MD628Z - Method for measuring the impedance components - Google Patents
Method for measuring the impedance components Download PDFInfo
- Publication number
- MD628Z MD628Z MDS20120170A MDS20120170A MD628Z MD 628 Z MD628 Z MD 628Z MD S20120170 A MDS20120170 A MD S20120170A MD S20120170 A MDS20120170 A MD S20120170A MD 628 Z MD628 Z MD 628Z
- Authority
- MD
- Moldova
- Prior art keywords
- impedance
- phase
- signal
- converter
- reproduced
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 230000010363 phase shift Effects 0.000 claims abstract description 10
- 230000003993 interaction Effects 0.000 claims abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract 3
- 238000011067 equilibration Methods 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 2
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
Invenţia se referă la domeniul măsurărilor electrice şi electronice şi poate fi utilizată pentru măsurarea cu precizie înaltă a componentelor impedanţei. The invention relates to the field of electrical and electronic measurements and can be used for high-precision measurement of impedance components.
Se cunoaşte metoda de măsurare a componentelor impedanţei, care constă în formarea unui circuit rezonant de măsurare din obiectul măsurat şi bornele de ieşire ale unui convertor de impedanţă cu valori iniţiale preinstalate ale componentelor, alimentarea circuitului de măsurare cu un semnal de măsurare, formarea unui semnal de dezechilibru în urma interacţiunii circuitului de măsurare cu semnalul de măsurare şi formarea unui semnal de referinţă. Echilibrarea circuitului de măsurare se efectuează în două etape consecutive prin reglarea impedanţei reproduse de convertor. Metoda asigură determinarea modulului şi fazei impedanţei necunoscute din dependenţa lor de mărimile de intrare ale convertorului în stare de echilibru al circuitului de măsurare [1]. The method of measuring impedance components is known, which consists in forming a resonant measuring circuit from the measured object and the output terminals of an impedance converter with pre-installed initial values of the components, supplying the measuring circuit with a measuring signal, forming an imbalance signal as a result of the interaction of the measuring circuit with the measuring signal and forming a reference signal. Balancing the measuring circuit is carried out in two consecutive stages by adjusting the impedance reproduced by the converter. The method ensures the determination of the modulus and phase of the unknown impedance from their dependence on the input quantities of the converter in the equilibrium state of the measuring circuit [1].
Dezavantajul acestei metode constă în timpul mare de măsurare, cauzat de necesitatea efectuării a două etape consecutive de echilibrare. The disadvantage of this method is the long measurement time, caused by the need to perform two consecutive balancing steps.
Problema pe care o rezolvă prezenta invenţie constă în micşorarea timpului de măsurare. The problem that the present invention solves consists in reducing the measurement time.
Metoda, conform invenţiei, înlătură dezavantajele menţionate mai sus prin aceea că constă în formarea unui circuit de măsurare rezonant în serie, constând din obiectul măsurat, bornele de ieşire ale unui convertor de impedanţă cu reglare independentă a modulului şi fazei impedanţei reproduse şi cu valori preinstalate ale modulului şi fazei impedanţei reproduse, egale respectiv cu valoarea maximă a benzii de reglare şi 180°, alimentarea circuitului de măsurare cu un semnal de măsurare, formarea unui semnal de dezechilibru în urma interacţiunii circuitului de măsurare cu semnalul de măsurare, formarea unui semnal de referinţă cu aceeaşi fază ca şi impedanţa reprodusă de convertor, echilibrarea circuitului de măsurare prin reglarea componentelor impedanţei reproduse de convertor, inclusiv a fazei în banda de valori 90…270°, şi determinarea componentelor impedanţei necunoscute din dependenţa lor de mărimile de intrare ale convertorului. Suplimentar se formează un al doilea semnal de referinţă, cu faza egală cu faza curentului din circuitul de măsurare. Echilibrarea circuitului de măsurare se efectuează prin reglări concomitente a modulului impedanţei reproduse de convertor până la obţinerea unui defazaj de 90° între semnalul de dezechilibru şi cel de-al doilea semnal de referinţă şi a fazei impedanţei reproduse de convertor până la atingerea valorii defazajului între semnalul de dezechilibru şi primul semnal de referinţă egale cu 0° sau 180°, iar procesul de echilibrare se opreşte la obţinerea valorii modulului semnalului de dezechilibru egale cu zero. The method, according to the invention, eliminates the above-mentioned disadvantages by consisting in forming a resonant series measuring circuit, consisting of the measured object, the output terminals of an impedance converter with independent adjustment of the modulus and phase of the reproduced impedance and with pre-installed values of the modulus and phase of the reproduced impedance, respectively equal to the maximum value of the adjustment band and 180°, supplying the measuring circuit with a measuring signal, forming an imbalance signal following the interaction of the measuring circuit with the measuring signal, forming a reference signal with the same phase as the impedance reproduced by the converter, balancing the measuring circuit by adjusting the components of the impedance reproduced by the converter, including the phase in the value band 90…270°, and determining the components of the unknown impedance from their dependence on the input quantities of the converter. Additionally, a second reference signal is formed, with the phase equal to the phase of the current in the measuring circuit. The balancing of the measurement circuit is performed by simultaneous adjustments of the modulus of the impedance reproduced by the converter until a phase shift of 90° is obtained between the unbalance signal and the second reference signal and of the phase of the impedance reproduced by the converter until the phase shift value between the unbalance signal and the first reference signal is reached equal to 0° or 180°, and the balancing process stops when the modulus value of the unbalance signal is obtained equal to zero.
Rezultatul invenţiei constă în majorarea vitezei de măsurare a componentelor impedanţei în coordonate polare. The result of the invention consists in increasing the measurement speed of impedance components in polar coordinates.
Invenţia se explică prin desenele din fig. 1-2, care reprezintă: The invention is explained by the drawings in Fig. 1-2, which represent:
fig.1 - diagrama vectorială, care ilustrează procesul de echilibrare a circuitului de măsurare la reglarea modulului impedanţei reproduse de convertor; fig.1 - vector diagram, which illustrates the balancing process of the measuring circuit when adjusting the impedance modulus reproduced by the converter;
fig 2 - diagrama vectorială, care ilustrează procesul de echilibrare a circuitului de măsurare la reglarea fazei. fig 2 - vector diagram, which illustrates the process of balancing the measuring circuit when adjusting the phase.
Impedanţa măsurată ZX şi impedanţa de referinţă Zr, reprodusă de convertor, pot fi reprezentate în coordonate polare: The measured impedance ZX and the reference impedance Zr, reproduced by the converter, can be represented in polar coordinates:
ZX = ZXexp (jφx) (1) ZX = ZXexp (jφx) (1)
Zr = Zrexp (jφr) (2) Zr = Zrexp (jφr) (2)
Unde: ZX, Zr, φx, φr - respectiv, modulele şi fazele impedanţelor măsurată şi de referinţă, Where: ZX, Zr, φx, φr - respectively, the modules and phases of the measured and reference impedances,
j - unitatea imaginară. j - imaginary unit.
Obiectul măsurat cu impedanţa (1) şi convertorul de impedanţă cu impedanţa de ieşire (2) formează un circuit de măsurare rezonant în serie, alimentat cu un semnal de măsurare cu valoarea curentului I. The measured object with impedance (1) and the impedance converter with output impedance (2) form a series resonant measurement circuit, supplied with a measurement signal with the current value I.
Convertorul de impedanţă posedă valorile iniţiale preinstalate ale modulului impedanţei reproduse egală cu valoarea maximă a benzii de reglare şi a fazei egală cu 180° (poziţia Ur1 în fig. 1, 2). The impedance converter has pre-installed initial values of the reproduced impedance modulus equal to the maximum value of the adjustment band and the phase equal to 180° (position Ur1 in Fig. 1, 2).
Curentul I (vezi fig. 1) formează căderile de tensiune Ux pe impedanţa măsurată şi Ur1 pe impedanţa de referinţă. Suma acestor tensiuni constituie tensiunea Ude1, utilizată în calitate de semnal de dezechilibru: The current I (see Fig. 1) forms the voltage drops Ux on the measured impedance and Ur1 on the reference impedance. The sum of these voltages constitutes the voltage Ude1, used as an unbalance signal:
Ude1 = Ux + Ur = I(ZX+Zr) = I[ZXexp (jφx) + Zrexp (jφr)] (3) Ude1 = Ux + Ur = I(ZX+Zr) = I[ZXexp (jφx) + Zrexp (jφr)] (3)
Echilibrarea circuitului de măsurare se efectuează prin două operaţii efectuate concomitent. Pentru aceasta în calitate de primul semnal de referinţă se utilizează căderea de tensiune pe impedanţa reprodusă de convertor Ur, iar în calitate de al doilea semnal de referinţă - curentul I, care alimentează circuitul de măsurare. În prima operaţie de echilibrare (vezi fig. 1) se reglează modulul impedanţei reproduse de convertor Zr până la obţinerea defazajului de 90° între semnalul de dezechilibru şi cel de-al doilea semnal de referinţă (consecutiv, poziţiile Ur1, Ur2, U°r,). În a doua operaţie de echilibrare (vezi fig. 2) se reglează faza impedanţei reproduse de convertor φr până la atingerea valorii defazajului între semnalul de dezechilibru Ude şi primul semnal de referinţă egale cu 0° sau 180° (consecutiv, poziţiile Ur1, Ur2, U°r). Ambele operaţii de echilibrare se opresc la obţinerea valorii modulului semnalului de dezechilibru Ude = 0 (vezi fig. 2). În această stare valorile fazei şi modulului impedanţei măsurate constituie respectiv: The balancing of the measuring circuit is carried out by two operations performed simultaneously. For this, the voltage drop across the impedance reproduced by the converter Ur is used as the first reference signal, and the current I, which supplies the measuring circuit, is used as the second reference signal. In the first balancing operation (see Fig. 1), the modulus of the impedance reproduced by the converter Zr is adjusted until a phase shift of 90° is obtained between the unbalance signal and the second reference signal (consecutively, positions Ur1, Ur2, U°r,). In the second balancing operation (see Fig. 2), the phase of the impedance reproduced by the converter φr is adjusted until a phase shift value between the unbalance signal Ude and the first reference signal equal to 0° or 180° is reached (consecutively, positions Ur1, Ur2, U°r). Both balancing operations stop when the value of the unbalance signal modulus Ude = 0 is obtained (see fig. 2). In this state the values of the phase and modulus of the measured impedance are respectively:
ZX = Zr, φx = -φr (4) ZX = Zr, φx = -φr (4)
După cum rezultă din (4), la finisarea procesului de măsurare modulul şi faza impedanţei necunoscute se exprimă respectiv prin modulul şi faza impedanţei de referinţă reproduse de convertor, ceea ce prezintă rezultatul măsurării. As follows from (4), at the end of the measurement process, the modulus and phase of the unknown impedance are expressed respectively by the modulus and phase of the reference impedance reproduced by the converter, which presents the measurement result.
Ca exemplu poate servi măsurarea componentelor unei impedanţe cu valoarea ZX=Zxexp(jφx)= 10(kΩ)·exp(j45°). Valoarea preinstalată a impedanţei reproduse de convertor constituie Zr = Zrexp(jφr) =100(kΩ)·exp(j180°). În prima operaţie de echilibrare (vezi fig. 1) se reglează modulul Zr până la obţinerea defazajului de 90° între semnalul de dezechilibru Ude şi curentul I. În a doua operaţie de echilibrare, efectuată concomitent cu prima (vezi fig. 2), se variază faza φr până la atingerea valorii defazajului între semnalul Ude şi semnalul Ur egale cu 0° sau 180°. Acestei stări îi corespunde valoarea semnalului Ude = 0, ceea ce serveşte ca semnal pentru oprirea procesului de echilibrare. Componentele impedanţei măsurate, conform relaţiilor (4), constituie: Zr = ZX = 10 kΩ, φx = -φr = 45°, ceea ce prezintă rezultatul măsurării. As an example, the measurement of the components of an impedance with the value ZX=Zxexp(jφx)= 10(kΩ)·exp(j45°) can be used. The pre-installed value of the impedance reproduced by the converter is Zr = Zrexp(jφr) =100(kΩ)·exp(j180°). In the first balancing operation (see fig. 1), the Zr module is adjusted until a phase shift of 90° is obtained between the unbalance signal Ude and the current I. In the second balancing operation, performed simultaneously with the first (see fig. 2), the phase φr is varied until a phase shift value between the Ude signal and the Ur signal is reached equal to 0° or 180°. This state corresponds to the value of the Ude signal = 0, which serves as a signal to stop the balancing process. The components of the measured impedance, according to relations (4), are: Zr = ZX = 10 kΩ, φx = -φr = 45°, which presents the measurement result.
1. MD 392 Z 2012.01.31 1. MD 392 Z 2012.01.31
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MDS20120170A MD628Z (en) | 2012-11-23 | 2012-11-23 | Method for measuring the impedance components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MDS20120170A MD628Z (en) | 2012-11-23 | 2012-11-23 | Method for measuring the impedance components |
Publications (2)
Publication Number | Publication Date |
---|---|
MD628Y MD628Y (en) | 2013-04-30 |
MD628Z true MD628Z (en) | 2013-11-30 |
Family
ID=48227617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
MDS20120170A MD628Z (en) | 2012-11-23 | 2012-11-23 | Method for measuring the impedance components |
Country Status (1)
Country | Link |
---|---|
MD (1) | MD628Z (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD790Z (en) * | 2014-03-05 | 2015-01-31 | Технический университет Молдовы | Method for measurement of impedance components |
MD943Z (en) * | 2015-01-30 | 2016-03-31 | Технический университет Молдовы | Method for measuring the impedance components |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2095849C1 (en) * | 1996-04-11 | 1997-11-10 | Институт горного дела СО РАН | Method for automatic control of current of electrochemical cell |
MD2086G2 (en) * | 2001-12-03 | 2003-08-31 | Виталие НАСТАС | Method for measurement of impedance components |
MD2509G2 (en) * | 2004-01-12 | 2005-02-28 | Технический университет Молдовы | Method of impedance components measurement |
MD3578G2 (en) * | 2006-10-19 | 2008-11-30 | Технический университет Молдовы | Method of resistance measurement |
MD3577G2 (en) * | 2006-09-21 | 2008-11-30 | Технический университет Молдовы | Method of measuring the impedance components |
MD3949G2 (en) * | 2008-04-24 | 2010-02-28 | Технический университет Молдовы | Method for resistance measurement |
MD392Z (en) * | 2010-11-25 | 2012-01-31 | Технический университет Молдовы | Method for measuring the impedance components |
MD447Z (en) * | 2011-03-10 | 2012-06-30 | Технический университет Молдовы | Method for measuring the impedance component |
MD591Y (en) * | 2012-09-11 | 2013-01-31 | Univ Tehnica Moldovei | Method for measurement of impedance component |
-
2012
- 2012-11-23 MD MDS20120170A patent/MD628Z/en not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2095849C1 (en) * | 1996-04-11 | 1997-11-10 | Институт горного дела СО РАН | Method for automatic control of current of electrochemical cell |
MD2086G2 (en) * | 2001-12-03 | 2003-08-31 | Виталие НАСТАС | Method for measurement of impedance components |
MD2509G2 (en) * | 2004-01-12 | 2005-02-28 | Технический университет Молдовы | Method of impedance components measurement |
MD3577G2 (en) * | 2006-09-21 | 2008-11-30 | Технический университет Молдовы | Method of measuring the impedance components |
MD3578G2 (en) * | 2006-10-19 | 2008-11-30 | Технический университет Молдовы | Method of resistance measurement |
MD3949G2 (en) * | 2008-04-24 | 2010-02-28 | Технический университет Молдовы | Method for resistance measurement |
MD392Z (en) * | 2010-11-25 | 2012-01-31 | Технический университет Молдовы | Method for measuring the impedance components |
MD447Z (en) * | 2011-03-10 | 2012-06-30 | Технический университет Молдовы | Method for measuring the impedance component |
MD591Y (en) * | 2012-09-11 | 2013-01-31 | Univ Tehnica Moldovei | Method for measurement of impedance component |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD790Z (en) * | 2014-03-05 | 2015-01-31 | Технический университет Молдовы | Method for measurement of impedance components |
MD943Z (en) * | 2015-01-30 | 2016-03-31 | Технический университет Молдовы | Method for measuring the impedance components |
Also Published As
Publication number | Publication date |
---|---|
MD628Y (en) | 2013-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MD3577F1 (en) | Method of measuring the impedance components | |
EP1380256A1 (en) | Living body impedance measurement apparatus | |
MD279Z (en) | Impedance meter | |
MD489Z (en) | Method for measuring the impedance components | |
MD628Z (en) | Method for measuring the impedance components | |
MD3919F1 (en) | Device for measuring the resistance of articles of insulated wire in the process of adjustment to nominal value | |
MD943Z (en) | Method for measuring the impedance components | |
KR101124119B1 (en) | Method for measuring an alternating current which is generated using inverters, and arrangement for carrying out the method | |
MD392Z (en) | Method for measuring the impedance components | |
MD639Z (en) | Impedance meter | |
MD591Z (en) | Method for measurement of impedance component | |
MD490Z (en) | Method for measuring the admittance components | |
MD444Z (en) | Impedance meter | |
CN107479594B (en) | High-precision temperature controller adopting processor module and working method thereof | |
MD445Y (en) | Impedance meter | |
MD859Z (en) | Method for measuring impedance components | |
MD662Z (en) | Method for measuring the impedance components | |
JP2008304458A (en) | Method for measuring electrical parameter of measured object | |
JP2019120695A (en) | Device and method for measuring inductance | |
MD701Z (en) | Impedance converter | |
MD790Z (en) | Method for measurement of impedance components | |
MD873Z (en) | Impedance meter | |
MD985Z (en) | Liquid product impedance meter | |
RU2011101728A (en) | BRIDGE TWO-POLE PARAMETER | |
JP2002340505A (en) | Signal processing apparatus of differential transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG9Y | Short term patent issued | ||
KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |