MD701Z - Impedance converter - Google Patents
Impedance converter Download PDFInfo
- Publication number
- MD701Z MD701Z MDS20130149A MDS20130149A MD701Z MD 701 Z MD701 Z MD 701Z MD S20130149 A MDS20130149 A MD S20130149A MD S20130149 A MDS20130149 A MD S20130149A MD 701 Z MD701 Z MD 701Z
- Authority
- MD
- Moldova
- Prior art keywords
- operational amplifier
- output
- inverting input
- input
- phase
- Prior art date
Links
- 230000003321 amplification Effects 0.000 abstract 2
- 238000003199 nucleic acid amplification method Methods 0.000 abstract 2
- 230000010363 phase shift Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
Invenţia se referă la domeniile tehnicii de măsurare şi radioelectronicii şi poate fi utilizată pentru reproducerea impedanţelor virtuale cu reglare independentă a modulului şi fazei. The invention relates to the fields of measurement technology and radio electronics and can be used for reproducing virtual impedances with independent adjustment of the modulus and phase.
Cea mai apropiată soluţie este convertorul de impedanţă, care conţine un amplificator operaţional cu un rezistor variabil comandat de cod, un amplificator diferenţial şi un defazor - toate conectate în cascadă, ieşirea defazorului fiind conectată la intrarea neinversoare a amplificatorului operaţional, precum şi două cleme, conectate respectiv la intrarea inversoare a amplificatorului operaţional şi la masă. Convertorul asigură reproducerea impedanţelor reprezentate în coordonate polare cu reglare independentă a modulului şi fazei impedanţei reproduse [1]. The closest solution is the impedance converter, which contains an operational amplifier with a variable resistor controlled by the code, a differential amplifier and a phase shifter - all connected in cascade, the output of the phase shifter being connected to the non-inverting input of the operational amplifier, as well as two clamps, connected respectively to the inverting input of the operational amplifier and to ground. The converter ensures the reproduction of impedances represented in polar coordinates with independent adjustment of the modulus and phase of the reproduced impedance [1].
Dezavantajul acestui convertor constă în eroarea considerabilă la reproducerea impedanţelor de valoare mare, cauzată de şuntarea impedanţei reproduse de către impedanţa de intrare a amplificatorului operaţional. The disadvantage of this converter lies in the considerable error in reproducing high-value impedances, caused by the shunting of the reproduced impedance by the input impedance of the operational amplifier.
Problema pe care o rezolvă prezenta invenţie constă în mărirea preciziei convertorului. The problem that the present invention solves consists in increasing the accuracy of the converter.
Convertorul, conform invenţiei, înlătură dezavantajul menţionat mai sus prin aceea că conţine două cleme, primul amplificator operaţional şi al doilea amplificator operaţional cu câte două intrări şi o ieşire fiecare, un rezistor variabil comandat de cod, conectat cu polii între intrarea neinversoare a primului amplificator operaţional şi ieşirea celui de-al doilea amplificator operaţional, un rezistor fix, conectat cu polii între intrarea neinversoare a celui de-al doilea amplificator operaţional şi masă, un amplificator diferenţial cu coeficientul de amplificare unitar, conectat cu intrările, respectiv, la ieşirea şi la intrarea neinversoare a celui de-al doilea amplificator operaţional, un defazor comandat de cod cu posibilitatea reglării fazei în banda de valori 0°…360° şi cu coeficientul de amplificare unitar, conectat cu intrarea la ieşirea amplificatorului diferenţial, iar cu ieşirea - la intrarea neinversoare a celui de-al doilea amplificator operaţional. Primul amplificator operaţional este conectat cu intrarea inversoare la ieşirea sa şi la intrarea inversoare a celui de-al doilea amplificator operaţional, iar clemele sunt conectate, respectiv, la intrarea neinversoare a primului amplificator operaţional şi la masă. The converter, according to the invention, eliminates the above-mentioned disadvantage by containing two terminals, the first operational amplifier and the second operational amplifier with two inputs and one output each, a variable resistor controlled by the code, connected with poles between the non-inverting input of the first operational amplifier and the output of the second operational amplifier, a fixed resistor, connected with poles between the non-inverting input of the second operational amplifier and ground, a differential amplifier with the unity gain coefficient, connected with the inputs, respectively, to the output and to the non-inverting input of the second operational amplifier, a code-controlled phase shifter with the possibility of adjusting the phase in the value band 0°…360° and with the unity gain coefficient, connected with the input to the output of the differential amplifier, and with the output - to the non-inverting input of the second operational amplifier. The first operational amplifier is connected with the inverting input to its output and to the inverting input of the second operational amplifier, and the terminals are connected, respectively, to the non-inverting input of the first operational amplifier and to ground.
Rezultatul invenţiei constă în reproducerea impedanţelor de precizie înaltă, exprimate în coordonate polare şi cu reglare independentă a modulului şi fazei. The result of the invention consists in reproducing high-precision impedances, expressed in polar coordinates and with independent adjustment of the modulus and phase.
Invenţia se explică prin desenul din figură, care reprezintă schema convertorului. The invention is explained by the drawing in the figure, which represents the converter diagram.
Convertorul de impedanţă conţine două cleme 2, 8, primul amplificator operaţional 1 şi al doilea amplificator operaţional 4 cu câte două intrări şi o ieşire fiecare, un rezistor variabil 3 comandat de cod, conectat cu polii între intrarea neinversoare a primului amplificator operaţional 1 şi ieşirea celui de-al doilea amplificator operaţional 4, un rezistor fix 5, conectat cu polii între intrarea neinversoare a celui de-al doilea amplificator operaţional 4 şi masă, un amplificator diferenţial 6 cu coeficientul de amplificare unitar, conectat cu intrările, respectiv, la ieşirea şi la intrarea neinversoare a celui de-al doilea amplificator operaţional 4, un defazor 7 comandat de cod cu posibilitatea reglării fazei în banda de valori 0°…360° şi cu coeficientul de amplificare unitar, conectat cu intrarea la ieşirea amplificatorului diferenţial 6, iar cu ieşirea - la intrarea neinversoare a celui de-al doilea amplificator operaţional 4. Primul amplificator operaţional 1 este conectat cu intrarea inversoare la ieşirea sa şi la intrarea inversoare a celui de-al doilea amplificator operaţional 4, iar clemele 2, 8 sunt conectate, respectiv, la intrarea neinversoare a primului amplificator operaţional 1 şi la masă. The impedance converter contains two terminals 2, 8, the first operational amplifier 1 and the second operational amplifier 4 with two inputs and one output each, a variable resistor 3 controlled by the code, connected with poles between the non-inverting input of the first operational amplifier 1 and the output of the second operational amplifier 4, a fixed resistor 5, connected with poles between the non-inverting input of the second operational amplifier 4 and ground, a differential amplifier 6 with the unity gain coefficient, connected with the inputs, respectively, to the output and to the non-inverting input of the second operational amplifier 4, a phase shifter 7 controlled by the code with the possibility of adjusting the phase in the value band 0°…360° and with the unity gain coefficient, connected with the input to the output of the differential amplifier 6, and with the output - to the non-inverting input of the second operational amplifier 4. The first operational amplifier 1 is connected with the inverting input to its output and to the inverting input of the second operational amplifier 4, and the terminals 2, 8 are connected, respectively, to the non-inverting input of the first operational amplifier 1 and to ground.
Rezistorul variabil 3 posedă o intrare de comandă de cod NR, prin care se asigură reglarea rezistenţei lui, iar defazorul 7 - o intrare de comandă de cod Nφ, prin care se asigură reglarea defazajului φ. The variable resistor 3 has a control input of code NR, through which its resistance is regulated, and the phase shifter 7 - a control input of code Nφ, through which the phase shift φ is regulated.
Convertorul funcţionează în modul următor. The converter operates in the following mode.
Primul amplificator operaţional 1 repetă la ieşire tensiunea de intrare de pe clema 2, asigurând o impedanţă înaltă de intrare. Al doilea amplificator operaţional 4, amplificatorul diferenţial 6 şi defazorul 7 - toate conectate în cascadă, împreună cu rezistorul variabil 3 formează la ieşire tensiunea Ui = Rejφ·Ii, unde R - valoarea rezistenţei rezistorului 3, e - funcţia exponenţială, j - unitatea imaginară, φ - defazajul produs de defazorul 7, Ii - curentul de intrare al convertorului. Impedanţa Zi, reprodusă de convertor la clemele 2 şi 8 se determină: The first operational amplifier 1 repeats at the output the input voltage on terminal 2, ensuring a high input impedance. The second operational amplifier 4, the differential amplifier 6 and the phase shifter 7 - all connected in cascade, together with the variable resistor 3 form at the output the voltage Ui = Rejφ·Ii, where R - the resistance value of the resistor 3, e - the exponential function, j - the imaginary unit, φ - the phase shift produced by the phase shifter 7, Ii - the input current of the converter. The impedance Zi, reproduced by the converter at terminals 2 and 8 is determined:
Zi = Ui/Ii = Rejφ = Zie jφi (1) Zi = Ui/Ii = Rejφ = Zie jφi (1)
unde: Zi - modulul impedanţei reproduse, φi - faza ei. where: Zi - the modulus of the reproduced impedance, φi - its phase.
După cum rezultă din (1), modulul Zi al impedanţei reproduse de convertor Zi este egal cu valoarea rezistenţei R a rezistorului variabil 3, care poate fi reglat prin intermediul codului de comandă NR, iar faza ei φi este egală cu unghiul de fază φ introdus de defazorul 7 şi poate fi reglată cu codul de comandă Nφ. Utilizarea primului amplificator operaţional 1, conectat ca repetor de tensiune, exclude efectul şuntării de către impedanţa de intrare a convertorului a rezistorului variabil 3, ceea ce asigură o precizie înaltă a impedanţei reproduse Zi. As follows from (1), the modulus Zi of the impedance reproduced by the converter Zi is equal to the resistance value R of the variable resistor 3, which can be adjusted by means of the control code NR, and its phase φi is equal to the phase angle φ introduced by the phase shifter 7 and can be adjusted by the control code Nφ. The use of the first operational amplifier 1, connected as a voltage repeater, excludes the effect of shunting by the input impedance of the converter of the variable resistor 3, which ensures a high accuracy of the reproduced impedance Zi.
Spre exemplu, la utilizarea unui rezistor variabil cu banda de reglare a rezistenţei R = (0 ÷ 109) Ω şi a unui defazor cu banda de reglare a defazajului φ = (0…360°), conform relaţiei (1), banda de reglare a modulului impedanţei reproduse de convertor constituie Zi = (0°…109) Ω, iar a fazei φi = (0…360°). For example, when using a variable resistor with a resistance adjustment band R = (0 ÷ 109) Ω and a phase shifter with a phase shift adjustment band φ = (0…360°), according to relation (1), the adjustment band of the impedance modulus reproduced by the converter is Zi = (0°…109) Ω, and of the phase φi = (0…360°).
1. MD 420 Z 2012.04.30 1. MD 420 Z 2012.04.30
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20130149A MD701Z (en) | 2013-08-28 | 2013-08-28 | Impedance converter |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20130149A MD701Z (en) | 2013-08-28 | 2013-08-28 | Impedance converter |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD701Y MD701Y (en) | 2013-11-30 |
| MD701Z true MD701Z (en) | 2014-06-30 |
Family
ID=49724425
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20130149A MD701Z (en) | 2013-08-28 | 2013-08-28 | Impedance converter |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD701Z (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD888Z (en) * | 2014-11-05 | 2015-09-30 | Технический университет Молдовы | Impedance converter |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD740Z (en) * | 2013-08-28 | 2014-09-30 | Технический университет Молдовы | Impedance converter |
| MD818Z (en) * | 2014-02-26 | 2015-04-30 | Технический университет Молдовы | Impedance converter |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD2130G2 (en) * | 2002-01-23 | 2003-09-30 | Технический университет Молдовы | Impedance converter |
| MD2462G2 (en) * | 2003-10-09 | 2004-11-30 | Технический университет Молдовы | Impedance converter |
| MD3111G2 (en) * | 2005-10-04 | 2007-02-28 | Технический университет Молдовы | Admittance converter |
| MD3133G2 (en) * | 2005-10-04 | 2007-03-31 | Технический университет Молдовы | Impedance converter |
| MD3154G2 (en) * | 2005-10-04 | 2007-03-31 | Технический университет Молдовы | Impedance converter |
| MD3173G2 (en) * | 2006-03-21 | 2007-05-31 | Технический университет Молдовы | Impedance converter |
| MD3461G2 (en) * | 2007-03-02 | 2008-09-30 | Технический университет Молдовы | Admittance converter |
| MD90Z (en) * | 2008-12-04 | 2010-04-30 | Технический университет Молдовы | Admittance converter |
| MD248Z (en) * | 2009-07-07 | 2011-02-28 | Технический университет Молдовы | Impedance converter |
| MD420Z (en) * | 2011-01-11 | 2012-04-30 | Технический университет Молдовы | Impedance converter |
| MD672Y (en) * | 2013-01-24 | 2013-08-31 | Univ Tehnica Moldovei | Impedance converter |
-
2013
- 2013-08-28 MD MDS20130149A patent/MD701Z/en not_active IP Right Cessation
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD2130G2 (en) * | 2002-01-23 | 2003-09-30 | Технический университет Молдовы | Impedance converter |
| MD2462G2 (en) * | 2003-10-09 | 2004-11-30 | Технический университет Молдовы | Impedance converter |
| MD3111G2 (en) * | 2005-10-04 | 2007-02-28 | Технический университет Молдовы | Admittance converter |
| MD3133G2 (en) * | 2005-10-04 | 2007-03-31 | Технический университет Молдовы | Impedance converter |
| MD3154G2 (en) * | 2005-10-04 | 2007-03-31 | Технический университет Молдовы | Impedance converter |
| MD3173G2 (en) * | 2006-03-21 | 2007-05-31 | Технический университет Молдовы | Impedance converter |
| MD3461G2 (en) * | 2007-03-02 | 2008-09-30 | Технический университет Молдовы | Admittance converter |
| MD90Z (en) * | 2008-12-04 | 2010-04-30 | Технический университет Молдовы | Admittance converter |
| MD248Z (en) * | 2009-07-07 | 2011-02-28 | Технический университет Молдовы | Impedance converter |
| MD420Z (en) * | 2011-01-11 | 2012-04-30 | Технический университет Молдовы | Impedance converter |
| MD672Y (en) * | 2013-01-24 | 2013-08-31 | Univ Tehnica Moldovei | Impedance converter |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD888Z (en) * | 2014-11-05 | 2015-09-30 | Технический университет Молдовы | Impedance converter |
Also Published As
| Publication number | Publication date |
|---|---|
| MD701Y (en) | 2013-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106153084B (en) | A kind of magnetic sensitivity temperature-compensation circuit and proframmable linear Hall sensor chip | |
| US8988063B2 (en) | System and method for current measurement in the presence of high common mode voltages | |
| CN104798298B (en) | Temperature Independent CMOS RF Power Detector | |
| GB2510393A (en) | An envelope-tracking amplifier with a linear amplifier having an output offset current for improved efficiency | |
| MD701Z (en) | Impedance converter | |
| MD420Y (en) | Impedance converter | |
| MD672Z (en) | Impedance converter | |
| MD740Z (en) | Impedance converter | |
| MD444Y (en) | Impedance meter | |
| MD445Z (en) | Impedance meter | |
| MX374564B (en) | IMPROVEMENTS IN OR RELATING TO DIGITAL OUTPUT CIRCUITS. | |
| CN204707098U (en) | Gain control circuit in a kind of vector addition phase shifter | |
| MD638Z (en) | Impedance converter | |
| MD649Z (en) | Negative resistance converter | |
| MD888Z (en) | Impedance converter | |
| CN206178519U (en) | 0 10V voltage signal changes 10mA electric current signal circuit | |
| RU113441U1 (en) | AMPLIFIER | |
| KR101360648B1 (en) | Instrumentation amplifier using second generation current-conveyer | |
| CN103762949A (en) | Level switching circuit for small-signal change detection | |
| RU2411524C1 (en) | Signal generating device for measuring nonlinear distortions | |
| RU2389034C1 (en) | Device for measuring nonlinear distortions with controlled polar signal | |
| CN201854250U (en) | A Small Angle Phase Shifting Circuit | |
| CN101825476B (en) | High-accuracy signal detection amplifying circuit | |
| MD817Z (en) | Negative resistance converter | |
| MX2017008478A (en) | Fully differential synchronous demodulator circuit. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG9Y | Short term patent issued | ||
| KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |