NL8500833A - Pijp met binnenlaag. - Google Patents

Pijp met binnenlaag. Download PDF

Info

Publication number
NL8500833A
NL8500833A NL8500833A NL8500833A NL8500833A NL 8500833 A NL8500833 A NL 8500833A NL 8500833 A NL8500833 A NL 8500833A NL 8500833 A NL8500833 A NL 8500833A NL 8500833 A NL8500833 A NL 8500833A
Authority
NL
Netherlands
Prior art keywords
layer
pipe
layers
during
elongation
Prior art date
Application number
NL8500833A
Other languages
English (en)
Dutch (nl)
Original Assignee
Balzers Hochvakuum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Balzers Hochvakuum filed Critical Balzers Hochvakuum
Publication of NL8500833A publication Critical patent/NL8500833A/nl

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/06Protection of pipes or objects of similar shape against external or internal damage or wear against wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A21/00Barrels; Gun tubes; Muzzle attachments; Barrel mounting means
    • F41A21/02Composite barrels, i.e. barrels having multiple layers, e.g. of different materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Heat Treatment Of Steel (AREA)
NL8500833A 1984-04-19 1985-03-21 Pijp met binnenlaag. NL8500833A (nl)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1969/84A CH663455A5 (de) 1984-04-19 1984-04-19 Rohr mit einer innenbeschichtung.
CH196984 1984-04-19

Publications (1)

Publication Number Publication Date
NL8500833A true NL8500833A (nl) 1985-11-18

Family

ID=4222845

Family Applications (1)

Application Number Title Priority Date Filing Date
NL8500833A NL8500833A (nl) 1984-04-19 1985-03-21 Pijp met binnenlaag.

Country Status (10)

Country Link
US (1) US4641450A (de)
JP (1) JPS60238475A (de)
CH (1) CH663455A5 (de)
DE (1) DE3506012A1 (de)
FR (1) FR2563318B1 (de)
GB (1) GB2158103B (de)
IT (1) IT1184190B (de)
NL (1) NL8500833A (de)
SE (1) SE463278B (de)
ZA (1) ZA852617B (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015609A (en) * 1986-09-16 1991-05-14 Lanxide Technology Company, Lp Ceramic composite structures having intrinsically fitted encasement members thereon and methods of making the same
US4822759A (en) * 1986-09-16 1989-04-18 Lanxide Technology Company, Lp Ceramic composite structures having intrinsically fitted encasement members thereon & methods of making the same
FR2614321A1 (fr) * 1987-04-27 1988-10-28 Europ Propulsion Cartouche en materiaux composites pour dispositif d'elaboration de monocristaux.
US4903575A (en) * 1988-02-29 1990-02-27 Ross Capawana Machinegun ammunition container
JPH0717973Y2 (ja) * 1988-04-28 1995-04-26 防衛庁技術研究本部長 砲 身
US4911060A (en) * 1989-03-20 1990-03-27 The United States Of America As Represented By The Secretary Of The Army Reduced weight gun tube
US5448848A (en) * 1993-09-15 1995-09-12 Briley Manufacturing Co. Shotgun having light weight interchangeable barrel tubes
US5600912A (en) * 1995-11-29 1997-02-11 Smith; David B. Composite tube for a gun barrel
US5804756A (en) * 1995-12-18 1998-09-08 Rjc Development, L.C. Composite/metallic gun barrel having matched coefficients of thermal expansion
US5657568A (en) * 1995-12-18 1997-08-19 Roland J. Christensen Composite/metallic gun barrel having a differing, restrictive coefficient of thermal expansion
US5692334A (en) * 1995-12-18 1997-12-02 Roland J. Christensen Family Limited Partnership Primarily independent composite/metallic gun barrel
DE19736028A1 (de) 1997-08-20 1999-02-25 Rheinmetall W & M Gmbh Verfahren zur Innenbeschichtung eines Metallrohres und Vorrichtung zur Durchführung des Verfahrens
DE19834394A1 (de) * 1998-07-30 2000-02-03 Rheinmetall W & M Gmbh Waffenrohr mit einer verschleißmindernden Hartchromschicht
DE19919687A1 (de) * 1999-04-30 2000-11-02 Rheinmetall W & M Gmbh Verfahren zur Innenbeschichtung eines Waffenrohres
US6230429B1 (en) 1999-06-30 2001-05-15 Magnum Research, Inc. Composite tube for gun barrel
WO2007084143A2 (en) 2005-01-27 2007-07-26 Ra Brands, L.L.C. Firearm with enhanced corrosion and wear resistance properties
SE528525C2 (sv) * 2005-05-03 2006-12-05 Bae Systems Bofors Ab Anordning vid elenergiöverföring i eldvapen
US8677670B2 (en) * 2010-01-06 2014-03-25 Jason Christensen Segmented composite barrel for weapon
WO2013154930A1 (en) * 2012-04-11 2013-10-17 Ihi Ionbond Inc. Ceramic lining for a firearm barrel
US9863732B2 (en) 2013-08-28 2018-01-09 Proof Research, Inc. Lightweight composite mortar tube
AU2014312228A1 (en) * 2013-08-28 2016-02-25 Proof Research, Inc. High temperature composite projectile barrel
US11306989B2 (en) 2019-08-15 2022-04-19 Vista Outdoor Operations Llc Devices and methods for extraction of high pressure cartridge casings
US11774207B1 (en) * 2022-05-26 2023-10-03 Daniel Spence Paintball gun barrel system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2541116A (en) * 1943-10-27 1951-02-13 Ohio Crankshaft Co Hardened metallic structure
US2792657A (en) * 1946-05-16 1957-05-21 Battelle Development Corp Gun barrel coated with tantalum
US3261121A (en) * 1961-10-13 1966-07-19 Joseph R Eves Gun barrel with explosively welded liner
US3523035A (en) * 1966-12-21 1970-08-04 Texas Instruments Inc Internally coated gun barrels
US3650737A (en) * 1968-03-25 1972-03-21 Ibm Imaging method using photoconductive element having a protective coating
DE2537623C3 (de) * 1975-08-23 1980-03-20 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Verfahren zum Herstellen von beschichteten Metallrohren
DE2809709C3 (de) * 1978-03-07 1982-03-25 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren zur Herstellung eines mindestens eine Keramikschicht aufweisenden Schutzüberzugs für thermisch hochbelastete Bauteile, insbesondere Waffenkomponenten
US4256780A (en) * 1978-11-02 1981-03-17 Ford Motor Company Metallization process
US4419202A (en) * 1980-12-22 1983-12-06 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Metal coatings
GB2090291B (en) * 1980-12-22 1985-05-15 Secr Defence Sputter ion plating of refractory metal/metal compounds
CH649100A5 (de) * 1981-10-21 1985-04-30 Castolin Sa Verfahren zur herstellung von innenbeschichtungen von rohren.
CH659346A5 (de) * 1983-05-10 1987-01-15 Balzers Hochvakuum Vorrichtung zum behandeln der innenwand eines rohres.

Also Published As

Publication number Publication date
GB2158103A (en) 1985-11-06
GB2158103B (en) 1987-08-19
DE3506012C2 (de) 1987-11-12
IT1184190B (it) 1987-10-22
IT8520038A0 (it) 1985-03-22
JPS60238475A (ja) 1985-11-27
ZA852617B (en) 1985-11-27
FR2563318A1 (fr) 1985-10-25
DE3506012A1 (de) 1985-10-31
SE463278B (sv) 1990-10-29
CH663455A5 (de) 1987-12-15
FR2563318B1 (fr) 1988-12-02
GB8508898D0 (en) 1985-05-09
US4641450A (en) 1987-02-10
SE8501902D0 (sv) 1985-04-18
SE8501902L (sv) 1985-10-20

Similar Documents

Publication Publication Date Title
NL8500833A (nl) Pijp met binnenlaag.
US5876572A (en) Multiple layer erosion resistant coating and a method for its production
JP2008522026A5 (de)
Beresnev et al. Comparison of tribological characteristics of nanostructured TiN, MoN, and TiN/MoN Arc-PVD coatings
Singh et al. Design of functionally graded carbon coatings against contact damage
JP2009525826A (ja) かみそり刃のための多層コーティング
Valleti et al. Factors influencing properties of CrN thin films grown by cylindrical cathodic arc physical vapor deposition on HSS substrates
JP2893498B2 (ja) 非化学量論的窒化チタンコーティング
Treglio et al. Deposition of TiB2 at low temperature with low residual stress by a vacuum arc plasma source
Won et al. Effect of film gradient profile on adhesion strength, residual stress and effective hardness of functionally graded diamond-like carbon films
EP1226030B1 (de) Herstellungselemente zum formen von reaktivem metall und verfahren zu deren herstellung
Su et al. Tension and fatigue behavior of a PVD TiN-coated material
Shanaghi et al. Improving of tribology properties of TiAl6V4 with nanostructured Ti/TiN-multilayered coating deposited by high-vacuum magnetron sputtering
Su et al. Evaluation on the tension and fatigue behavior of various PVD coated materials
Lyashenko et al. On the reduction of residual stresses in plasma-vacuum-deposited coatings
Savisalo et al. Influence of ion bombardment on the properties and microstructure of unbalanced magnetron deposited niobium coatings
Ives et al. Fundamental studies of the steered arc technique
Lin et al. The effect of the substrate bias voltage on the mechanical and corrosion properties of chromium carbide thin films by filtered cathodic vacuum arc deposition
DE4443440A1 (de) Verschleißschutzschicht und Verfahren zum Auftragen dieser auf Bauteile
RU2110607C1 (ru) Способ обработки поверхности
Oh et al. The effects of precoating and bias voltage on the adhesion of reactive arc evaporated TiN and ZrN coatings
JPH0160541B2 (de)
JP2676903B2 (ja) 硬質炭素薄膜の形成法
Stoev et al. Mechanical properties and acoustic parameters tubes of zirconium alloy Zr1% Nb with a protective coatings
Yang et al. Mechanical response under contact loads of AlCrN-coated tool materials

Legal Events

Date Code Title Description
BV The patent application has lapsed