MD972Z - Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells - Google Patents

Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells Download PDF

Info

Publication number
MD972Z
MD972Z MDS20150020A MDS20150020A MD972Z MD 972 Z MD972 Z MD 972Z MD S20150020 A MDS20150020 A MD S20150020A MD S20150020 A MDS20150020 A MD S20150020A MD 972 Z MD972 Z MD 972Z
Authority
MD
Moldova
Prior art keywords
inp
temperature
reactor
substrate
cds
Prior art date
Application number
MDS20150020A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Василе БОТНАРЮК
Леонид ГОРЧАК
Андрей КОВАЛ
Борис ЧИНИК
Симион РАЕВСКИЙ
Original Assignee
Государственный Университет Молд0
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственный Университет Молд0 filed Critical Государственный Университет Молд0
Priority to MDS20150020A priority Critical patent/MD972Z/en
Publication of MD972Y publication Critical patent/MD972Y/en
Publication of MD972Z publication Critical patent/MD972Z/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention relates to semiconductor technology and can be used, in particular, in the photoelectric converters.The method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells consists in that in toluene and isopropyl alcohol is treated a substrate, made in the form of a p+InP plate with crystallographic orientation (100), with misorientation of 3…5° in direction (110) and charge carrier concentration of 1018 cm-3, then it is etched in a 5% Br2 solution in methanol, washed in isopropyl alcohol, dried in its vapors and placed in a reactor on a support. The reactor is purged with hydrogen for at least one hour, after which the temperature is raised therein to 670°C and is etched the substrate. On the substrate is grown and etched a p-InP layer, on which is grown a second p-InP layer. The resulting workblank is removed from the reactor and introduced in a reactor for growth by the method of quasi-closed volume, in which is grown a n+CdS layer at a temperature of 710°C. It is applied an ohmic contact of Ag+Zn on the opposite side of the substrate and is thermally treated at a temperature of 500°C, then is applied an ohmic contact of In on the n+CdS layer and is thermally treated at a temperature of 260°C.

Description

Invenţia se referă la tehnologia semiconductorilor şi poate fi utilizată, în special, în convertoarele fotovoltaice. The invention relates to semiconductor technology and can be used, in particular, in photovoltaic converters.

Este cunoscut procedeul de preparare a structurii p+InP-n+CdS prin metoda volumului cuaziînchis în hidrogen. Structura p+InP-n+CdS este crescută pe un substrat din p+InP cu concentraţia purtătorilor de sarcini de 9·1017 cm-3, suprafaţa de 25 mm2 şi grosimea de 0,4 mm. Stratul din n+CdS este crescut la temperaturile sursei de 800°C şi a substratului de 710°C [1]. The process of preparing the p+InP-n+CdS structure by the quasi-closed volume method in hydrogen is known. The p+InP-n+CdS structure is grown on a p+InP substrate with a carrier concentration of 9·1017 cm-3, an area of 25 mm2 and a thickness of 0.4 mm. The n+CdS layer is grown at source temperatures of 800°C and substrate temperatures of 710°C [1].

Neajunsul acestui procedeu constă în suprafaţa mică de depunere a stratului din n+CdS, fapt ce limitează productivitatea. The drawback of this process is the small deposition area of the n+CdS layer, which limits productivity.

Cea mai apropiată soluţie este procedeul de creştere a structurii p+InP-p-InP-n+CdS în flux de hidrogen. În calitate de substrat a fost utilizată o plachetă din p+InP cu orientarea cristalografică (100), cu dezorientarea de 3...5° în direcţia (110), care se degresează în toluen, se usucă în vaporii de alcool izopropilic, se corodează în soluţie de 5% Br2 în metanol, se usucă în vaporii de alcool izopropilic, se plasează într-un reactor, reactorul se purjează cu hidrogen, se stabilesc temperaturile de creştere şi prin metoda epitaxială în volum deschis (In-PCl3-H2) la temperatura de 670°C se creşte structura p+InP-p-InP. Se răceşte reactorul, se scoate semifabricatul cu structura p+InP-p-InP şi se introduce într-un alt reactor şi prin metoda volumului cuaziînchis la temperatura substratului de 710°C şi a sursei de 800°C se depune stratul n+CdS. Se depune un contact ohmic din Ag+Zn pe partea posterioară a substratului şi se tratează termic la temperatura de 500°C, ulterior se depune un contact ohmic din In pe stratul din n+CdS şi se tratează termic la temperatura de 260°C [2]. The closest solution is the process of growing the p+InP-p-InP-n+CdS structure in hydrogen flow. As a substrate, a p+InP wafer with crystallographic orientation (100), with a misorientation of 3...5° in the (110) direction, was used, which was degreased in toluene, dried in isopropyl alcohol vapors, corroded in a 5% Br2 solution in methanol, dried in isopropyl alcohol vapors, placed in a reactor, the reactor was purged with hydrogen, the growth temperatures were established and by the open volume epitaxial method (In-PCl3-H2) at a temperature of 670°C the p+InP-p-InP structure was grown. The reactor is cooled, the semi-finished product with the p+InP-p-InP structure is removed and placed in another reactor and the n+CdS layer is deposited by the quasi-closed volume method at a substrate temperature of 710°C and a source temperature of 800°C. An Ag+Zn ohmic contact is deposited on the back of the substrate and heat treated at a temperature of 500°C, then an In ohmic contact is deposited on the n+CdS layer and heat treated at a temperature of 260°C [2].

Dezavantajul acestui procedeu constă în faptul că randamentul celulei fotovoltaice din p+InP-p-InP-n+CdS este limitat de mărimea tensiunii de scurtcircuit (Ucd=0,8 V). The disadvantage of this process is that the efficiency of the p+InP-p-InP-n+CdS photovoltaic cell is limited by the magnitude of the short-circuit voltage (Ucd=0.8 V).

Problema pe care o rezolvă invenţia constă în posibilitatea confecţionării celulei fotovoltaice cu structura p+InP-p-InP-n+CdS cu randamentul majorat datorită majorării tensiunii de scurtcircuit. The problem that the invention solves consists in the possibility of making a photovoltaic cell with the p+InP-p-InP-n+CdS structure with increased efficiency due to the increase in short-circuit voltage.

Procedeul constă în faptul că se prelucrează în toluen şi alcool izopropilic un substrat, executat în formă de plachetă din p+InP cu orientarea cristalografică (100), cu dezorientarea de 3…5° în direcţia (110) şi concentraţia purtătorilor de sarcină de 1018 cm-3, apoi acesta se corodează în soluţie de 5% Br2 în metanol, se spală în alcool izopropilic, se usucă în vaporii acestuia şi se plasează într-un reactor pe un suport; reactorul se purjează cu hidrogen timp de cel puţin o oră, după care se majorează temperatura în acesta până la 670°C şi se corodează substratul. Pe substrat se creşte şi se corodează un strat din p-InP, pe care se creşte un al doilea strat din p-InP. Semifabricatul obţinut se scoate din reactor şi se introduce într-un reactor pentru creşterea prin metoda volumului cuaziînchis, în care se creşte un strat din n+CdS la temperatura de 710°C. Se depune un contact ohmic din Ag+Zn pe partea posterioară a substratului şi se tratează termic la temperatura de 500°C, ulterior se depune un contact ohmic din In pe stratul din n+CdS şi se tratează termic la temperatura de 260°C. The process consists in processing a substrate in the form of a p+InP wafer with crystallographic orientation (100), with a misorientation of 3…5° in the (110) direction and a charge carrier concentration of 1018 cm-3 in toluene and isopropyl alcohol, then it is corroded in a 5% Br2 solution in methanol, washed in isopropyl alcohol, dried in its vapors and placed in a reactor on a support; the reactor is purged with hydrogen for at least one hour, after which the temperature in it is increased to 670°C and the substrate is corroded. A p-InP layer is grown and corroded on the substrate, on which a second p-InP layer is grown. The semi-finished product obtained is removed from the reactor and introduced into a reactor for growth by the quasi-closed volume method, in which an n+CdS layer is grown at a temperature of 710°C. An Ag+Zn ohmic contact is deposited on the back of the substrate and heat treated at a temperature of 500°C, then an In ohmic contact is deposited on the n+CdS layer and heat treated at a temperature of 260°C.

Rezultatul tehnic al invenţiei constă în majorarea randamentului structurii p+InP-p-InP-n+CdS. The technical result of the invention consists in increasing the efficiency of the p+InP-p-InP-n+CdS structure.

Acest rezultat se datorează creşterii repetate a stratului din p-InP în structura p+InP-p-InP-n+CdS, ceea ce permite ameliorarea parametrilor la confecţionarea dispozitivelor fotovoltaice. This result is due to the repeated growth of the p-InP layer in the p+InP-p-InP-n+CdS structure, which allows for improved parameters in the fabrication of photovoltaic devices.

Exemplu de realizare a procedeului Example of the process

Plachetele din p+InP se prelucrează în toluen şi alcool izopropilic, se corodează în soluţie de 5% Br2 în metanol, se spală în alcool izopropilic, se usucă în vaporii acestuia şi se plasează în reactor pe un suport. Reactorul se purjează cu hidrogen timp de cel puţin o oră, se majorează temperatura în acesta până la temperatura de creştere de 670°C, se corodează în gaz la aceeaşi temperatură, se creşte stratul din p-InP şi se corodează în H2+PCl3, se creşte al doilea strat din p-InP şi se stopează alimentarea cuptorului. Semifabricatul obţinut se scoate din reactor, se introduce în alt reactor pentru creşterea prin metoda volumului cuaziînchis, în care se creşte un strat din n+CdS la temperatura de 710°C. Ulterior se depune un contact ohmic din Ag+Zn pe partea posterioară a substratului şi se tratează termic la temperatura de 500°C, se depune un contact ohmic din In pe stratul din n+CdS şi se tratează termic la temperatura de 260°C. The p+InP wafers are processed in toluene and isopropyl alcohol, etched in a 5% Br2 solution in methanol, washed in isopropyl alcohol, dried in its vapors and placed in the reactor on a support. The reactor is purged with hydrogen for at least one hour, the temperature in it is increased to the growth temperature of 670°C, etched in gas at the same temperature, the p-InP layer is grown and etched in H2+PCl3, the second p-InP layer is grown and the furnace supply is stopped. The obtained semi-finished product is removed from the reactor, introduced into another reactor for growth by the quasi-closed volume method, in which an n+CdS layer is grown at a temperature of 710°C. Subsequently, an Ag+Zn ohmic contact is deposited on the back of the substrate and heat treated at a temperature of 500°C, an In ohmic contact is deposited on the n+CdS layer and heat treated at a temperature of 260°C.

1. Yoshikawa A., Sakai Y. High efficiency n-CdS/p-InP solar cells prepared by the close-spaced technique. Solid-State Electronics, 1977, vol. 20, p. 133-137 1. Yoshikawa A., Sakai Y. High efficiency n-CdS/p-InP solar cells prepared by the close-spaced technique. Solid-State Electronics, 1977, vol. 20, p. 133-137

2. Chitoroagă, A.D. Teza de doctorat "Исследование фотоэлектрических свойств гетероструктур InP-CdS", 1992 2. Chitoroaga, A.D. Doctoral thesis "InP-CdS heterostructure Исследование фотоелектрический пастив", 1992

Claims (1)

Procedeu de creştere a structurii p+InP-p-InP-n+CdS pentru celule fotovoltaice, care constă în aceea că se prelucrează în toluen şi alcool izopropilic un substrat, executat în formă de plachetă din p+InP cu orientarea cristalografică (100), cu dezorientarea de 3…5° în direcţia (110) şi concentraţia purtătorilor de sarcină de 1018 cm-3, apoi acesta se corodează în soluţie de 5% Br2 în metanol, se spală în alcool izopropilic, se usucă în vaporii acestuia şi se plasează într-un reactor pe un suport; reactorul se purjează cu hidrogen timp de cel puţin o oră, după care se majorează temperatura în acesta până la 670°C şi se corodează substratul; pe substrat se creşte şi se corodează un strat din p-InP, pe care se creşte un al doilea strat din p-InP; se scoate semifabricatul obţinut din reactor şi se introduce într-un reactor pentru creşterea prin metoda volumului cuaziînchis, în care se creşte un strat din n+CdS la temperatura de 710°C; se depune un contact ohmic din Ag+Zn pe partea posterioară a substratului şi se tratează termic la temperatura de 500°C, ulterior se depune un contact ohmic din In pe stratul din n+CdS şi se tratează termic la temperatura de 260°C.Process for growing the p+InP-p-InP-n+CdS structure for photovoltaic cells, which consists in processing in toluene and isopropyl alcohol a substrate, made in the form of a p+InP wafer with crystallographic orientation (100), with a misorientation of 3…5° in the (110) direction and a charge carrier concentration of 1018 cm-3, then it is corroded in a 5% Br2 solution in methanol, washed in isopropyl alcohol, dried in its vapors and placed in a reactor on a support; the reactor is purged with hydrogen for at least one hour, after which the temperature in it is increased to 670°C and the substrate is corroded; a layer of p-InP is grown and corroded on the substrate, on which a second layer of p-InP is grown; the semi-finished product obtained is removed from the reactor and introduced into a reactor for growth by the quasi-closed volume method, in which an n+CdS layer is grown at a temperature of 710°C; an Ag+Zn ohmic contact is deposited on the back of the substrate and heat treated at a temperature of 500°C, subsequently an In ohmic contact is deposited on the n+CdS layer and heat treated at a temperature of 260°C.
MDS20150020A 2015-02-19 2015-02-19 Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells MD972Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20150020A MD972Z (en) 2015-02-19 2015-02-19 Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20150020A MD972Z (en) 2015-02-19 2015-02-19 Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells

Publications (2)

Publication Number Publication Date
MD972Y MD972Y (en) 2015-11-30
MD972Z true MD972Z (en) 2016-06-30

Family

ID=54753236

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20150020A MD972Z (en) 2015-02-19 2015-02-19 Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells

Country Status (1)

Country Link
MD (1) MD972Z (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4510C1 (en) * 2016-06-23 2018-03-31 Государственный Университет Молд0 Method for growth of n+-p-p+ InP structure for solar cells
MD4554C1 (en) * 2017-10-18 2018-09-30 Государственный Университет Молд0 Process for increasing the efficiency of photovoltaic cells based on p+InP-p-InP-n+CdS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD499G2 (en) * 1993-12-30 1997-05-31 Государственный Университет Молд0 Process of epitaxial layer grouing AIII BV in chloride system
MD626G2 (en) * 1994-01-13 1997-06-30 Государственный Университет Молд0 Process for heterostructure P+ InP-PInP/CdS and P+GaAs-pGaAs/CdS obtaining
MD151Z (en) * 2008-12-30 2010-09-30 Государственный Университет Молд0 Process for growth of GaAs epitaxial layers into a horizontal reactor
MD176Z (en) * 2009-04-15 2010-10-31 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Process for the manufacture of high-voltage diode
MD4261B1 (en) * 2011-05-12 2013-11-30 Государственный Университет Молд0 Method for manufacturing a semiconductor device with relief p-n junction (embodiments)
MD4280C1 (en) * 2013-09-04 2014-10-31 Государственный Университет Молд0 pInP-nCdS structure growth method
  • 2015

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD499G2 (en) * 1993-12-30 1997-05-31 Государственный Университет Молд0 Process of epitaxial layer grouing AIII BV in chloride system
MD626G2 (en) * 1994-01-13 1997-06-30 Государственный Университет Молд0 Process for heterostructure P+ InP-PInP/CdS and P+GaAs-pGaAs/CdS obtaining
MD151Z (en) * 2008-12-30 2010-09-30 Государственный Университет Молд0 Process for growth of GaAs epitaxial layers into a horizontal reactor
MD176Z (en) * 2009-04-15 2010-10-31 Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы Process for the manufacture of high-voltage diode
MD4261B1 (en) * 2011-05-12 2013-11-30 Государственный Университет Молд0 Method for manufacturing a semiconductor device with relief p-n junction (embodiments)
MD4280C1 (en) * 2013-09-04 2014-10-31 Государственный Университет Молд0 pInP-nCdS structure growth method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chitoroagă, A.D. Teza de doctorat "Исследование фотоэлектрических свойств гетероструктур InP-CdS", 1992 *
Yoshikawa A., Sakai Y. High efficiency n-CdS/p-InP solar cells prepared by the close-spaced technique. Solid-State Electronics, 1977, vol. 20, p. 133-137 *

Also Published As

Publication number Publication date
MD972Y (en) 2015-11-30

Similar Documents

Publication Publication Date Title
Simon et al. Low-cost III–V solar cells grown by hydride vapor-phase epitaxy
CN103035496B (en) A kind of growth GaN film on a si substrate and its preparation method and application
CN109037374A (en) Ultraviolet photodiode based on NiO/Ga2O3 and its preparation method
Yusof et al. InGaN based Schottky barrier solar cell: Study of the temperature dependence of electrical characteristics
MD972Z (en) Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells
WO2019186136A1 (en) Devices and methods for generating electricity
MD4280C1 (en) pInP-nCdS structure growth method
US9842956B2 (en) System and method for mass-production of high-efficiency photovoltaic structures
Ritenour et al. Towards high-efficiency GaAs thin-film solar cells grown via close space vapor transport from a solid source
CN101608339A (en) 4H-SiC Selective Homoepitaxial Growth Method
MD4510C1 (en) Method for growth of n+-p-p+ InP structure for solar cells
MD4554C1 (en) Process for increasing the efficiency of photovoltaic cells based on p+InP-p-InP-n+CdS
CN110534599A (en) A kind of flexible thin film solar cell and preparation method thereof
RU2575972C1 (en) METHOD FOR PRODUCTION OF GaSb-BASED PHOTOCONVERTER
MD4686C1 (en) Method for p+InP-p-InP-n+CdS structure growth for photovoltaic cells
Danielson et al. MOCVD Deposition of Group V Doped CdTe in Sublimated CdTe and CdSeTe Devices
KR20160075042A (en) Method for Manufacturing Thin Film Solar Cell Through ALD Process and Thin Film Solar Cell Manufactured using the Same
CN208240696U (en) A kind of flexible thin-film solar cell
KR101464086B1 (en) Solar cell structure using multiple junction compound
US20140069499A1 (en) MORPHOLOGICAL AND SPATIAL CONTROL OF InP CRYSTAL GROWTH USING CLOSED-SPACED SUBLIMATION
RU2607734C1 (en) Method of making gaas-based photocell
KR20080086114A (en) Silicon thin film using silicide seed, solar cell comprising same and manufacturing method thereof
Yu et al. Defect-free GeSn alloy strips on Si by Sn self-catalyzed MBE method
Milenkovic et al. Epitaxial N-type silicon solar cells with 20% efficiency
CN108695403A (en) A kind of adjustable graphene heterojunction structure of fermi level and preparation method thereof

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)