekstraksjonspro-sessen er første gang beskrevet av Stanford i 1861 (Brit. Pat. 142/1881), og en lang rekke av variasjoner av Stanfords metode er senere beskrevet i patentlitteraturen. De mest kjente er: 1) Greens prosess (U.S. patent 2 036 934/ 1934) hvor algene forekstraheres med saltsyre, alginsyren ekstraheres med overskudd natriumkarbonat ved pH 10, løsningen filtreres og felles med kalsiumklorid hvorved kalsiumalginatet felles ut, og 2) le Gloachec-Herters prosess (U.S patent 2 128 551/1935) hvor algene forekstraheres med kalsiumklorid, deretter ekstraheres med overskudd natriumkarbonat, uløste partikler fjernes ved flotasjon og løsning felles med syre hvorved alginsyre felles ut. Det er karakteristisk at variasjo-nene i prosessen i første rekke gjelder forekstraksjon og utfelling, mens selve algi-natekstraksjonen alltid foretas med overskudd av alkali. Alginic acid is a polyuronic acid that occurs in brown algae, and it is known that this polyuronic acid can be extracted as water-soluble sodium alginate by adding an excess of alkali. The extraction process was first described by Stanford in 1861 (Brit. Pat. 142/1881), and a long series of variations of Stanford's method were later described in the patent literature. The best known are: 1) Green's process (U.S. patent 2 036 934/1934) where the algae are pre-extracted with hydrochloric acid, the alginic acid is extracted with excess sodium carbonate at pH 10, the solution is filtered and precipitated with calcium chloride whereby the calcium alginate is precipitated, and 2) le Gloachec- Herter's process (US patent 2 128 551/1935) where the algae are pre-extracted with calcium chloride, then extracted with excess sodium carbonate, undissolved particles are removed by flotation and solution together with acid, whereby alginic acid is precipitated. It is characteristic that the variations in the process primarily concern pre-extraction and precipitation, while the alginate extraction itself is always carried out with an excess of alkali.

Det er også kjent at alkaliekstraktene blir mer eller mindre brunfarget og at denne brunfarge følger alginatene som derfor for de fleste formål må blekes. Årsa-ken til denne brunfargen har tidligere ikke vært klarlagt, men det er nå godtgjort at den i første rekke skyldes fenoliske forbindelser. Endel av disse fenoliske forbin-delsene lar seg ekstrahere med syre og fjernes derfor ved forekstraksjonen. Resten lar seg ikke ekstrahere i surt eller nøytralt miljø, men går i oppløsning i alkalisk miljø hvor de polymeriserer og danner brunfargede forbindelser. (Norsk inst. f. tang- og tareforskning. Rapport nr. 22, 1959). Når alginat ekstraheres med overskudd alkali vil derfor ekstraktet, og derved den utfelte alginsyren, bli mer eller mindre brunfarget. Hvis alginat derimot kan ekstraheres i nøy-tralt eller svakt surt miljø lar fenolene seg ikke ekstrahere og ekstraktet blir tilnær-met fargeløst. It is also known that the alkali extracts become more or less brown and that this brown color follows the alginates, which must therefore be bleached for most purposes. The cause of this brown color has previously not been clarified, but it has now been confirmed that it is primarily due to phenolic compounds. Some of these phenolic compounds can be extracted with acid and are therefore removed during the pre-extraction. The rest cannot be extracted in an acidic or neutral environment, but dissolves in an alkaline environment where they polymerize and form brown compounds. (Norwegian institute for seaweed and kelp research. Report no. 22, 1959). When alginate is extracted with excess alkali, the extract, and thereby the precipitated alginic acid, will therefore become more or less brown in colour. If, on the other hand, alginate can be extracted in a neutral or slightly acidic environment, the phenols cannot be extracted and the extract becomes almost colourless.

Nyere undersøkelser har vist at alginsyre fra forskjellige alger kan ha forskjel- Recent research has shown that alginic acid from different algae can have different

lig kjemisk sammensetning (Acta Chem. Scand. 13, 1250 (1959). Alginsyre er opp-bygget av to uronsyrer, mannuronsyre og guluronsyre. Alginsyre fra fingertare ( Laminaria digitata) og grisetang ( Ascophyllum nodosum) er av en type med mer mannuronsyre enn guluronsyre, mens alginsyre fra stortare stilk ( Laminaria hyperborea stipes) inneholder vesentlig mer guluronsyre enn mannuronsyre. Alginsyrens egen-skaper avhenger av sammensetningen (Acta Chem. Scand. 13. 1250 (1959)), og det er en nødvendig forutsetning for en vellyk-ket utøvelse av oppfinnelsen å ha kjenn-skap til disse forholdene. similar chemical composition (Acta Chem. Scand. 13, 1250 (1959). Alginic acid is made up of two uronic acids, mannuronic acid and guluronic acid. Alginic acid from finger kelp (Laminaria digitata) and pigweed (Ascophyllum nodosum) is of a type with more mannuronic acid than guluronic acid, while alginic acid from greater stem (Laminaria hyperborea stipes) contains significantly more guluronic acid than mannuronic acid. The properties of alginic acid depend on the composition (Acta Chem. Scand. 13. 1250 (1959)), and it is a necessary prerequisite for a successful ket practice of the invention to have knowledge of these conditions.

Den foreliggende oppfinnelse går ut på å ekstrahere alginatene fra algematerialet uten anvendelse av alkalioverskudd. Derved unngår en dannelse av brunfargede polymerisasjonsprodukter av fenolene, og samtidig oppnår en vesentlige besparelser i den etterfølgende utfellingsproesss, ved at en ikke får forbruk av syre til nøytralise-ring av overskudd alkali, hvis en benytter syrefelling som isoleringsmetode. Benytter en kalsiumklorid ved fellingen, unngår en den medfellingen av kalsiumkarbonat som en har når overskudd soda er benyttet i ek-straksj onen', og som fører til øket syrefor-bruk ved den etterfølgende overføring av kalsiumalginat til alginsyre. The present invention consists in extracting the alginates from the algal material without the use of an excess of alkali. This avoids the formation of brown-colored polymerization products of the phenols, and at the same time achieves significant savings in the subsequent precipitation process, by not consuming acid to neutralize excess alkali, if acid precipitation is used as an isolation method. If you use a calcium chloride during the precipitation, you avoid the co-precipitation of calcium carbonate that you have when excess soda is used in the extraction, and which leads to increased acid consumption in the subsequent transfer of calcium alginate to alginic acid.

Alginsyren i algene foreligger som et blandet salt, hvor det viktigste kation er kalsium. Dette blandingssaltet er uløselig i vann, og vi kan betrakte ekstraksjons-prosessen som en prosess i to trinn: først overføringen av alginatet i en form som er løselig i vann, f. eks. natriumalginat, og deretter en diffusjon av det løselige alginatet ut i løsningsmiddelet, f. eks. vann. Det første trinn i prosessen, overføringen av alginatet til en ekstraherbar form, kan prinsipielt utføres på to måter: 1) Ved en direkte ionebyttingsreaksjon, hvorved kal-siumionene som er bundet til alginsyren, byttes ut med natriumioner. Vi får derved overført alginatet i algen til en vann-løselig form, nemlig natriumalginat, som så kan løses ut av algematerialet med vann. 2) en overføring av kalsiumalginatet i algene til alginsyre som igjen overføres til natriumalginat ved nøytralisering. Alginatet i algene er derved overført til en vann-løselig form og kan derved ekstraheres fra algematerialet med vann. Metode 1) kan utføres ved at algene forekstraheres med en NaCl-løsning. Kon-sentrasjonene av natriumklorid må være så høy at ionebyttingsreaksjonen The alginic acid in the algae exists as a mixed salt, where the most important cation is calcium. This mixed salt is insoluble in water, and we can consider the extraction process as a two-step process: first, the transfer of the alginate in a form that is soluble in water, e.g. sodium alginate, and then a diffusion of the soluble alginate into the solvent, e.g. water. The first step in the process, the transfer of the alginate to an extractable form, can in principle be carried out in two ways: 1) By a direct ion exchange reaction, whereby the calcium ions bound to the alginic acid are replaced by sodium ions. We thereby transfer the alginate in the algae to a water-soluble form, namely sodium alginate, which can then be dissolved out of the algae material with water. 2) a transfer of the calcium alginate in the algae to alginic acid which in turn is transferred to sodium alginate by neutralization. The alginate in the algae is thereby transferred to a water-soluble form and can thereby be extracted from the algae material with water. Method 1) can be carried out by pre-extracting the algae with a NaCl solution. The concentrations of sodium chloride must be so high that the ion exchange reaction

tvinges så langt over mot høyre at alginatet blir vannløselig. Likevekten for denne ionebyttingsreaksjonen er avhengig av algin - syrens sammensetning. Alginsyre med høyt innhold av guluronsyre har en høyere affi-nitet til kalsium enn alginsyre med med mannuronsyre. Som eksempel kan nevnes at alginat fra fingertare som ristes med et stort volum vann inneholder 0,01 N CaCL, og 0,8 N NaCl får en kalsiumavmetning på ca. 10 pst. (dvs. at 10 pst. av alginatets kationer er kalsium, 90 pst. natrium), mens en for å oppnå tilsvarende kalsiumavmetning for alginat fra stortare stilk må ha en NaCl-konsentrasjon på ca. 1,3 N under ellers like betingelser. Det lar seg også is forced so far over to the right that the alginate becomes water-soluble. The equilibrium for this ion exchange reaction is dependent on the composition of the alginic acid. Alginic acid with a high content of guluronic acid has a higher affinity for calcium than alginic acid with mannuronic acid. As an example, alginate from finger kelp that is shaken with a large volume of water contains 0.01 N CaCL, and 0.8 N NaCl results in a calcium desaturation of approx. 10 per cent (i.e. that 10 per cent of the alginate's cations are calcium, 90 per cent sodium), while in order to achieve a corresponding calcium desaturation for alginate from larger stems, one must have a NaCl concentration of approx. 1.3 N under otherwise equal conditions. It is also possible

gjøre å tilsette et kalsiumbindingsmiddel for å nedsette kalsiumkonsentrasjonen og derved lette ionebyttingsreaksjonen. Den natriumkloridkonsentrasjon som benyttes ved forekstraksjon er så høy (over 1 N) at alginatet ikke går i løsning i forekstraktet. Alginatet ekstraheres deretter med vann, gjerne under oppvarmning. do to add a calcium binding agent to reduce the calcium concentration and thereby facilitate the ion exchange reaction. The sodium chloride concentration used in pre-extraction is so high (above 1 N) that the alginate does not go into solution in the pre-extract. The alginate is then extracted with water, preferably under heating.

Metode 2) utføres ved at algene ekstraheres med fortynnet syre, som tidligere beskrevet f. eks. i Greens prosess. Tidligere har dette trinn i prosessen blitt betraktet som en fjerning av syreløselige bestand-deler som laminarin, mannitol, fucoidin etc. Etter vår betraktningsmåte er det vesentlige ved forekstraksjonen at det uløse-lige alginatet i algene overføres til alginsyre. Tidligere er det så blitt tilsatt overskudd alkali. Derved nøytraliseres alginsyren, samtidig som det derved dannede, vannløselige natriumalginat ekstraheres. På grunn av alkalioverskuddet foregår ekstraksjonen med et alkalisk ekstraksjons-middel. Ved vår fremgangsmåte tilsettes bare tilstrekkelig alkali til å nøytralisere alginsyren. Vi får derved som tidligere overført alginsyren i algene til vannløselig form, men på grunn av at vi ikke bruker alkalioverskudd blir vårt ekstraksjonsmid-del ikke alkalisk, men nøytralt eller svakt surt. Det er av avgjørende betydning for fremgangsmåten at forekstraksjonen har fjernet en tilstrekkelig stor del av kalsium-innholdet. Som eksempel kan nevnes at for fingertare med et alginsyreinnhold på 25 pst. av tørrstoff får en et ekstraksjons-utbytte på 12 pst. ved ekstraksjon i nøy-tralt miljø når kalsiumavmetningen var 14 pst., mens utbytte var 19 pst. når av-metningen var 10 pst. og 23 pst. når av-metningen var 5 pst. Method 2) is carried out by extracting the algae with dilute acid, as previously described, e.g. in Green's process. In the past, this step in the process has been regarded as a removal of acid-soluble constituents such as laminarin, mannitol, fucoidin etc. In our view, the essential thing in pre-extraction is that the insoluble alginate in the algae is transferred to alginic acid. In the past, excess alkali has been added. Thereby, the alginic acid is neutralized, while the water-soluble sodium alginate formed thereby is extracted. Due to the excess alkali, the extraction takes place with an alkaline extraction agent. In our method, only sufficient alkali is added to neutralize the alginic acid. As before, we thereby transfer the alginic acid in the algae to a water-soluble form, but because we do not use an excess of alkali, our extraction agent is not alkaline, but neutral or slightly acidic. It is of decisive importance for the method that the pre-extraction has removed a sufficiently large part of the calcium content. As an example, it can be mentioned that for finger kelp with an alginic acid content of 25 per cent of dry matter, an extraction yield of 12 per cent is obtained by extraction in a neutral environment when the calcium desaturation was 14 per cent, while the yield was 19 per cent when the desaturation was 10 per cent and 23 per cent when the desaturation was 5 per cent.

Det nar vært en alminnelig oppfatning at alginatets viskositet varierer med sur-hetsgraden slik at viskositeten har et mak-simum i nøytralt miljø. Forsøk har-imid-lertid vist (Acta Chem. Scand. 16, 1569 It has been a common opinion that the alginate's viscosity varies with the degree of acidity so that the viscosity has a maximum in a neutral environment. Experiments have-imid-lertime shown (Acta Chem. Scand. 16, 1569

(1962)) at vi får samme viskositetsnedset-telse ved tilsetning av nøytralsalt som f. eks. natriumklorid til en vandig, nøytral natriumalginatløsning som ved tilsetning av alkali. En får derfor ingen spesielle vanskeligheter med fraskilling av partikler på grunn av høyere viskositet når en eks-traherer i nøytralt miljø. (1962)) that we get the same reduction in viscosity when adding a neutral salt as e.g. sodium chloride to an aqueous, neutral sodium alginate solution as by the addition of alkali. There are therefore no particular difficulties with the separation of particles due to higher viscosity when extracting in a neutral environment.

Eksempel 1. Example 1.

Mannuronsyrerik alginsyre: En del tørr grisetang ( Ascophyllum nodosum) forekstraheres 4—5 timer med 50 deler 2 N natriumkloridløsning. Forekstraktet filtreres fra og kastes. 50 deler vann av ca. 50° tilsettes den fuktige massen og blandingen får stå ved 50° under røring i 4 timer. Al-gepartiklene skilles fra f. eks. ved filtre-ring og alginsyren isoleres fra det klare, svakt fargede ekstraktet ved utfelling med syre, kalsiumklorid eller alkohol i. et utbytte på 20—25 pst. Mannuronic acid-rich alginic acid: One part of dry pigweed (Ascophyllum nodosum) is pre-extracted for 4-5 hours with 50 parts of 2 N sodium chloride solution. The pre-extract is filtered off and discarded. 50 parts water of approx. 50° is added to the moist mass and the mixture is allowed to stand at 50° with stirring for 4 hours. The algae particles are separated from e.g. by filtration and the alginic acid is isolated from the clear, faintly colored extract by precipitation with acid, calcium chloride or alcohol in a yield of 20-25 per cent.

Eksempel 2. Example 2.

Mannuronsyrerik alginsyre: Ett kg tørr fingertare ( Laminaria digitata) inneholdende 1,9 ekvivalenter alginsyre pr. kg forekstraheres med 50 liter vann inneholdende 3,5 ekvivalenter svovelsyre. Etter to timers henstand filtreres væsken fra. Etter'vasking med vann tilsettes 50 liter vann inneholdende 2 ekvivalenter natriumkarbonat. Blandingen får stå under røring i 3—4 timer og uløste algepartikler fjernes f. eks. ved flotasjon etter at væsken er fortynnet til passende viskositet er opp-nådd. Ekstraktet er fargeløst og har en surhetsgrad på 6,0. Alginsyren isoleres på en av de tidligere nevnte måter i et utbytte på 25—30 pst. Mannuronic acid-rich alginic acid: One kg of dry finger kelp (Laminaria digitata) containing 1.9 equivalents of alginic acid per kg is pre-extracted with 50 liters of water containing 3.5 equivalents of sulfuric acid. After a two-hour delay, the liquid is filtered off. After washing with water, 50 liters of water containing 2 equivalents of sodium carbonate are added. The mixture is allowed to stand under stirring for 3-4 hours and undissolved algae particles are removed, e.g. by flotation after the liquid has been diluted to the appropriate viscosity. The extract is colorless and has an acidity of 6.0. The alginic acid is isolated in one of the previously mentioned ways in a yield of 25-30 per cent.

Eksempel 3. Example 3.

Guluronsyrerik alginsyre: Ett kg tørr stortare stilk (stipes av Laminaria hyperborea) som inneholder 1,5 ekvivalenter alginsyre pr. kg forekstraheres med 50 liter vann inneholdende 5 ekvivalenter saltsyre. Etter en times henstand ved langsom rø-ring filtreres væsken fra og kastes. Den fuktige masse vaskes med vann og tilsettes deretter 50 liter vann inneholdende 1,6 ekvivalenter natriumhydroksyd. Blandingen får stå under røring i 4 timer og tilsettes natriumklorid til en konsentrasjon på 0,1 N. Uløste algepartikler filtreres fra. Ekstraktet er fargeløst og har en surhetsgrad på 6,5. Alginsyren isoleres på en av de tidligere nevnte måter i et utbytte på 20—25 pst. Guluronic acid-rich alginic acid: One kg of dry greater stem (stipes of Laminaria hyperborea) containing 1.5 equivalents of alginic acid per kg is pre-extracted with 50 liters of water containing 5 equivalents of hydrochloric acid. After an hour's rest with slow stirring, the liquid is filtered off and discarded. The moist mass is washed with water and then 50 liters of water containing 1.6 equivalents of sodium hydroxide are added. The mixture is allowed to stand under stirring for 4 hours and sodium chloride is added to a concentration of 0.1 N. Undissolved algae particles are filtered off. The extract is colorless and has an acidity of 6.5. The alginic acid is isolated in one of the previously mentioned ways in a yield of 20-25 per cent.

Eksempel 4. Example 4.

Guluronsyrerik alginsyre: Ett kg tørr stortare stilk inneholdende 1,5 ekvivalenter alginsyre pr. kg forekstraheres 4 timer med 50 deler 2 N natriumkloridløsning. Forekstraktet filtreres fra og kastes. 50 deler vann av 50° inneholdende 0,3 ekvivalenter natriumoksalat tilsettes og blandingen står ved 50° under røring i 4—5 timer. Algepar-tiklene filtreres fra og alginsyren isoleres fra det fargeløse ekstraktet på en av de tidligere beskrevne metoder i et utbytte på 20—25 pst. Guluronic acid-rich alginic acid: One kg of dry greater stem containing 1.5 equivalents of alginic acid per kg is pre-extracted for 4 hours with 50 parts of 2 N sodium chloride solution. The pre-extract is filtered off and discarded. 50 parts of water at 50° containing 0.3 equivalents of sodium oxalate are added and the mixture is left at 50° with stirring for 4-5 hours. The algal particles are filtered off and the alginic acid is isolated from the colorless extract using one of the previously described methods in a yield of 20-25 per cent.

Claims (1)

Fremgangsmåte til fremstilling av alginsyre ved ekstrahering av alger og utfelling av alginsyre fra ekstrakten, karakterisert ved at algene forekstraheres med en vandig oppløsning av et nøy-tralt alkalisalt, fortrinnsvis NaCl, eller som i og for seg kjent med en fortynnet mine-ralsyre og at ekstraksjonen deretter utføres henholdsvis med vann, eventuelt under oppvarmning, eller med en base ved pH 7 eller lavere.Process for producing alginic acid by extracting algae and precipitation of alginic acid from the extract, characterized in that the algae are pre-extracted with an aqueous solution of a neutral alkali salt, preferably NaCl, or as is known per se with a diluted mineral acid and that the extraction is then carried out respectively with water, possibly under heating, or with a base at pH 7 or lower.
NO254673A 1972-06-21 1973-06-20 DEVICE FOR WATER CLOSET. NO141099C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE815672A SE366085B (en) 1972-06-21 1972-06-21

Publications (2)

Publication Number Publication Date
NO141099B true NO141099B (en) 1979-10-01
NO141099C NO141099C (en) 1980-01-09

Family

ID=20273301

Family Applications (1)

Application Number Title Priority Date Filing Date
NO254673A NO141099C (en) 1972-06-21 1973-06-20 DEVICE FOR WATER CLOSET.

Country Status (8)

Country Link
JP (1) JPS4951749A (en)
BE (1) BE801178A (en)
DE (1) DE2329954A1 (en)
DK (1) DK143075C (en)
FR (1) FR2189591B1 (en)
NL (1) NL7308550A (en)
NO (1) NO141099C (en)
SE (1) SE366085B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2461067A1 (en) * 1979-07-09 1981-01-30 Raiteux Christian Toilet cistern with variable quantity flush - has large and small volume internal reservoirs connected to common outlet
SE515154C2 (en) 1998-08-26 2001-06-18 Ninotech Hb Method and device for time-controlled flushing in flushing toilets

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US383045A (en) * 1888-05-15 Water-closet
US1323703A (en) * 1917-11-22 1919-12-02 Benjamin E Linfoot Duplex flush-tank.
US1525475A (en) * 1924-01-18 1925-02-10 Tutt Leo Harry Valve-closing mechanism for water closets
FR766785A (en) * 1933-01-24 1934-07-04 Cistern for lavatories, allowing rinsing with two different amounts of water
US3041630A (en) * 1959-07-27 1962-07-03 Williams Richard Wendell Water closet flushing apparatus
US3259918A (en) * 1964-12-21 1966-07-12 William E Walker Water saving device
US3731324A (en) * 1971-01-08 1973-05-08 Moon Water Saver Inc Water saving apparatus for water closets
US3732577A (en) * 1972-04-19 1973-05-15 Moon Water Saver Inc Water saving cup device for toilet tanks

Also Published As

Publication number Publication date
DK143075B (en) 1981-03-23
DE2329954A1 (en) 1974-01-10
DK143075C (en) 1981-11-02
NL7308550A (en) 1973-12-27
SE366085B (en) 1974-04-08
JPS4951749A (en) 1974-05-20
NO141099C (en) 1980-01-09
FR2189591A1 (en) 1974-01-25
BE801178A (en) 1973-10-15
FR2189591B1 (en) 1976-11-12

Similar Documents

Publication Publication Date Title
NO793988L (en) BROWN TREATMENT MATERIALS AND PROCEDURES USING THIS.
Latorella et al. SALINITY ADAPTATION BY DUNALIELLA TERTIOLECTA. I. INCREASES IN CARBONIC ANHYDRASE ACTIVITY AND EVIDENCE FOR A LIGHT‐DEPENDENT Na+/H+ EXCHANGE 1, 2
US3396158A (en) Preparation of alginic acid by extraction of algae
NO141099B (en) DEVICE AT WATER TOILET.
GB1245486A (en) Process for the preparation of xylose solutions
SU732507A1 (en) Rock washing solution
NO854881L (en) PROCEDURE FOR THERMAL STABILIZATION OF Aqueous SOLUTIONS OF POLYSACCHARIDES.
DK142059B (en) THE USE OF INTESTINE SALT LAYER FOR THE PREPARATION OF HIGH PURPOSE HEPARIN
GB421505A (en) Method of production of artificial film from seaweed, and the like
NO150573B (en) PROCEDURE FOR OIL EXTRACTION BY INJECTING A STABILIZED Aqueous SOLUTION OF POLYSACCHARIDE POLYMES
GB1373843A (en) Process for removing zinc from aluminate liquor
US2188092A (en) Removal and recovery of laminarine from seaweed
GB316444A (en) Improvements in and relating to the production of salts of aromatic hydroxyaldehydes
SU54931A1 (en) Chlorine dioxide production method
GB437758A (en) Improvements in and relating to the concentration of latex
GB349263A (en) Manufacture of vinyl chloride
GB477600A (en) Improvements in the production of pectin extracts
DE977117C (en) Process for the preparation of water-soluble salts of alginic acid in dry form
DE515465C (en) Process for the preparation of alkali salts of aromatic sulfonic acid halogenamides
US1898213A (en) Process of recovering acetic acid erom solutions obtained in cellulose
SU65821A1 (en) The method of obtaining the foaming extract
GB272976A (en) Process for the treatment of clays and the like and for the production of new and useful compositions of matter
GB412317A (en) An improved method of making stable solutions of the sodium salt of diaminodihydroxy-arseno-benzene methylenesulphinic acid
GB1128860A (en) Process for the preparation of potassium methionate
GB288637A (en) Process for the extraction of lupanine