MD859Z - Method for measuring impedance components - Google Patents
Method for measuring impedance components Download PDFInfo
- Publication number
- MD859Z MD859Z MDS20140018A MDS20140018A MD859Z MD 859 Z MD859 Z MD 859Z MD S20140018 A MDS20140018 A MD S20140018A MD S20140018 A MDS20140018 A MD S20140018A MD 859 Z MD859 Z MD 859Z
- Authority
- MD
- Moldova
- Prior art keywords
- impedance
- converter
- measured
- components
- measured object
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000005259 measurement Methods 0.000 abstract description 19
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 238000011067 equilibration Methods 0.000 abstract 1
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
Invenţia se referă la domeniul măsurărilor electrice şi electronice şi poate fi utilizată pentru măsurarea cu precizie înaltă a componentelor impedanţei. The invention relates to the field of electrical and electronic measurements and can be used for high-precision measurement of impedance components.
Cea mai apropiată soluţie este metoda de măsurare a componentelor impedanţei, care constă în formarea unui circuit de măsurare în serie din obiectul măsurat, contactele de ieşire ale unui convertor de impedanţă şi un generator de semnal, formarea unui semnal de dezechilibru din căderea sumară de tensiune pe obiectul măsurat şi circuitul de ieşire al convertorului, controlul defazajului dintre semnalul de dezechilibru şi semnalele de referinţă, echilibrarea circuitului de măsurare prin reglarea componentelor impedanţei reproduse de convertor şi determinarea componentelor impedanţei măsurate din dependenţa cunoscută a acestora de componentele impedanţei reproduse de convertor [1]. The closest solution is the impedance component measurement method, which consists of forming a series measurement circuit from the measured object, the output contacts of an impedance converter and a signal generator, forming an unbalance signal from the sum of the voltage drops on the measured object and the converter output circuit, controlling the phase shift between the unbalance signal and the reference signals, balancing the measurement circuit by adjusting the impedance components reproduced by the converter and determining the measured impedance components from their known dependence on the impedance components reproduced by the converter [1].
Dezavantajul acestei metode constă în eroarea mare de măsurare în cazul măsurării impedanţelor cu valoare mică, cauzată de prezenţa căderilor parazitare de tensiune pe clemele şi conductoarele de conectare ale obiectului măsurat (vezi fig. 1). The disadvantage of this method is the large measurement error in the case of measuring low-value impedances, caused by the presence of parasitic voltage drops on the terminals and connecting conductors of the measured object (see Fig. 1).
Problema pe care o rezolvă invenţia este majorarea preciziei de măsurare a impedanţelor de valoare mică şi, ca urmare, lărgirea domeniului de utilizare. The problem that the invention solves is increasing the measurement accuracy of low-value impedances and, as a result, broadening the scope of use.
Metoda, conform invenţiei, înlătură dezavantajele menţionate mai sus prin aceea că constă în formarea unui circuit rezonant de măsurare în serie din obiectul măsurat, contactele de ieşire ale unui convertor de impedanţă şi un generator de semnal, formarea unui semnal de dezechilibru din căderea sumară de tensiune pe obiectul măsurat şi circuitul de ieşire al convertorului, echilibrarea circuitului de măsurare prin reglarea componentelor impedanţei reproduse de convertor până la obţinerea stării de rezonanţă între impedanţa măsurată şi impedanţa reprodusă de convertor şi determinarea componentelor impedanţei măsurate din dependenţa cunoscută a acestora de componentele impedanţei reproduse de convertor în stare de echilibru. Obiectul măsurat se conectează în circuitul de măsurare cu patru cleme, două dintre care se conectează la polii opuşi ai acestui obiect şi se utilizează pentru trecerea curentului prin el, iar celelalte două cleme de asemenea se conectează la polii opuşi ai obiectului măsurat - pentru obţinerea căderii de tensiune pe el. The method, according to the invention, eliminates the above-mentioned disadvantages by consisting in forming a resonant measuring circuit in series from the measured object, the output contacts of an impedance converter and a signal generator, forming an unbalance signal from the sum of the voltage drop on the measured object and the output circuit of the converter, balancing the measuring circuit by adjusting the impedance components reproduced by the converter until the resonance state is obtained between the measured impedance and the impedance reproduced by the converter and determining the components of the measured impedance from their known dependence on the impedance components reproduced by the converter in the equilibrium state. The measured object is connected to the measuring circuit with four terminals, two of which are connected to the opposite poles of this object and are used to pass current through it, and the other two terminals are also connected to the opposite poles of the measured object - to obtain the voltage drop on it.
Rezultatul invenţiei constă în majorarea preciziei de măsurare a componentelor impedanţei într-o bandă largă de valori. The result of the invention consists in increasing the measurement accuracy of impedance components in a wide range of values.
Invenţia se explică prin desenele din fig. 1 şi 2, care reprezintă: The invention is explained by the drawings in Fig. 1 and 2, which represent:
- fig. 1, diagrama vectorială a procesului de măsurare conform metodei din cea mai apropiată soluţie; - Fig. 1, vector diagram of the measurement process according to the closest solution method;
- fig. 2, diagrama vectorială a procesului de măsurare conform metodei revendicate. - Fig. 2, vector diagram of the measurement process according to the claimed method.
Conform metodei propuse obiectul măsurat cu impedanţa ZX, convertorul de impedanţă cu impedanţa de ieşire Zr şi generatorul de semnal cu curentul de ieşire I formează un circuit rezonant în serie. Impedanţa măsurată ZX şi impedanţa de referinţă Zr, reprodusă de convertor, pot fi reprezentate în coordonate carteziene sau polare: According to the proposed method, the measured object with impedance ZX, the impedance converter with output impedance Zr and the signal generator with output current I form a series resonant circuit. The measured impedance ZX and the reference impedance Zr, reproduced by the converter, can be represented in Cartesian or polar coordinates:
ZX = RX + jXX = ZX exp (jφX), (1) ZX = RX + jXX = ZX exp (jφX), (1)
Zr = Rr + jXr = Zr exp (jφr), (2) Zr = Rr + jXr = Zr exp (jφr), (2)
unde: RX , XX, Rr, Xr - respectiv, componentele activă şi reactivă ale impedanţelor măsurată şi de referinţă; where: RX , XX, Rr, Xr - respectively, the active and reactive components of the measured and reference impedances;
Zr, φr, ZX, φX - respectiv, modulul şi faza impedanţelor măsurată şi de referinţă; Zr, φr, ZX, φX - respectively, the modulus and phase of the measured and reference impedances;
j - unitatea imaginară. j - imaginary unit.
Aceste impedanţe formează un circuit rezonant în serie, alimentat de curentul I, produs de generator. În metoda din cea mai apropiată soluţie (vezi fig. 1) în acest circuit intră şi rezistenţele contactelor, precum şi ale conductoarelor de conectare RC ale obiectului măsurat, căderea de tensiune pe ele URc ducând la apariţia unei erori considerabile la măsurarea impedanţelor de valoare mică. These impedances form a series resonant circuit, powered by the current I produced by the generator. In the closest solution method (see Fig. 1), this circuit also includes the resistances of the contacts, as well as of the connecting conductors RC of the measured object, the voltage drop on them URc leading to a considerable error in the measurement of low-value impedances.
Obiectul măsurat se conectează în circuitul de măsurare cu patru cleme, două cleme utilizându-se pentru trecerea curentului I prin el, iar celelalte două - pentru obţinerea căderii de tensiune UX pe el. Ca rezultat, căderea de tensiune URc se exclude din circuitul rezonant şi din expresia pentru semnalul de dezechilibru Ude, care prezintă suma căderilor de tensiune pe componentele activă (Ux) şi reactivă (Ur) ale impedanţelor măsurată şi de referinţă: The measured object is connected to the four-terminal measuring circuit, two terminals being used to pass the current I through it, and the other two - to obtain the voltage drop UX across it. As a result, the voltage drop URc is excluded from the resonant circuit and from the expression for the unbalance signal Ude, which presents the sum of the voltage drops on the active (Ux) and reactive (Ur) components of the measured and reference impedances:
Ude = Ux+Ur = I(Zx+Zr) = I[(Rx+jXx)+(Rr+jXr)] = I[ZX exp (jφX)+Zr exp (jφr)]. (3) Ude = Ux+Ur = I(Zx+Zr) = I[(Rx+jXx)+(Rr+jXr)] = I[ZX exp (jφX)+Zr exp (jφr)]. (3)
Echilibrarea circuitului de măsurare se efectuează prin două operaţii de reglare a componentelor activă Rr şi reactivă Xr, sau a modulului Zr şi a fazei φr ale impedanţei de referinţă, reproduse de convertor, până la valorile, respectiv, Rr0 şi Xr0, căderile de tensiune pe care constituie, respectiv, URr0 şi UXr0. Această stare corespunde rezonanţei tensiunilor în circuitul de măsurare: The balancing of the measurement circuit is performed by two operations of adjusting the active components Rr and reactive Xr, or the module Zr and the phase φr of the reference impedance, reproduced by the converter, up to the values, respectively, Rr0 and Xr0, the voltage drops on which constitute, respectively, URr0 and UXr0. This state corresponds to the resonance of the voltages in the measurement circuit:
I[(Rx+jXx) + (Rr0+jXr0)] = I[ZX exp (jφX)+Zr exp (jφr)] = 0. (4) I[(Rx+jXx) + (Rr0+jXr0)] = I[ZX exp (jφX)+Zr exp (jφr)] = 0. (4)
Soluţia ecuaţiei (4), care prezintă rezultatul măsurării în coordonate carteziene, este: The solution to equation (4), which presents the measurement result in Cartesian coordinates, is:
Rx = - Rr0 , Xx = -Xr0, (5) Rx = - Rr0 , Xx = -Xr0, (5)
sau în coordonate polare: or in polar coordinates:
ZX = Zr, φX = φr + 180° (6) ZX = Zr, φX = φr + 180° (6)
După cum rezultă din relaţiile (5) şi (6), la finisarea procesului de măsurare componentele impedanţei măsurate se exprimă respectiv prin componentele impedanţei de referinţă în coordonate carteziene (5) sau polare (6) şi nu conţin erori, cauzate de rezistenţele clemelor şi conductoarelor de conectare a obiectului măsurat. As results from relations (5) and (6), at the end of the measurement process, the measured impedance components are expressed respectively by the reference impedance components in Cartesian coordinates (5) or polar coordinates (6) and do not contain errors caused by the resistances of the terminals and connecting conductors of the measured object.
Ca exemplu de implementare practică poate servi măsurarea componentelor impedanţei unei bobine de inductanţă, care conţine componenta reactivă Xx = 10 Ω şi componenta activă Rx = 1 Ω. Din inductanţa măsurată şi contactele de ieşire ale convertorului de impedanţă se formează un circuit de măsurare în serie, alimentat cu un curent I = 10 mA. La echilibrarea circuitului de măsurare se reglează componenta activă a impedanţei de referinţă până la valoarea Rr0 =-1 Ω, şi componenta reactivă a acestei impedanţe până la valoarea Xr0=-10 Ω. Valorile componentelor impedanţei măsurate constituie: RX=-Rr0=1 Ω, XX=-Xr0=10 Ω, acestea fiind rezultatul măsurării. As an example of practical implementation, the measurement of the impedance components of an inductance coil, which contains the reactive component Xx = 10 Ω and the active component Rx = 1 Ω, can serve. A series measurement circuit is formed from the measured inductance and the output contacts of the impedance converter, supplied with a current I = 10 mA. When balancing the measurement circuit, the active component of the reference impedance is adjusted to the value Rr0 =-1 Ω, and the reactive component of this impedance to the value Xr0 =-10 Ω. The values of the measured impedance components are: RX=-Rr0=1 Ω, XX=-Xr0=10 Ω, these being the result of the measurement.
1. MD 489 Z 2012.09.30 1. MD 489 Z 2012.09.30
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20140018A MD859Z (en) | 2014-02-05 | 2014-02-05 | Method for measuring impedance components |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20140018A MD859Z (en) | 2014-02-05 | 2014-02-05 | Method for measuring impedance components |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD859Y MD859Y (en) | 2014-12-31 |
| MD859Z true MD859Z (en) | 2015-07-31 |
Family
ID=52211093
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20140018A MD859Z (en) | 2014-02-05 | 2014-02-05 | Method for measuring impedance components |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD859Z (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107870266A (en) * | 2017-10-18 | 2018-04-03 | 江苏固德威电源科技股份有限公司 | Three-phase photovoltaic grid-connected inverting device electric network impedance inductance detection method |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD2086G2 (en) * | 2001-12-03 | 2003-08-31 | Виталие НАСТАС | Method for measurement of impedance components |
| MD2509G2 (en) * | 2004-01-12 | 2005-02-28 | Технический университет Молдовы | Method of impedance components measurement |
| MD3577G2 (en) * | 2006-09-21 | 2008-11-30 | Технический университет Молдовы | Method of measuring the impedance components |
| MD3578G2 (en) * | 2006-10-19 | 2008-11-30 | Технический университет Молдовы | Method of resistance measurement |
| MD3949G2 (en) * | 2008-04-24 | 2010-02-28 | Технический университет Молдовы | Method for resistance measurement |
| MD489Z (en) * | 2011-06-09 | 2012-09-30 | Технический университет Молдовы | Method for measuring the impedance components |
-
2014
- 2014-02-05 MD MDS20140018A patent/MD859Z/en not_active IP Right Cessation
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD2086G2 (en) * | 2001-12-03 | 2003-08-31 | Виталие НАСТАС | Method for measurement of impedance components |
| MD2509G2 (en) * | 2004-01-12 | 2005-02-28 | Технический университет Молдовы | Method of impedance components measurement |
| MD3577G2 (en) * | 2006-09-21 | 2008-11-30 | Технический университет Молдовы | Method of measuring the impedance components |
| MD3578G2 (en) * | 2006-10-19 | 2008-11-30 | Технический университет Молдовы | Method of resistance measurement |
| MD3949G2 (en) * | 2008-04-24 | 2010-02-28 | Технический университет Молдовы | Method for resistance measurement |
| MD489Z (en) * | 2011-06-09 | 2012-09-30 | Технический университет Молдовы | Method for measuring the impedance components |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107870266A (en) * | 2017-10-18 | 2018-04-03 | 江苏固德威电源科技股份有限公司 | Three-phase photovoltaic grid-connected inverting device electric network impedance inductance detection method |
| CN107870266B (en) * | 2017-10-18 | 2020-05-08 | 江苏固德威电源科技股份有限公司 | Three-phase photovoltaic grid-connected inverter power grid impedance inductance detection method |
Also Published As
| Publication number | Publication date |
|---|---|
| MD859Y (en) | 2014-12-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| MD3577F1 (en) | Method of measuring the impedance components | |
| MD489Z (en) | Method for measuring the impedance components | |
| MD3919F1 (en) | Device for measuring the resistance of articles of insulated wire in the process of adjustment to nominal value | |
| MD859Z (en) | Method for measuring impedance components | |
| NO138787B (en) | PROCEDURE AND APPARATUS FOR CONTINUOUS DETERMINATION OF THE INTERNAL RESISTANCE IN AN ELECTROLYSIS CELL | |
| JP2015004592A (en) | Voltage measurement circuit | |
| MD392Y (en) | Method for measuring the impedance components | |
| RU2016111274A (en) | UNIVERSAL SENSOR INTERFACE FOR MACHINE CONTROL SYSTEM | |
| MD639Z (en) | Impedance meter | |
| MD591Z (en) | Method for measurement of impedance component | |
| MD628Z (en) | Method for measuring the impedance components | |
| CN102998531B (en) | Impedance bioelectrical measurement device | |
| MD444Y (en) | Impedance meter | |
| WO2015133212A1 (en) | Voltage measuring apparatus and voltage measuring method | |
| MD943Z (en) | Method for measuring the impedance components | |
| CN210572495U (en) | Self-measuring circuit | |
| MD873Z (en) | Impedance meter | |
| RU2475764C1 (en) | Bridge meter of bipoles parameters | |
| MD490Z (en) | Method for measuring the admittance components | |
| MD790Z (en) | Method for measurement of impedance components | |
| RU2461013C1 (en) | Bridge circuit for measuring parameters of two-terminal devices | |
| MD662Z (en) | Method for measuring the impedance components | |
| MD3462F1 (en) | Admittance measuring device | |
| MD752Z (en) | Method for measuring the resistance, inductance or capacitance of the two-terminal network | |
| RU2569043C2 (en) | Bridge meter of two-terminal circuit parameters |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG9Y | Short term patent issued | ||
| KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |