NO119273B - - Google Patents
Download PDFInfo
- Publication number
- NO119273B NO119273B NO15606264A NO15606264A NO119273B NO 119273 B NO119273 B NO 119273B NO 15606264 A NO15606264 A NO 15606264A NO 15606264 A NO15606264 A NO 15606264A NO 119273 B NO119273 B NO 119273B
- Authority
- NO
- Norway
- Prior art keywords
- electrode
- electrodes
- metal
- discharge
- pieces
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 12
- 150000002910 rare earth metals Chemical class 0.000 claims description 12
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 9
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 229910052746 lanthanum Inorganic materials 0.000 claims description 7
- 238000010849 ion bombardment Methods 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910052753 mercury Inorganic materials 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000007872 degassing Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- RPAJSBKBKSSMLJ-DFWYDOINSA-N (2s)-2-aminopentanedioic acid;hydrochloride Chemical class Cl.OC(=O)[C@@H](N)CCC(O)=O RPAJSBKBKSSMLJ-DFWYDOINSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- CBBVHSHLSCZIHD-UHFFFAOYSA-N mercury silver Chemical compound [Ag].[Hg] CBBVHSHLSCZIHD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 229910000982 rare earth metal group alloy Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/28—Radicals substituted by singly-bound oxygen or sulphur atoms
- C07D213/30—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/68—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
- C07D211/70—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/80—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
- C07D211/82—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D221/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
- C07D221/02—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
- C07D221/22—Bridged ring systems
- C07D221/26—Benzomorphans
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Discharge Lamp (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Description
Kold elektrode av hul form. Cold electrode of hollow form.
Foreliggende oppfinnelse vedrører en kold elektrode av hul form for et apparat med elektrisk utladning i en kvikksølv- The present invention relates to a cold electrode of hollow form for a device with electrical discharge in a mercury
damp- og gassatmosfære, på hvilken elek- steam and gas atmosphere, on which elec-
trodes indre vegg man har festet minst ett lite stykke bestående i det vesentlige eller utelukkende av et metall eller av flere me- it is believed that at least one small piece consisting essentially or exclusively of a metal or of several me-
taller av de sjeldne jordarter i metallisk tilstand, f. eks. lantan. numbers of the rare earth species in a metallic state, e.g. lanthanum.
Denne elektrode karakteriseres ved at This electrode is characterized by
den samlede overflate av stykket eller stykkene Br og forblir mindre enn tiende- the total surface of the piece or pieces Br and remains less than tenth-
delen av elektrodens indre overflate, og at dette forholdstall dessuten velges slik at det ikke blir overskredet hverken under elektrodens innbrenningsperiode eller un- part of the electrode's inner surface, and that this ratio is also chosen so that it is not exceeded either during the electrode's burn-in period or
der normal drift i den vesentlige del av elektrodens levetid. where normal operation during the essential part of the electrode's lifetime.
De forhold under hvilke elektroden er utformet, og de forhold under hvilke den arbeider i normal drift, skal fortrinnsvis være slik at metall av de sjeldne jordarter ikke blir merkbart hverken fordampet ved varmen eller pulverisert ved jonbombarde-mentet, idet disse foreteelser i høy grad ville øke overflaten av stykket eller styk- The conditions under which the electrode is designed, and the conditions under which it works in normal operation, should preferably be such that metal of the rare earth species is not noticeably either vaporized by the heat or pulverized by the ion bombardment, as these phenomena would greatly increase the surface area of the piece or pieces
kene. Til den opprinnelige overflate vil det være nødvendig å legge overflaten av metallbelegget av de sjeldne jordarter som kan avsette seg på den indre flaten av elektroden og på hylstret til det utlad-ningsapparat som omfatter denne elek- kene. To the original surface, it will be necessary to add the surface of the metal coating of the rare earth species that can be deposited on the inner surface of the electrode and on the casing of the discharge device that includes this electric
trode. En stor flate av metall av de sjeldne jordarter forkorter i betydelig grad utlad-ningsapparatets levetid, slik som senere skal forklares nærmere. believed. A large surface of metal of the rare earth species significantly shortens the lifetime of the discharge device, as will be explained in more detail later.
De kolde elektroder består vanligvis av The cold electrodes usually consist of
en hul metallsylinder som er åpen i den ene ende og festet til en eller flere strøm- a hollow metal cylinder that is open at one end and attached to one or more current
ledere, og på hvilken den ombøyde kant av åpningen oftest er bekledd med et isoler- conductors, and on which the bent edge of the opening is most often covered with an insulating
ende stykke som beskytter denne ombøyde kant fra jonebombardementet og hindrer elektroden fra å berøre utladningsappara- end piece which protects this bent edge from the ion bombardment and prevents the electrode from touching the discharge apparatus
tenes vegg. Disse elektroder har en lang varighet men fremkaller et betydelig spenningsfall. Ved vekselstrøm er spennings- tenes wall. These electrodes have a long duration but induce a significant voltage drop. In the case of alternating current, the voltage
fallet for de to elektroder, dvs. summen av katode- og anodespenningsfallet, av stør-relsesorden 200 volt effektivverdi. Man kan minske dette spenningsfall ved å ak- the drop for the two electrodes, i.e. the sum of the cathode and anode voltage drop, of the order of magnitude 200 volt effective value. This voltage drop can be reduced by ac-
tivere elektroden, dvs. ved å forsyne dens indre vegg med en emitterende utfelling som lett emitterer elektroner ved den rela- tive electrode, i.e. by supplying its inner wall with an emissive precipitate that easily emits electrons at the relative
tivt lave driftstemperatur for elektroden, hvilken temperatur er av størrelsesorden 150° C, men denne utfelling som vanligvis består av jordalkalimetalloksyder, taper sin effektivitet ved slutten, av en driftstid som er mindre enn levetiden for en ikke aktivert kold elektrode, og bevirker ofte at det opptrer flekker i de rør som er forsynt med slike elektroder. tively low operating temperature of the electrode, which temperature is of the order of 150°C, but this precipitate, which usually consists of alkaline earth metal oxides, loses its effectiveness at the end of an operating time which is less than the lifetime of an unactivated cold electrode, and often causes the spots appear in the pipes equipped with such electrodes.
Over elektrodene ifølge oppfinnelsen Above the electrodes according to the invention
er det et spenningsfall som er betydelig lavere enn for de ikke aktiverte, kolde elektroder, og dette spenningsfall holder seg lavt i en meget lang tid. Disse elektro- there is a voltage drop that is significantly lower than for the non-activated, cold electrodes, and this voltage drop remains low for a very long time. These electro-
der har andre fordeler som skal omtales nedenfor. there have other advantages to be discussed below.
En utførelsesform av oppfinnelsen be- An embodiment of the invention be-
skrives nedenfor som eksempel under hen-visning til vedlagte tegning. is written below as an example under reference to the attached drawing.
Fig. 1 viser en elektrode ifølge oppfinnelsen, og Fig. 1 shows an electrode according to the invention, and
fig. 2 viser hvorledes spenningsfallet på de to elektroder for et utladningsappa-rat varierer i avhengighet av utladnings-strømmen, dels for elektroder ifølge oppfinnelsen, dels for lignende elektroder, men som ikke omfatter metall eller legering av de sjeldne jordarter. fig. 2 shows how the voltage drop on the two electrodes of a discharge device varies depending on the discharge current, partly for electrodes according to the invention, partly for similar electrodes, but which do not include metal or rare earth alloys.
Fig. 1 er et lengdesnitt gjennom en elektrode ifølge oppfinnelsen før dens mon-tering i hylsteret for det utladningsappa-rat hvorav den skal utgjøre en del. Fig. 1 is a longitudinal section through an electrode according to the invention before its assembly in the casing for the discharge device of which it is to form a part.
Denne elektrode omfatter en sylinder 1 av platemateriale, f. eks. av forniklet jernplate, ved hvis ender der er to stykker 2, 7 av steatitt. Stykket 2 er gjennomboret med en åpning 3 som lar den elektriske utladning få adgang til det indre av elektroden. Det omfatter en flens 5 som hindrer utladningen i å oppstå på kanten 4 av sylinderen 1 og å fremkalle en sterk pul-verisering av platen på dette sted. This electrode comprises a cylinder 1 of plate material, e.g. of nickel-plated iron plate, at the ends of which there are two pieces 2, 7 of steatite. The piece 2 is pierced with an opening 3 which allows the electrical discharge to gain access to the interior of the electrode. It comprises a flange 5 which prevents the discharge from occurring on the edge 4 of the cylinder 1 and causing a strong pulverization of the plate at this location.
Det annet stykke 7 lukker den motsatte ende av sylinderen 1 av den gjennom hvilken utladningen passerer. Denne lukning behøver ikke å være tett. The other piece 7 closes the opposite end of the cylinder 1 from that through which the discharge passes. This closure does not have to be tight.
En tråd 8 som er fastloddet til sylinderen 1 bærer elektroden og tilfører denne den elektriske strøm. A wire 8 which is soldered to the cylinder 1 carries the electrode and supplies it with the electric current.
Et visst antall små stykker 6 av metall eller legering av metaller blant de sjeldne jordarter er festet til sylinderens 1 indre vegg. På figuren vises to stykker 6. Disse er lantantrådstykker fastloddet på midten av sylinderen 1. Det er ikke nød-vendig at lantanen skal være helt ren, idet det greier seg at de av dens forurensninger som kan være skadelige, f. eks. oksyder eller nitrider, ikke finnes i uheldig mengde. A certain number of small pieces 6 of metal or alloy of rare earth metals are attached to the inner wall of the cylinder 1. The figure shows two pieces 6. These are pieces of lanthanum wire soldered to the middle of the cylinder 1. It is not necessary for the lanthanum to be completely pure, as it is possible that those of its contaminants which can be harmful, e.g. oxides or nitrides, are not present in an undesirable amount.
Man kan erstatte lantanen med cerium eller med en legering av metaller blant de sjeldne jordarter. Man har f. eks. fått gode resultater med en legering svarende til nedenstående spesifikasjon: One can replace the lanthanum with cerium or with an alloy of metals from among the rare earth species. One has e.g. obtained good results with an alloy corresponding to the specification below:
Elektroden monteres etter at den er forsynt med lantanstykkene 6 og med' sin strømleder 8 eller med sine strømledere hvis den er forsynt med flere slike, i et stykke glassrør. som er. avsluttet med. en bunn i den ene ende og åpen;i den annen ende. Strømlederne innføres på tett måte i denne bunn. Man smelter eller lodder derpå et med en elektrode således forsynt glassrørstykke fast til hver av endene av et glassrør, eventuelt innvendig belagt med et fluorescerende materiale. The electrode is mounted after it has been provided with the lanthanum pieces 6 and with its current conductor 8 or with its current conductors if it is provided with several such, in a piece of glass tube. which is. ended with. a bottom at one end and open at the other end. The current conductors are inserted tightly into this bottom. One then melts or solders a piece of glass tube thus provided with an electrode to each of the ends of a glass tube, possibly internally coated with a fluorescent material.
Det utladningsrør som således fåes un-derkastes så et visst antall utladninger som formerer disse elektroder og som setter det i stand til å virke. Man kan f. eks. etter å ha innført en dråpe kvikksølv i røret, av-gasse dette, deri iberegnet dets elektroder, ved å forbinde det med en vakuumpumpe og ved deri å la passere en utladning som har en betydelig større strømstyrke enn rørets normale driftsstrømstyrke. Når elektrodene i en tilstrekkelig lang tid er oppvarmet til lys rødglød og glasset i røret har vært holdt på en passende temperatur, stanser man utladningen og fortsetter pumpingen helt til det fåes et godt va-kuum. Tilstedeværelsen av spor av sur-stoff og kvelstoff under disse behandlinger hemmer i betydelig grad fordampningen og pulveriseringen av de sjeldne jordmetaller, spesielt ved bombardementet, av elektrodene. Man minsker ytterligere fordampningen og pulveriseringen ved å minske varigheten av disse operasjoner. Man kan også oppvarme røret og dets elektroder under denne avgassing ikke ved en kraftig utladning, men ved å anbringe røret, som ikke inneholder kvikksølv, i en ovn, idet dets elektroder oppvarmes ved hjelp av et høyfrekvensfelt. Disse to ar-beidsmåter er anvendelige ved tilvirkning av rør med kolde katoder. The discharge tube thus obtained is then subjected to a certain number of discharges which multiply these electrodes and which enable it to work. One can e.g. after introducing a drop of mercury into the tube, degas it, including its electrodes, by connecting it to a vacuum pump and by passing through it a discharge having a considerably greater amperage than the normal operating amperage of the tube. When the electrodes have been heated to a bright red glow for a sufficiently long time and the glass in the tube has been kept at a suitable temperature, the discharge is stopped and pumping continues until a good vacuum is obtained. The presence of traces of acid and nitrogen during these treatments significantly inhibits the evaporation and pulverization of the rare earth metals, especially during the bombardment, of the electrodes. Evaporation and pulverization are further reduced by reducing the duration of these operations. One can also heat the tube and its electrodes during this degassing not by a powerful discharge, but by placing the tube, which does not contain mercury, in an oven, its electrodes being heated by means of a high-frequency field. These two ways of working are applicable when manufacturing tubes with cold cathodes.
Med katodene ifølge oppfinnelsen er det ikke nødvendig å drive avgassingen ved oppvarming så langt, og en enkel opp-varmning i ovnen uten utladning eller høyfrekvens kan greie seg. Resttrykket i det øyeblikk da man stanser pumpingen behøver ikke å være så lavt som når man anvender vanlige kolde elektroder, idet stykkene 6 av sjeldne jordmetaller vil absorbere den lille mengde av ikke-edelgas-ser som ikke er eliminert ved avgassingen. Dette er en ytterligere fordel som oppnåes ved elektrodene ifølge oppfinnelsen. With the cathodes according to the invention, it is not necessary to drive the degassing by heating so far, and a simple heating in the oven without discharge or high frequency can do the trick. The residual pressure at the moment when pumping is stopped does not have to be as low as when ordinary cold electrodes are used, as the pieces 6 of rare earth metals will absorb the small amount of non-noble gases that are not eliminated during degassing. This is a further advantage achieved by the electrodes according to the invention.
Som tidligere kjent fyller man røret etter at avgassingen er fullbyrdet, med en oppvarmet gass under et trykk av noen millimeter kvikksølv. Denne gass er f. eks. argon, teknisk ren eller inneholdende gan-ske lite kvelstoff, eller også en blanding av argon og neon. Etter denne fylling skiller man røret fra pumpeanordningen, innfø-rer kvikksølvet, om det ikke tidligere er gjort, lukker og avskjærer evakueringsrø- ret og lar derpå røret arbeide en tid for å bringe endel av kvikksølvet til å diffun-dere. As previously known, the tube is filled after degassing has been completed with a heated gas under a pressure of a few millimeters of mercury. This gas is e.g. argon, technically pure or containing very little nitrogen, or a mixture of argon and neon. After this filling, the tube is separated from the pump device, the mercury is introduced, if this has not been done previously, the evacuation tube is closed and cut off and the tube is then allowed to work for a time to cause some of the mercury to diffuse.
Oppvarmningen av elektroden under avgassingen kan bringe stykkene 6 av lantan eller lignende metall eller legering til å smelte, i det minste delvis. Denne smelt-ning kan få noe av disse stykker til å ut-bre seg, hvorved deres overflate således vokser, men det er ikke nødvendig at ma-terialet i disse stykker brer seg ut over en betydelig del av elektrodens indre flate. Det må unngåes at metall av de sjeldne jordarter i merkbar mengde forlater stykkene 6 og avsetter seg på lampens hyl-ster og på elektrodens overflate, f. eks. mens elektroden er bragt til en temperatur, ved hvilken dette metall merkbart for-dampes, eller mens et altfor intenst jon-bombardement har pulverisert og slynget bort endel av disse stykker. I virkeligheten viser erfaring at det således utfelte metall ville absorbere kvikksølvet og gassene i lø-pet av lampens drift, hvilket skulle sette denne for tidlig ut av bruk. Man kan ikke innføre i lampen vesentlig mer kvikksølv enn hva som er nødvendig for å kompen-sere for virkningen av en stor metallflate av de sjeldne jordarter, da dråpene av fly-tende kvikksølv i altfor høy grad ville gjøre det fluorescerende belegget dårligere når lampen ble håndtert. Man kan heller ikke innføre et overskudd av gass, da de for tenningen og driften av lampen nødven-dige spenninger ville bli merkbart øket, så meget mer som det ville behøves et stort overskudd. The heating of the electrode during the degassing may cause the pieces 6 of lanthanum or similar metal or alloy to melt, at least partially. This melting can cause some of these pieces to spread, whereby their surface thus increases, but it is not necessary that the material in these pieces spreads over a significant part of the inner surface of the electrode. It must be avoided that metal of the rare earth species in appreciable quantities leaves the pieces 6 and settles on the lamp casing and on the surface of the electrode, e.g. while the electrode has been brought to a temperature at which this metal is noticeably vaporized, or while an overly intense ion bombardment has pulverized and thrown away some of these pieces. In reality, experience shows that the thus precipitated metal would absorb the mercury and gases during the lamp's operation, which would prematurely put it out of use. You cannot introduce significantly more mercury into the lamp than is necessary to compensate for the effect of a large metal surface of the rare earth species, as the drops of floating mercury would make the fluorescent coating worse when the lamp was handled. Nor can an excess of gas be introduced, as the voltages necessary for the ignition and operation of the lamp would be noticeably increased, all the more so as a large excess would be needed.
Det er ut fra dette synspunkt fordel-aktig at utladningsatmosfæren i den med en elektrode ifølge oppfinnelsen forsynte lampe inneholder en betydelig mengde kvelstoff ved igangsetningen av denne lampe, fortrinnsvis minst 0,1 volumprosent. Kvelstoffet minsker nemlig kraftig pulveriseringen av elektrodene under innvirk-ning av jonebombardementet. I virkeligheten vil kvelstoffet senere bli absorbert under den normale drift av lampen, men denne forsvinning er meget langsom da metallet av de sjeldne jordarter bare byr på en liten overflate, og virkningen av kvelstoffet gjør seg merkbar i et betydelig tidsrom. From this point of view, it is advantageous that the discharge atmosphere in the lamp provided with an electrode according to the invention contains a significant amount of nitrogen when this lamp is started, preferably at least 0.1 volume percent. The nitrogen significantly reduces the pulverization of the electrodes under the influence of the ion bombardment. In reality, the nitrogen will later be absorbed during the normal operation of the lamp, but this disappearance is very slow as the metal of the rare earth species only offers a small surface, and the effect of the nitrogen becomes noticeable over a considerable period of time.
Fig. 2 viser hvorledes spenningsfallet på de to elektroder i rør inneholdende for-uten en dråpe kvikksølv også en blanding av 80 pst. argon og 20 pst. neon, varierer som funksjon av styrken av utladnings-strømmen under et trykk av 6 mm kvikk-sølv. Det anvendte argon inneholder omkring 0,3 volumprosent kvelstoff. Fig. 2 shows how the voltage drop on the two electrodes in tubes containing, in addition to a drop of mercury, also a mixture of 80 percent argon and 20 percent neon, varies as a function of the strength of the discharge current under a pressure of 6 mm of mercury silver. The argon used contains about 0.3 volume percent nitrogen.
Kurven 10 refererer seg til et par ikke aktive, kolde elektroder, som hver er byg-get opp slik som vist i fig. 1 bortsett fra at den ikke omfatter noe stykke 6, og med en lengde på 60 mm og en diameter på 12 mm. Disse elektroder benyttes industrielt for strømstyrkene 50—100 milliampere. Kurven 11 refererer seg til et par elektroder i likhet med de foregående, men forsynt med fire stykker 6 av lantantråd, av 5 mm lengde og 1,2 mm diameter. De punkter som har vært benyttet for å trek-ke opp disse kurver er beregnet ut fra re-sultatene av målinger utført på rør av forskjellige lengder, slik at man har fått vite hvilken del av spenningsfallet i røret som oppstår ved elektrodene. Abscisseak-sen'er gradert i milliampere, ordinataksen i volt. The curve 10 refers to a pair of non-active, cold electrodes, each of which is constructed as shown in fig. 1 except that it does not include any piece 6, and with a length of 60 mm and a diameter of 12 mm. These electrodes are used industrially for currents of 50-100 milliamperes. The curve 11 refers to a pair of electrodes similar to the previous ones, but provided with four pieces 6 of lanthanum wire, of 5 mm length and 1.2 mm diameter. The points that have been used to draw up these curves have been calculated from the results of measurements carried out on pipes of different lengths, so that it has been known which part of the voltage drop in the pipe occurs at the electrodes. The abscissa is graduated in milliamps, the ordinate in volts.
Studiet av de ikke aktiverte elektroder har ikke ført til bruk av strømmer på mere enn 125 milliampere, mens strømmer over denne verdi vil ødelegge elektrodene ved jonebombardementet. Derimot motstår elektrodene ifølge oppfinnelsen av samme dimensjoner meget godt en strøm på 250 milliampere. En kold og ikke aktivert elektrode, som er anordnet for denne sist-nevnte strøm, må ha en to ganger så stor overflate som overflaten av de elektroder på hvilke målingene er utført. Da for denne type elektroder forholdet mellom leng-den og diameteren ikke skal overskride en viss verdi (som beror spesielt på trykket og beskaffenheten av fyllingsgassen), skulle det være nødvendig å øke diameteren av elektroden, hvilket ville bevirke forlegning av denne i et elektrodekammer av større diameter enn diameteren av den jevnt for-løpende del av røret. Denne ulempe unngåes ved elektrodene ifølge oppfinnelsen. Omvendt kan man for elektroder ifølge oppfinnelsen velge mindre dimensjoner, hvis de ikke skal arbeide ved mer enn 100 milliampere. The study of the non-activated electrodes has not led to the use of currents of more than 125 milliamperes, while currents above this value will destroy the electrodes during the ion bombardment. In contrast, the electrodes according to the invention of the same dimensions resist very well a current of 250 milliamperes. A cold and non-activated electrode, which is arranged for this last-mentioned current, must have a surface twice as large as the surface of the electrodes on which the measurements are carried out. Since for this type of electrode the ratio between the length and the diameter must not exceed a certain value (which depends in particular on the pressure and the nature of the filling gas), it would be necessary to increase the diameter of the electrode, which would cause it to be placed in an electrode chamber of larger diameter than the diameter of the smoothly running part of the pipe. This disadvantage is avoided by the electrodes according to the invention. Conversely, smaller dimensions can be chosen for electrodes according to the invention, if they are not to work at more than 100 milliamperes.
En fordel med disse elektroder, hvilket umiddelbart vil fremgå av fig. 2, er senk-ningen av spenningsfallet ved elektrodene. I det viste tilfelle innsparer man med elektrodene ifølge oppfinnelsen omkring 30 volt for en strøm av 50 milliampere og 70 volt for 100 milliampere. Denne egenskap er meget overraskende under hensyntagen til at de aktiverte stykker 6 bare har en liten overflate og ikke bringes til høy temperatur. An advantage of these electrodes, which will immediately appear from fig. 2, is the lowering of the voltage drop at the electrodes. In the case shown, the electrodes according to the invention save around 30 volts for a current of 50 milliamps and 70 volts for 100 milliamps. This property is very surprising considering that the activated pieces 6 only have a small surface and are not brought to a high temperature.
En annen fordel med disse elektroder, sannsynligvis avhengig av absorpsjonen av de skadelige gasser ved stykkene 6, er senk-ningen av spenningsfallet i utladnings- søylen. Denne senkning er meget variabel alt etter omstendighetene. Another advantage of these electrodes, probably dependent on the absorption of the harmful gases by the pieces 6, is the lowering of the voltage drop in the discharge column. This lowering is very variable depending on the circumstances.
Utladningen dannes ikke merkbart på den ytre flate av elektroden på grunn av nærvær av emitterende materiale i det indre. Dette stabiliserer katodeglimlyset og minsker i betydelig grad katodeforstøv-ningen på utsiden av elektroden. Man kan ofte forenkle oppbygningen av elektroden ved å sløyfe de isolerende stykker, slik som de ved 2 og 7 viste og ved ikke å omgi elektroden med et glimmerblad som ofte ut-nyttes for å bedre isoleringen mellom elektroden og glasset i utladningsrøret. Denne minskning av forstøvningene øker elektrodens levetid. Den tillater at elektroden kan få normal levetid samtidig som trykket av den permanente fyllingsgass minskes. Det er kjent at trykkminskning bedrer utbyt-tet av utladningen i form av synlige og ultrafiolette lysstråler til skade for varigheten av elektrodene. The discharge does not form appreciably on the outer surface of the electrode due to the presence of emissive material in the interior. This stabilizes the cathode glow and significantly reduces cathode sputtering on the outside of the electrode. You can often simplify the structure of the electrode by looping the insulating pieces, such as those shown at 2 and 7 and by not surrounding the electrode with a mica leaf which is often used to improve the insulation between the electrode and the glass in the discharge tube. This reduction in sputtering increases the lifetime of the electrode. It allows the electrode to have a normal service life at the same time as the pressure of the permanent filling gas is reduced. It is known that pressure reduction improves the yield of the discharge in the form of visible and ultraviolet light rays to the detriment of the durability of the electrodes.
Tallrike modifikasjoner kan tenkes for den beskrevne elektrode uten å gå utenfor oppfinnelsens ramme. Stykkene 6 kan f. eks. ha andre dimensjoner enn de her viste. De kan forekomme i variabelt antall, og de kan festes på forskjellige steder av elektrodens indre vegg. Stykket 1 av plate kan være lukket av en metallisk bunn iste-denfor av stykket 7 av keramikk. Stykket 1 kan likeledes være konisk. Numerous modifications are conceivable for the described electrode without going outside the scope of the invention. Paragraphs 6 can, e.g. have different dimensions than those shown here. They can occur in variable numbers, and they can be attached to different places on the inner wall of the electrode. The piece 1 of plate can be closed by a metallic bottom and then by the piece 7 of ceramic. The piece 1 can likewise be conical.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33229663A | 1963-12-20 | 1963-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO119273B true NO119273B (en) | 1970-04-27 |
Family
ID=23297612
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO15606364A NO119274B (en) | 1963-12-20 | 1964-12-19 | |
NO15606264A NO119273B (en) | 1963-12-20 | 1964-12-19 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO15606364A NO119274B (en) | 1963-12-20 | 1964-12-19 |
Country Status (12)
Country | Link |
---|---|
AT (4) | AT253687B (en) |
BE (2) | BE657405A (en) |
CH (7) | CH449639A (en) |
DE (2) | DE1445853A1 (en) |
DK (4) | DK106552C (en) |
ES (4) | ES307301A1 (en) |
FR (2) | FR4345M (en) |
GB (2) | GB1077711A (en) |
IL (2) | IL22643A (en) |
NL (3) | NL6414821A (en) |
NO (2) | NO119274B (en) |
SE (2) | SE322779B (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2987788A1 (en) | 2002-05-17 | 2016-02-24 | Taiwanj Pharmaceuticals Co., Ltd. | Opioid and opioid-like compounds and uses thereof |
US7501433B2 (en) | 2002-05-17 | 2009-03-10 | Jenken Biosciences, Inc. | Opioid and opioid-like compounds and uses thereof |
US7923454B2 (en) | 2002-05-17 | 2011-04-12 | Jenken Biosciences, Inc. | Opioid and opioid-like compounds and uses thereof |
US8017622B2 (en) | 2003-05-16 | 2011-09-13 | Jenken Biosciences, Inc. | Opioid and opioid-like compounds and uses thereof |
JP5486928B2 (en) | 2007-02-26 | 2014-05-07 | ヴァイティー ファーマシューティカルズ,インコーポレイテッド | Cyclic urea and carbamate inhibitors of 11β-hydroxysteroid dehydrogenase 1 |
TW200911796A (en) | 2007-07-26 | 2009-03-16 | Vitae Pharmaceuticals Inc | Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1 |
AR069207A1 (en) | 2007-11-07 | 2010-01-06 | Vitae Pharmaceuticals Inc | CYCLIC UREAS AS INHIBITORS OF THE 11 BETA - HIDROXI-ESTEROIDE DESHIDROGENASA 1 |
CA2704628C (en) | 2007-11-16 | 2016-11-29 | Boehringer Ingelheim International Gmbh | Aryl- and heteroarylcarbonyl derivatives of benzomorphanes and related scaffolds, medicaments containing such compounds and their use |
EP2229368A1 (en) | 2007-12-11 | 2010-09-22 | Vitae Pharmaceuticals, Inc. | Cyclic urea inhibitors of 11beta-hydroxysteroid dehydrogenase 1 |
TW200934490A (en) | 2008-01-07 | 2009-08-16 | Vitae Pharmaceuticals Inc | Lactam inhibitors of 11 &abgr;-hydroxysteroid dehydrogenase 1 |
WO2009094169A1 (en) | 2008-01-24 | 2009-07-30 | Vitae Pharmaceuticals, Inc. | Cyclic carbazate and semicarbazide inhibitors of 11beta-hydroxysteroid dehydrogenase 1 |
EP2252598A2 (en) | 2008-02-11 | 2010-11-24 | Vitae Pharmaceuticals, Inc. | 1,3-oxazepan-2-one and 1,3-diazepan-2-one inhibitors of 11beta-hydroxysteroid dehydrogenase 1 |
WO2009100872A1 (en) * | 2008-02-12 | 2009-08-20 | Boehringer Ingelheim International Gmbh | Urea derivatives of benzomorphanes and related scaffolds, medicaments containing such compounds and their use |
US8598160B2 (en) | 2008-02-15 | 2013-12-03 | Vitae Pharmaceuticals, Inc. | Cycloalkyl lactame derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase 1 |
WO2009134387A1 (en) | 2008-05-01 | 2009-11-05 | Vitae Pharmaceuticals, Inc. | Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1 |
WO2009134392A1 (en) | 2008-05-01 | 2009-11-05 | Vitae Pharmaceuticals, Inc. | Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1 |
BRPI0911764A2 (en) | 2008-05-01 | 2015-10-06 | Boehringer Ingelheim Int | cyclic inhibitors of 11betahydroxysteroid desigrogenase 1 |
WO2009134384A1 (en) | 2008-05-01 | 2009-11-05 | Vitae Pharmaceuticals, Inc. | Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1 |
JP5711115B2 (en) | 2008-05-13 | 2015-04-30 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Benzomorphan and related skeleton alicyclic carboxylic acid derivatives, medicaments containing such compounds and uses thereof |
EP2324017B1 (en) | 2008-07-25 | 2014-12-31 | Boehringer Ingelheim International GmbH | INHIBITORS OF 11beta-HYDROXYSTEROID DEHYDROGENASE 1 |
AU2009274567B2 (en) | 2008-07-25 | 2013-04-04 | Boehringer Ingelheim International Gmbh | Cyclic inhibitors of 11 beta-hydroxysteroid dehydrogenase 1 |
JP5544366B2 (en) | 2008-10-23 | 2014-07-09 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Urea derivative of substituted nortropane, medicament containing the compound and use thereof |
WO2010089303A1 (en) | 2009-02-04 | 2010-08-12 | Boehringer Ingelheim International Gmbh | CYCLIC INHIBITORS OF 11 β-HYDROXYSTEROID DEHYDROGENASE 1 |
US8680093B2 (en) | 2009-04-30 | 2014-03-25 | Vitae Pharmaceuticals, Inc. | Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1 |
JP5670440B2 (en) | 2009-06-02 | 2015-02-18 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Cyclic inhibitor of 11β-hydroxysteroid dehydrogenase 1 |
WO2011011123A1 (en) | 2009-06-11 | 2011-01-27 | Vitae Pharmaceuticals, Inc. | Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1 based on the 1,3 -oxazinan- 2 -one structure |
EP2448928B1 (en) | 2009-07-01 | 2014-08-13 | Vitae Pharmaceuticals, Inc. | Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1 |
UY33001A (en) | 2009-11-06 | 2011-05-31 | Boehringer Ingelheim Int | ARYL AND HETEROARILCARBONYL HIVAHYDROINDENOPIRIDINE AND OCTAHYDROBENZOQUINOLINE DERIVATIVES |
JP5860042B2 (en) | 2010-06-16 | 2016-02-16 | ヴァイティー ファーマシューティカルズ,インコーポレイテッド | Substituted 5, 6 and 7 membered heterocycles, medicaments containing such compounds and their use |
WO2011161128A1 (en) | 2010-06-25 | 2011-12-29 | Boehringer Ingelheim International Gmbh | Azaspirohexanones as inhibitors of 11-beta-hsd1 for the treatment of metabolic disorders |
EP2635268A1 (en) | 2010-11-02 | 2013-09-11 | Boehringer Ingelheim International GmbH | Pharmaceutical combinations for the treatment of metabolic disorders |
TWI537258B (en) | 2010-11-05 | 2016-06-11 | 百靈佳殷格翰國際股份有限公司 | Aryl-and heteroarylcarbonyl derivatives of hexahydroindenopyridine and octahydrobenzoquinoline |
JP2014524438A (en) | 2011-08-17 | 2014-09-22 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Indenopyridine derivatives |
-
0
- NL NL127995D patent/NL127995C/xx active
-
1964
- 1964-11-30 CH CH1618767A patent/CH449639A/en unknown
- 1964-11-30 CH CH1538464A patent/CH446371A/en unknown
- 1964-11-30 CH CH1538364A patent/CH448118A/en unknown
- 1964-11-30 CH CH1619067A patent/CH449642A/en unknown
- 1964-11-30 CH CH1618867A patent/CH449640A/en unknown
- 1964-11-30 CH CH1619167A patent/CH449643A/en unknown
- 1964-11-30 CH CH1618967A patent/CH449641A/en unknown
- 1964-12-18 DE DE19641445853 patent/DE1445853A1/en active Pending
- 1964-12-18 SE SE1536064A patent/SE322779B/xx unknown
- 1964-12-18 AT AT1074364A patent/AT253687B/en active
- 1964-12-18 AT AT1074264A patent/AT261126B/en active
- 1964-12-18 GB GB5149864A patent/GB1077711A/en not_active Expired
- 1964-12-18 SE SE1536164A patent/SE305657B/xx unknown
- 1964-12-18 AT AT392865A patent/AT249276B/en active
- 1964-12-18 DE DE19641445854 patent/DE1445854A1/en active Pending
- 1964-12-18 NL NL6414821A patent/NL6414821A/xx unknown
- 1964-12-18 AT AT392965A patent/AT249277B/en active
- 1964-12-18 IL IL2264364A patent/IL22643A/en unknown
- 1964-12-18 GB GB5150064A patent/GB1092394A/en not_active Expired
- 1964-12-18 NL NL6414820A patent/NL6414820A/xx unknown
- 1964-12-18 IL IL2264264A patent/IL22642A/en unknown
- 1964-12-19 ES ES0307301A patent/ES307301A1/en not_active Expired
- 1964-12-19 ES ES0307300A patent/ES307300A1/en not_active Expired
- 1964-12-19 DK DK626864A patent/DK106552C/en active
- 1964-12-19 ES ES0307299A patent/ES307299A1/en not_active Expired
- 1964-12-19 DK DK429865A patent/DK108497C/en active
- 1964-12-19 DK DK429765A patent/DK108496C/en active
- 1964-12-19 NO NO15606364A patent/NO119274B/no unknown
- 1964-12-19 DK DK626764A patent/DK108495C/en active
- 1964-12-19 ES ES0307302A patent/ES307302A1/en not_active Expired
- 1964-12-19 NO NO15606264A patent/NO119273B/no unknown
- 1964-12-21 BE BE657405D patent/BE657405A/xx unknown
- 1964-12-21 BE BE657406D patent/BE657406A/xx unknown
-
1965
- 1965-03-19 FR FR9865A patent/FR4345M/fr active Active
- 1965-03-19 FR FR9866A patent/FR4346M/fr active Active
Also Published As
Publication number | Publication date |
---|---|
SE305657B (en) | 1968-11-04 |
AT249277B (en) | 1966-09-12 |
FR4346M (en) | 1966-08-16 |
BE657405A (en) | 1965-06-21 |
ES307299A1 (en) | 1965-05-16 |
AT249276B (en) | 1966-09-12 |
CH449643A (en) | 1968-01-15 |
DK108497C (en) | 1967-12-27 |
CH449639A (en) | 1968-01-15 |
GB1092394A (en) | 1967-11-22 |
AT253687B (en) | 1967-04-25 |
NL6414820A (en) | 1965-06-21 |
DE1445854A1 (en) | 1968-12-05 |
DK106552C (en) | 1967-02-20 |
DK108496C (en) | 1967-12-27 |
CH449640A (en) | 1968-01-15 |
GB1077711A (en) | 1967-08-02 |
BE657406A (en) | 1965-06-21 |
IL22643A (en) | 1968-07-25 |
SE322779B (en) | 1970-04-20 |
FR4345M (en) | 1966-08-16 |
CH448118A (en) | 1967-12-15 |
CH449641A (en) | 1968-01-15 |
DK108495C (en) | 1967-12-27 |
DE1445853A1 (en) | 1968-12-05 |
NO119274B (en) | 1970-04-27 |
NL6414821A (en) | 1965-06-21 |
NL127995C (en) | |
IL22642A (en) | 1968-07-25 |
ES307301A1 (en) | 1965-05-16 |
ES307302A1 (en) | 1965-05-16 |
ES307300A1 (en) | 1965-05-01 |
CH446371A (en) | 1967-11-15 |
CH449642A (en) | 1968-01-15 |
AT261126B (en) | 1968-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO119273B (en) | ||
US3121184A (en) | Discharge lamp with cathode shields | |
US2991387A (en) | Indicator tube | |
US2549355A (en) | Fluorescent lamp | |
US2007932A (en) | Surge arrester | |
US1897586A (en) | Gaseous electric discharge device | |
US2241362A (en) | Electron emissive cathode | |
US2093892A (en) | Enclosed electric arc lamp | |
US3445721A (en) | Electric discharge lamp with the starting resistor impedance twice that of the lamp impedance | |
GB1042266A (en) | Gaseous cold cathode indicator tube | |
US2177710A (en) | Fluorescent sign lamp | |
US3013175A (en) | High output discharge lamp | |
JPH0721981A (en) | Metal halide lamp | |
US2241345A (en) | Electron emissive cathode | |
US1968839A (en) | Low voltage discharge tube | |
US3287587A (en) | High temperature fluorescent lamp with reflector having mercury amalgamative material on its electrode stems | |
US2136292A (en) | Electric discharge device | |
US3526802A (en) | Compact high-output fluorescent lamp with amalgam type mercury-vapor pressure control means and a neonargon fill gas | |
US2022219A (en) | Electric lamp | |
US2824255A (en) | Auxiliary electrode and shield for a low pressure discharge device | |
US2748308A (en) | Low-pressure arc-discharge tube supplied with direct current | |
US2345638A (en) | Enclosed arc device and controlling means for service at varying intensities | |
US2943226A (en) | Cold and hollow electrode | |
US1954420A (en) | Glowlamp | |
US2187774A (en) | Electric discharge lamp adapted for use as source in optical projection apparatus |