MD701Z - Impedance converter - Google Patents

Impedance converter Download PDF

Info

Publication number
MD701Z
MD701Z MDS20130149A MDS20130149A MD701Z MD 701 Z MD701 Z MD 701Z MD S20130149 A MDS20130149 A MD S20130149A MD S20130149 A MDS20130149 A MD S20130149A MD 701 Z MD701 Z MD 701Z
Authority
MD
Moldova
Prior art keywords
operational amplifier
output
inverting input
input
phase
Prior art date
Application number
MDS20130149A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Виталие НАСТАС
Original Assignee
Технический университет Молдовы
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Технический университет Молдовы filed Critical Технический университет Молдовы
Priority to MDS20130149A priority Critical patent/MD701Z/en
Publication of MD701Y publication Critical patent/MD701Y/en
Publication of MD701Z publication Critical patent/MD701Z/en

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

The invention relates to the fields of measuring equipment and radio electronics and can be used for the reproduction of virtual impedances with independent regulation of the modulus and phase.The impedance converter comprises two terminals (2, 8), a first operational amplifier (1) and a second operational amplifier (4) with two inputs and one output each, a code-controlled variable resistor (3), connected with the poles between the noninverting input of the first operational amplifier (1) and the output of the second operational amplifier (4), a fixed resistor (5), connected with the poles between the noninverting input of the second operational amplifier (4) and the common wire, a differential amplifier (6) with the unit amplification coefficient, having its inputs connected, respectively, to the output and noninverting input of the second operational amplifier (4), a code-controlled phase shifter (7) with the possibility of phase regulation in the value range of 0°…360° and with the unit amplification coefficient, having its input connected to the output of the differential amplifier (6) and its output - to the noninverting input of the second operational amplifier (4). The first operational amplifier (1) has its inverting input connected to its output and to the inverting input of the second operational amplifier (4), and the terminals (2, 8) are connected, respectively, to the noninverting input of the first operational amplifier (1) and to the common wire.

Description

Invenţia se referă la domeniile tehnicii de măsurare şi radioelectronicii şi poate fi utilizată pentru reproducerea impedanţelor virtuale cu reglare independentă a modulului şi fazei. The invention relates to the fields of measurement technology and radio electronics and can be used for reproducing virtual impedances with independent adjustment of the modulus and phase.

Cea mai apropiată soluţie este convertorul de impedanţă, care conţine un amplificator operaţional cu un rezistor variabil comandat de cod, un amplificator diferenţial şi un defazor - toate conectate în cascadă, ieşirea defazorului fiind conectată la intrarea neinversoare a amplificatorului operaţional, precum şi două cleme, conectate respectiv la intrarea inversoare a amplificatorului operaţional şi la masă. Convertorul asigură reproducerea impedanţelor reprezentate în coordonate polare cu reglare independentă a modulului şi fazei impedanţei reproduse [1]. The closest solution is the impedance converter, which contains an operational amplifier with a variable resistor controlled by the code, a differential amplifier and a phase shifter - all connected in cascade, the output of the phase shifter being connected to the non-inverting input of the operational amplifier, as well as two clamps, connected respectively to the inverting input of the operational amplifier and to ground. The converter ensures the reproduction of impedances represented in polar coordinates with independent adjustment of the modulus and phase of the reproduced impedance [1].

Dezavantajul acestui convertor constă în eroarea considerabilă la reproducerea impedanţelor de valoare mare, cauzată de şuntarea impedanţei reproduse de către impedanţa de intrare a amplificatorului operaţional. The disadvantage of this converter lies in the considerable error in reproducing high-value impedances, caused by the shunting of the reproduced impedance by the input impedance of the operational amplifier.

Problema pe care o rezolvă prezenta invenţie constă în mărirea preciziei convertorului. The problem that the present invention solves consists in increasing the accuracy of the converter.

Convertorul, conform invenţiei, înlătură dezavantajul menţionat mai sus prin aceea că conţine două cleme, primul amplificator operaţional şi al doilea amplificator operaţional cu câte două intrări şi o ieşire fiecare, un rezistor variabil comandat de cod, conectat cu polii între intrarea neinversoare a primului amplificator operaţional şi ieşirea celui de-al doilea amplificator operaţional, un rezistor fix, conectat cu polii între intrarea neinversoare a celui de-al doilea amplificator operaţional şi masă, un amplificator diferenţial cu coeficientul de amplificare unitar, conectat cu intrările, respectiv, la ieşirea şi la intrarea neinversoare a celui de-al doilea amplificator operaţional, un defazor comandat de cod cu posibilitatea reglării fazei în banda de valori 0°…360° şi cu coeficientul de amplificare unitar, conectat cu intrarea la ieşirea amplificatorului diferenţial, iar cu ieşirea - la intrarea neinversoare a celui de-al doilea amplificator operaţional. Primul amplificator operaţional este conectat cu intrarea inversoare la ieşirea sa şi la intrarea inversoare a celui de-al doilea amplificator operaţional, iar clemele sunt conectate, respectiv, la intrarea neinversoare a primului amplificator operaţional şi la masă. The converter, according to the invention, eliminates the above-mentioned disadvantage by containing two terminals, the first operational amplifier and the second operational amplifier with two inputs and one output each, a variable resistor controlled by the code, connected with poles between the non-inverting input of the first operational amplifier and the output of the second operational amplifier, a fixed resistor, connected with poles between the non-inverting input of the second operational amplifier and ground, a differential amplifier with the unity gain coefficient, connected with the inputs, respectively, to the output and to the non-inverting input of the second operational amplifier, a code-controlled phase shifter with the possibility of adjusting the phase in the value band 0°…360° and with the unity gain coefficient, connected with the input to the output of the differential amplifier, and with the output - to the non-inverting input of the second operational amplifier. The first operational amplifier is connected with the inverting input to its output and to the inverting input of the second operational amplifier, and the terminals are connected, respectively, to the non-inverting input of the first operational amplifier and to ground.

Rezultatul invenţiei constă în reproducerea impedanţelor de precizie înaltă, exprimate în coordonate polare şi cu reglare independentă a modulului şi fazei. The result of the invention consists in reproducing high-precision impedances, expressed in polar coordinates and with independent adjustment of the modulus and phase.

Invenţia se explică prin desenul din figură, care reprezintă schema convertorului. The invention is explained by the drawing in the figure, which represents the converter diagram.

Convertorul de impedanţă conţine două cleme 2, 8, primul amplificator operaţional 1 şi al doilea amplificator operaţional 4 cu câte două intrări şi o ieşire fiecare, un rezistor variabil 3 comandat de cod, conectat cu polii între intrarea neinversoare a primului amplificator operaţional 1 şi ieşirea celui de-al doilea amplificator operaţional 4, un rezistor fix 5, conectat cu polii între intrarea neinversoare a celui de-al doilea amplificator operaţional 4 şi masă, un amplificator diferenţial 6 cu coeficientul de amplificare unitar, conectat cu intrările, respectiv, la ieşirea şi la intrarea neinversoare a celui de-al doilea amplificator operaţional 4, un defazor 7 comandat de cod cu posibilitatea reglării fazei în banda de valori 0°…360° şi cu coeficientul de amplificare unitar, conectat cu intrarea la ieşirea amplificatorului diferenţial 6, iar cu ieşirea - la intrarea neinversoare a celui de-al doilea amplificator operaţional 4. Primul amplificator operaţional 1 este conectat cu intrarea inversoare la ieşirea sa şi la intrarea inversoare a celui de-al doilea amplificator operaţional 4, iar clemele 2, 8 sunt conectate, respectiv, la intrarea neinversoare a primului amplificator operaţional 1 şi la masă. The impedance converter contains two terminals 2, 8, the first operational amplifier 1 and the second operational amplifier 4 with two inputs and one output each, a variable resistor 3 controlled by the code, connected with poles between the non-inverting input of the first operational amplifier 1 and the output of the second operational amplifier 4, a fixed resistor 5, connected with poles between the non-inverting input of the second operational amplifier 4 and ground, a differential amplifier 6 with the unity gain coefficient, connected with the inputs, respectively, to the output and to the non-inverting input of the second operational amplifier 4, a phase shifter 7 controlled by the code with the possibility of adjusting the phase in the value band 0°…360° and with the unity gain coefficient, connected with the input to the output of the differential amplifier 6, and with the output - to the non-inverting input of the second operational amplifier 4. The first operational amplifier 1 is connected with the inverting input to its output and to the inverting input of the second operational amplifier 4, and the terminals 2, 8 are connected, respectively, to the non-inverting input of the first operational amplifier 1 and to ground.

Rezistorul variabil 3 posedă o intrare de comandă de cod NR, prin care se asigură reglarea rezistenţei lui, iar defazorul 7 - o intrare de comandă de cod Nφ, prin care se asigură reglarea defazajului φ. The variable resistor 3 has a control input of code NR, through which its resistance is regulated, and the phase shifter 7 - a control input of code Nφ, through which the phase shift φ is regulated.

Convertorul funcţionează în modul următor. The converter operates in the following mode.

Primul amplificator operaţional 1 repetă la ieşire tensiunea de intrare de pe clema 2, asigurând o impedanţă înaltă de intrare. Al doilea amplificator operaţional 4, amplificatorul diferenţial 6 şi defazorul 7 - toate conectate în cascadă, împreună cu rezistorul variabil 3 formează la ieşire tensiunea Ui = Rejφ·Ii, unde R - valoarea rezistenţei rezistorului 3, e - funcţia exponenţială, j - unitatea imaginară, φ - defazajul produs de defazorul 7, Ii - curentul de intrare al convertorului. Impedanţa Zi, reprodusă de convertor la clemele 2 şi 8 se determină: The first operational amplifier 1 repeats at the output the input voltage on terminal 2, ensuring a high input impedance. The second operational amplifier 4, the differential amplifier 6 and the phase shifter 7 - all connected in cascade, together with the variable resistor 3 form at the output the voltage Ui = Rejφ·Ii, where R - the resistance value of the resistor 3, e - the exponential function, j - the imaginary unit, φ - the phase shift produced by the phase shifter 7, Ii - the input current of the converter. The impedance Zi, reproduced by the converter at terminals 2 and 8 is determined:

Zi = Ui/Ii = Rejφ = Zie jφi (1) Zi = Ui/Ii = Rejφ = Zie jφi (1)

unde: Zi - modulul impedanţei reproduse, φi - faza ei. where: Zi - the modulus of the reproduced impedance, φi - its phase.

După cum rezultă din (1), modulul Zi al impedanţei reproduse de convertor Zi este egal cu valoarea rezistenţei R a rezistorului variabil 3, care poate fi reglat prin intermediul codului de comandă NR, iar faza ei φi este egală cu unghiul de fază φ introdus de defazorul 7 şi poate fi reglată cu codul de comandă Nφ. Utilizarea primului amplificator operaţional 1, conectat ca repetor de tensiune, exclude efectul şuntării de către impedanţa de intrare a convertorului a rezistorului variabil 3, ceea ce asigură o precizie înaltă a impedanţei reproduse Zi. As follows from (1), the modulus Zi of the impedance reproduced by the converter Zi is equal to the resistance value R of the variable resistor 3, which can be adjusted by means of the control code NR, and its phase φi is equal to the phase angle φ introduced by the phase shifter 7 and can be adjusted by the control code Nφ. The use of the first operational amplifier 1, connected as a voltage repeater, excludes the effect of shunting by the input impedance of the converter of the variable resistor 3, which ensures a high accuracy of the reproduced impedance Zi.

Spre exemplu, la utilizarea unui rezistor variabil cu banda de reglare a rezistenţei R = (0 ÷ 109) Ω şi a unui defazor cu banda de reglare a defazajului φ = (0…360°), conform relaţiei (1), banda de reglare a modulului impedanţei reproduse de convertor constituie Zi = (0°…109) Ω, iar a fazei φi = (0…360°). For example, when using a variable resistor with a resistance adjustment band R = (0 ÷ 109) Ω and a phase shifter with a phase shift adjustment band φ = (0…360°), according to relation (1), the adjustment band of the impedance modulus reproduced by the converter is Zi = (0°…109) Ω, and of the phase φi = (0…360°).

1. MD 420 Z 2012.04.30 1. MD 420 Z 2012.04.30

Claims (1)

Convertor de impedanţă, care conţine două cleme (2, 8), primul amplificator operaţional (1) şi al doilea amplificator operaţional (4) cu câte două intrări şi o ieşire fiecare, un rezistor variabil (3) comandat de cod, conectat cu polii între intrarea neinversoare a primului amplificator operaţional (1) şi ieşirea celui de-al doilea amplificator operaţional (4), un rezistor fix (5), conectat cu polii între intrarea neinversoare a celui de-al doilea amplificator operaţional (4) şi masă, un amplificator diferenţial (6) cu coeficientul de amplificare unitar, conectat cu intrările, respectiv, la ieşirea şi la intrarea neinversoare a celui de-al doilea amplificator operaţional (4), un defazor (7) comandat de cod cu posibilitatea reglării fazei în banda de valori 0°…360° şi cu coeficientul de amplificare unitar, conectat cu intrarea la ieşirea amplificatorului diferenţial (6), iar cu ieşirea - la intrarea neinversoare a celui de-al doilea amplificator operaţional (4), totodată primul amplificator operaţional (1) este conectat cu intrarea inversoare la ieşirea sa şi la intrarea inversoare a celui de-al doilea amplificator operaţional (4), iar clemele (2, 8) sunt conectate, respectiv, la intrarea neinversoare a primului amplificator operaţional (1) şi la masă.Impedance converter, comprising two terminals (2, 8), a first operational amplifier (1) and a second operational amplifier (4) with two inputs and one output each, a variable resistor (3) controlled by the code, connected with poles between the non-inverting input of the first operational amplifier (1) and the output of the second operational amplifier (4), a fixed resistor (5) connected with poles between the non-inverting input of the second operational amplifier (4) and ground, a differential amplifier (6) with a unity gain, connected with inputs, respectively, to the output and to the non-inverting input of the second operational amplifier (4), a phase shifter (7) controlled by the code with the possibility of adjusting the phase in the value range 0°…360° and with a unity gain, connected with the input to the output of the differential amplifier (6), and with the output - to the non-inverting input of the of the second operational amplifier (4), at the same time the first operational amplifier (1) is connected with the inverting input to its output and to the inverting input of the second operational amplifier (4), and the terminals (2, 8) are connected, respectively, to the non-inverting input of the first operational amplifier (1) and to ground.
MDS20130149A 2013-08-28 2013-08-28 Impedance converter MD701Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20130149A MD701Z (en) 2013-08-28 2013-08-28 Impedance converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20130149A MD701Z (en) 2013-08-28 2013-08-28 Impedance converter

Publications (2)

Publication Number Publication Date
MD701Y MD701Y (en) 2013-11-30
MD701Z true MD701Z (en) 2014-06-30

Family

ID=49724425

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20130149A MD701Z (en) 2013-08-28 2013-08-28 Impedance converter

Country Status (1)

Country Link
MD (1) MD701Z (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD888Z (en) * 2014-11-05 2015-09-30 Технический университет Молдовы Impedance converter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD740Z (en) * 2013-08-28 2014-09-30 Технический университет Молдовы Impedance converter
MD818Z (en) * 2014-02-26 2015-04-30 Технический университет Молдовы Impedance converter

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD2130G2 (en) * 2002-01-23 2003-09-30 Технический университет Молдовы Impedance converter
MD2462G2 (en) * 2003-10-09 2004-11-30 Технический университет Молдовы Impedance converter
MD3111G2 (en) * 2005-10-04 2007-02-28 Технический университет Молдовы Admittance converter
MD3133G2 (en) * 2005-10-04 2007-03-31 Технический университет Молдовы Impedance converter
MD3154G2 (en) * 2005-10-04 2007-03-31 Технический университет Молдовы Impedance converter
MD3173G2 (en) * 2006-03-21 2007-05-31 Технический университет Молдовы Impedance converter
MD3461G2 (en) * 2007-03-02 2008-09-30 Технический университет Молдовы Admittance converter
MD90Z (en) * 2008-12-04 2010-04-30 Технический университет Молдовы Admittance converter
MD248Z (en) * 2009-07-07 2011-02-28 Технический университет Молдовы Impedance converter
MD420Z (en) * 2011-01-11 2012-04-30 Технический университет Молдовы Impedance converter
MD672Y (en) * 2013-01-24 2013-08-31 Univ Tehnica Moldovei Impedance converter
  • 2013

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD2130G2 (en) * 2002-01-23 2003-09-30 Технический университет Молдовы Impedance converter
MD2462G2 (en) * 2003-10-09 2004-11-30 Технический университет Молдовы Impedance converter
MD3111G2 (en) * 2005-10-04 2007-02-28 Технический университет Молдовы Admittance converter
MD3133G2 (en) * 2005-10-04 2007-03-31 Технический университет Молдовы Impedance converter
MD3154G2 (en) * 2005-10-04 2007-03-31 Технический университет Молдовы Impedance converter
MD3173G2 (en) * 2006-03-21 2007-05-31 Технический университет Молдовы Impedance converter
MD3461G2 (en) * 2007-03-02 2008-09-30 Технический университет Молдовы Admittance converter
MD90Z (en) * 2008-12-04 2010-04-30 Технический университет Молдовы Admittance converter
MD248Z (en) * 2009-07-07 2011-02-28 Технический университет Молдовы Impedance converter
MD420Z (en) * 2011-01-11 2012-04-30 Технический университет Молдовы Impedance converter
MD672Y (en) * 2013-01-24 2013-08-31 Univ Tehnica Moldovei Impedance converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD888Z (en) * 2014-11-05 2015-09-30 Технический университет Молдовы Impedance converter

Also Published As

Publication number Publication date
MD701Y (en) 2013-11-30

Similar Documents

Publication Publication Date Title
CN106153084B (en) A kind of magnetic sensitivity temperature-compensation circuit and proframmable linear Hall sensor chip
US8988063B2 (en) System and method for current measurement in the presence of high common mode voltages
CN104798298B (en) Temperature Independent CMOS RF Power Detector
GB2510393A (en) An envelope-tracking amplifier with a linear amplifier having an output offset current for improved efficiency
MD701Z (en) Impedance converter
MD420Y (en) Impedance converter
MD672Z (en) Impedance converter
MD740Z (en) Impedance converter
MD444Y (en) Impedance meter
MD445Z (en) Impedance meter
MX374564B (en) IMPROVEMENTS IN OR RELATING TO DIGITAL OUTPUT CIRCUITS.
CN204707098U (en) Gain control circuit in a kind of vector addition phase shifter
MD638Z (en) Impedance converter
MD649Z (en) Negative resistance converter
MD888Z (en) Impedance converter
CN206178519U (en) 0 10V voltage signal changes 10mA electric current signal circuit
RU113441U1 (en) AMPLIFIER
KR101360648B1 (en) Instrumentation amplifier using second generation current-conveyer
CN103762949A (en) Level switching circuit for small-signal change detection
RU2411524C1 (en) Signal generating device for measuring nonlinear distortions
RU2389034C1 (en) Device for measuring nonlinear distortions with controlled polar signal
CN201854250U (en) A Small Angle Phase Shifting Circuit
CN101825476B (en) High-accuracy signal detection amplifying circuit
MD817Z (en) Negative resistance converter
MX2017008478A (en) Fully differential synchronous demodulator circuit.

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)