MD972Z - Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells - Google Patents
Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells Download PDFInfo
- Publication number
- MD972Z MD972Z MDS20150020A MDS20150020A MD972Z MD 972 Z MD972 Z MD 972Z MD S20150020 A MDS20150020 A MD S20150020A MD S20150020 A MDS20150020 A MD S20150020A MD 972 Z MD972 Z MD 972Z
- Authority
- MD
- Moldova
- Prior art keywords
- inp
- temperature
- reactor
- substrate
- cds
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000002800 charge carrier Substances 0.000 claims abstract description 3
- 239000011265 semifinished product Substances 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 235000012431 wafers Nutrition 0.000 description 3
- 230000008021 deposition Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
Invenţia se referă la tehnologia semiconductorilor şi poate fi utilizată, în special, în convertoarele fotovoltaice. The invention relates to semiconductor technology and can be used, in particular, in photovoltaic converters.
Este cunoscut procedeul de preparare a structurii p+InP-n+CdS prin metoda volumului cuaziînchis în hidrogen. Structura p+InP-n+CdS este crescută pe un substrat din p+InP cu concentraţia purtătorilor de sarcini de 9·1017 cm-3, suprafaţa de 25 mm2 şi grosimea de 0,4 mm. Stratul din n+CdS este crescut la temperaturile sursei de 800°C şi a substratului de 710°C [1]. The process of preparing the p+InP-n+CdS structure by the quasi-closed volume method in hydrogen is known. The p+InP-n+CdS structure is grown on a p+InP substrate with a carrier concentration of 9·1017 cm-3, an area of 25 mm2 and a thickness of 0.4 mm. The n+CdS layer is grown at source temperatures of 800°C and substrate temperatures of 710°C [1].
Neajunsul acestui procedeu constă în suprafaţa mică de depunere a stratului din n+CdS, fapt ce limitează productivitatea. The drawback of this process is the small deposition area of the n+CdS layer, which limits productivity.
Cea mai apropiată soluţie este procedeul de creştere a structurii p+InP-p-InP-n+CdS în flux de hidrogen. În calitate de substrat a fost utilizată o plachetă din p+InP cu orientarea cristalografică (100), cu dezorientarea de 3...5° în direcţia (110), care se degresează în toluen, se usucă în vaporii de alcool izopropilic, se corodează în soluţie de 5% Br2 în metanol, se usucă în vaporii de alcool izopropilic, se plasează într-un reactor, reactorul se purjează cu hidrogen, se stabilesc temperaturile de creştere şi prin metoda epitaxială în volum deschis (In-PCl3-H2) la temperatura de 670°C se creşte structura p+InP-p-InP. Se răceşte reactorul, se scoate semifabricatul cu structura p+InP-p-InP şi se introduce într-un alt reactor şi prin metoda volumului cuaziînchis la temperatura substratului de 710°C şi a sursei de 800°C se depune stratul n+CdS. Se depune un contact ohmic din Ag+Zn pe partea posterioară a substratului şi se tratează termic la temperatura de 500°C, ulterior se depune un contact ohmic din In pe stratul din n+CdS şi se tratează termic la temperatura de 260°C [2]. The closest solution is the process of growing the p+InP-p-InP-n+CdS structure in hydrogen flow. As a substrate, a p+InP wafer with crystallographic orientation (100), with a misorientation of 3...5° in the (110) direction, was used, which was degreased in toluene, dried in isopropyl alcohol vapors, corroded in a 5% Br2 solution in methanol, dried in isopropyl alcohol vapors, placed in a reactor, the reactor was purged with hydrogen, the growth temperatures were established and by the open volume epitaxial method (In-PCl3-H2) at a temperature of 670°C the p+InP-p-InP structure was grown. The reactor is cooled, the semi-finished product with the p+InP-p-InP structure is removed and placed in another reactor and the n+CdS layer is deposited by the quasi-closed volume method at a substrate temperature of 710°C and a source temperature of 800°C. An Ag+Zn ohmic contact is deposited on the back of the substrate and heat treated at a temperature of 500°C, then an In ohmic contact is deposited on the n+CdS layer and heat treated at a temperature of 260°C [2].
Dezavantajul acestui procedeu constă în faptul că randamentul celulei fotovoltaice din p+InP-p-InP-n+CdS este limitat de mărimea tensiunii de scurtcircuit (Ucd=0,8 V). The disadvantage of this process is that the efficiency of the p+InP-p-InP-n+CdS photovoltaic cell is limited by the magnitude of the short-circuit voltage (Ucd=0.8 V).
Problema pe care o rezolvă invenţia constă în posibilitatea confecţionării celulei fotovoltaice cu structura p+InP-p-InP-n+CdS cu randamentul majorat datorită majorării tensiunii de scurtcircuit. The problem that the invention solves consists in the possibility of making a photovoltaic cell with the p+InP-p-InP-n+CdS structure with increased efficiency due to the increase in short-circuit voltage.
Procedeul constă în faptul că se prelucrează în toluen şi alcool izopropilic un substrat, executat în formă de plachetă din p+InP cu orientarea cristalografică (100), cu dezorientarea de 3…5° în direcţia (110) şi concentraţia purtătorilor de sarcină de 1018 cm-3, apoi acesta se corodează în soluţie de 5% Br2 în metanol, se spală în alcool izopropilic, se usucă în vaporii acestuia şi se plasează într-un reactor pe un suport; reactorul se purjează cu hidrogen timp de cel puţin o oră, după care se majorează temperatura în acesta până la 670°C şi se corodează substratul. Pe substrat se creşte şi se corodează un strat din p-InP, pe care se creşte un al doilea strat din p-InP. Semifabricatul obţinut se scoate din reactor şi se introduce într-un reactor pentru creşterea prin metoda volumului cuaziînchis, în care se creşte un strat din n+CdS la temperatura de 710°C. Se depune un contact ohmic din Ag+Zn pe partea posterioară a substratului şi se tratează termic la temperatura de 500°C, ulterior se depune un contact ohmic din In pe stratul din n+CdS şi se tratează termic la temperatura de 260°C. The process consists in processing a substrate in the form of a p+InP wafer with crystallographic orientation (100), with a misorientation of 3…5° in the (110) direction and a charge carrier concentration of 1018 cm-3 in toluene and isopropyl alcohol, then it is corroded in a 5% Br2 solution in methanol, washed in isopropyl alcohol, dried in its vapors and placed in a reactor on a support; the reactor is purged with hydrogen for at least one hour, after which the temperature in it is increased to 670°C and the substrate is corroded. A p-InP layer is grown and corroded on the substrate, on which a second p-InP layer is grown. The semi-finished product obtained is removed from the reactor and introduced into a reactor for growth by the quasi-closed volume method, in which an n+CdS layer is grown at a temperature of 710°C. An Ag+Zn ohmic contact is deposited on the back of the substrate and heat treated at a temperature of 500°C, then an In ohmic contact is deposited on the n+CdS layer and heat treated at a temperature of 260°C.
Rezultatul tehnic al invenţiei constă în majorarea randamentului structurii p+InP-p-InP-n+CdS. The technical result of the invention consists in increasing the efficiency of the p+InP-p-InP-n+CdS structure.
Acest rezultat se datorează creşterii repetate a stratului din p-InP în structura p+InP-p-InP-n+CdS, ceea ce permite ameliorarea parametrilor la confecţionarea dispozitivelor fotovoltaice. This result is due to the repeated growth of the p-InP layer in the p+InP-p-InP-n+CdS structure, which allows for improved parameters in the fabrication of photovoltaic devices.
Exemplu de realizare a procedeului Example of the process
Plachetele din p+InP se prelucrează în toluen şi alcool izopropilic, se corodează în soluţie de 5% Br2 în metanol, se spală în alcool izopropilic, se usucă în vaporii acestuia şi se plasează în reactor pe un suport. Reactorul se purjează cu hidrogen timp de cel puţin o oră, se majorează temperatura în acesta până la temperatura de creştere de 670°C, se corodează în gaz la aceeaşi temperatură, se creşte stratul din p-InP şi se corodează în H2+PCl3, se creşte al doilea strat din p-InP şi se stopează alimentarea cuptorului. Semifabricatul obţinut se scoate din reactor, se introduce în alt reactor pentru creşterea prin metoda volumului cuaziînchis, în care se creşte un strat din n+CdS la temperatura de 710°C. Ulterior se depune un contact ohmic din Ag+Zn pe partea posterioară a substratului şi se tratează termic la temperatura de 500°C, se depune un contact ohmic din In pe stratul din n+CdS şi se tratează termic la temperatura de 260°C. The p+InP wafers are processed in toluene and isopropyl alcohol, etched in a 5% Br2 solution in methanol, washed in isopropyl alcohol, dried in its vapors and placed in the reactor on a support. The reactor is purged with hydrogen for at least one hour, the temperature in it is increased to the growth temperature of 670°C, etched in gas at the same temperature, the p-InP layer is grown and etched in H2+PCl3, the second p-InP layer is grown and the furnace supply is stopped. The obtained semi-finished product is removed from the reactor, introduced into another reactor for growth by the quasi-closed volume method, in which an n+CdS layer is grown at a temperature of 710°C. Subsequently, an Ag+Zn ohmic contact is deposited on the back of the substrate and heat treated at a temperature of 500°C, an In ohmic contact is deposited on the n+CdS layer and heat treated at a temperature of 260°C.
1. Yoshikawa A., Sakai Y. High efficiency n-CdS/p-InP solar cells prepared by the close-spaced technique. Solid-State Electronics, 1977, vol. 20, p. 133-137 1. Yoshikawa A., Sakai Y. High efficiency n-CdS/p-InP solar cells prepared by the close-spaced technique. Solid-State Electronics, 1977, vol. 20, p. 133-137
2. Chitoroagă, A.D. Teza de doctorat "Исследование фотоэлектрических свойств гетероструктур InP-CdS", 1992 2. Chitoroaga, A.D. Doctoral thesis "InP-CdS heterostructure Исследование фотоелектрический пастив", 1992
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20150020A MD972Z (en) | 2015-02-19 | 2015-02-19 | Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20150020A MD972Z (en) | 2015-02-19 | 2015-02-19 | Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD972Y MD972Y (en) | 2015-11-30 |
| MD972Z true MD972Z (en) | 2016-06-30 |
Family
ID=54753236
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20150020A MD972Z (en) | 2015-02-19 | 2015-02-19 | Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD972Z (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD4510C1 (en) * | 2016-06-23 | 2018-03-31 | Государственный Университет Молд0 | Method for growth of n+-p-p+ InP structure for solar cells |
| MD4554C1 (en) * | 2017-10-18 | 2018-09-30 | Государственный Университет Молд0 | Process for increasing the efficiency of photovoltaic cells based on p+InP-p-InP-n+CdS |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD499G2 (en) * | 1993-12-30 | 1997-05-31 | Государственный Университет Молд0 | Process of epitaxial layer grouing AIII BV in chloride system |
| MD626G2 (en) * | 1994-01-13 | 1997-06-30 | Государственный Университет Молд0 | Process for heterostructure P+ InP-PInP/CdS and P+GaAs-pGaAs/CdS obtaining |
| MD151Z (en) * | 2008-12-30 | 2010-09-30 | Государственный Университет Молд0 | Process for growth of GaAs epitaxial layers into a horizontal reactor |
| MD176Z (en) * | 2009-04-15 | 2010-10-31 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Process for the manufacture of high-voltage diode |
| MD4261B1 (en) * | 2011-05-12 | 2013-11-30 | Государственный Университет Молд0 | Method for manufacturing a semiconductor device with relief p-n junction (embodiments) |
| MD4280C1 (en) * | 2013-09-04 | 2014-10-31 | Государственный Университет Молд0 | pInP-nCdS structure growth method |
-
2015
- 2015-02-19 MD MDS20150020A patent/MD972Z/en not_active IP Right Cessation
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD499G2 (en) * | 1993-12-30 | 1997-05-31 | Государственный Университет Молд0 | Process of epitaxial layer grouing AIII BV in chloride system |
| MD626G2 (en) * | 1994-01-13 | 1997-06-30 | Государственный Университет Молд0 | Process for heterostructure P+ InP-PInP/CdS and P+GaAs-pGaAs/CdS obtaining |
| MD151Z (en) * | 2008-12-30 | 2010-09-30 | Государственный Университет Молд0 | Process for growth of GaAs epitaxial layers into a horizontal reactor |
| MD176Z (en) * | 2009-04-15 | 2010-10-31 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Process for the manufacture of high-voltage diode |
| MD4261B1 (en) * | 2011-05-12 | 2013-11-30 | Государственный Университет Молд0 | Method for manufacturing a semiconductor device with relief p-n junction (embodiments) |
| MD4280C1 (en) * | 2013-09-04 | 2014-10-31 | Государственный Университет Молд0 | pInP-nCdS structure growth method |
Non-Patent Citations (2)
| Title |
|---|
| Chitoroagă, A.D. Teza de doctorat "Исследование фотоэлектрических свойств гетероструктур InP-CdS", 1992 * |
| Yoshikawa A., Sakai Y. High efficiency n-CdS/p-InP solar cells prepared by the close-spaced technique. Solid-State Electronics, 1977, vol. 20, p. 133-137 * |
Also Published As
| Publication number | Publication date |
|---|---|
| MD972Y (en) | 2015-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Simon et al. | Low-cost III–V solar cells grown by hydride vapor-phase epitaxy | |
| CN103035496B (en) | A kind of growth GaN film on a si substrate and its preparation method and application | |
| CN109037374A (en) | Ultraviolet photodiode based on NiO/Ga2O3 and its preparation method | |
| Yusof et al. | InGaN based Schottky barrier solar cell: Study of the temperature dependence of electrical characteristics | |
| MD972Z (en) | Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells | |
| WO2019186136A1 (en) | Devices and methods for generating electricity | |
| MD4280C1 (en) | pInP-nCdS structure growth method | |
| US9842956B2 (en) | System and method for mass-production of high-efficiency photovoltaic structures | |
| Ritenour et al. | Towards high-efficiency GaAs thin-film solar cells grown via close space vapor transport from a solid source | |
| CN101608339A (en) | 4H-SiC Selective Homoepitaxial Growth Method | |
| MD4510C1 (en) | Method for growth of n+-p-p+ InP structure for solar cells | |
| MD4554C1 (en) | Process for increasing the efficiency of photovoltaic cells based on p+InP-p-InP-n+CdS | |
| CN110534599A (en) | A kind of flexible thin film solar cell and preparation method thereof | |
| RU2575972C1 (en) | METHOD FOR PRODUCTION OF GaSb-BASED PHOTOCONVERTER | |
| MD4686C1 (en) | Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells | |
| Danielson et al. | MOCVD Deposition of Group V Doped CdTe in Sublimated CdTe and CdSeTe Devices | |
| KR20160075042A (en) | Method for Manufacturing Thin Film Solar Cell Through ALD Process and Thin Film Solar Cell Manufactured using the Same | |
| CN208240696U (en) | A kind of flexible thin-film solar cell | |
| KR101464086B1 (en) | Solar cell structure using multiple junction compound | |
| US20140069499A1 (en) | MORPHOLOGICAL AND SPATIAL CONTROL OF InP CRYSTAL GROWTH USING CLOSED-SPACED SUBLIMATION | |
| RU2607734C1 (en) | Method of making gaas-based photocell | |
| KR20080086114A (en) | Silicon thin film using silicide seed, solar cell comprising same and manufacturing method thereof | |
| Yu et al. | Defect-free GeSn alloy strips on Si by Sn self-catalyzed MBE method | |
| Milenkovic et al. | Epitaxial N-type silicon solar cells with 20% efficiency | |
| CN108695403A (en) | A kind of adjustable graphene heterojunction structure of fermi level and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG9Y | Short term patent issued | ||
| KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |