MD672Z - Impedance converter - Google Patents

Impedance converter

Info

Publication number
MD672Z
MD672Z MDS20130010A MDS20130010A MD672Z MD 672 Z MD672 Z MD 672Z MD S20130010 A MDS20130010 A MD S20130010A MD S20130010 A MDS20130010 A MD S20130010A MD 672 Z MD672 Z MD 672Z
Authority
MD
Moldova
Prior art keywords
output
operational amplifier
phase
input
inverting input
Prior art date
Application number
MDS20130010A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Виталие НАСТАС
Original Assignee
Технический университет Молдовы
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Технический университет Молдовы filed Critical Технический университет Молдовы
Priority to MDS20130010A priority Critical patent/MD672Z/en
Publication of MD672Y publication Critical patent/MD672Y/en
Publication of MD672Z publication Critical patent/MD672Z/en

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

The invention relates to the fields of measurement technology and radioelectronics and can be used for reproduction of high-precision virtual impedances with independent regulation of components in polar coordinates.The impedance converter comprises an operational amplifier (1) with two inputs and one output, a code-controllable variable resistor (3), connected with the poles respectively to the inverting input and to the output of the operational amplifier (1), a fixed resistor (4), connected between the noninverting input of the operational amplifier (1) and the common wire, a differential amplifier (5) with the unit amplification coefficient, having its inputs connected, respectively, to the output and to the noninverting input of the operational amplifier (1), a code-controllable phase shifter (6) with the possibility of controlling the phase in the range of values 0°…360° and with the unit amplification coefficient, having its input connected to the output of the differential amplifier (5), and two terminals (2 and 8), connected, respectively, to the inverting input of the operational amplifier (1) and to the common wire. The converter further comprises a phase corrector (7) with the installed value of the phase shift, equal to the negative phase shift error value acquired in the signal passage through the converter stages, having its input connected to the output of the phase shifter (6) and its output - to the noninverting input of the operational amplifier (1).

Description

Invenţia se referă la domeniile tehnicii de măsurare şi radioelectronicii şi poate fi utilizată pentru reproducerea impedanţelor virtuale de precizie înaltă cu reglare independentă a componentelor în coordonate polare. The invention relates to the fields of measurement technique and radioelectronics and can be used for the reproduction of high-precision virtual impedances with independent adjustment of the components in polar coordinates.

Cea mai apropiată soluţie este un convertor de impedanţă, care conţine un amplificator operaţional cu un rezistor variabil comandat în cod, conectat în reacţia negativă, un amplificator diferenţial şi un defazor comandat în cod - toate conectate în cascadă, ieşirea defazorului fiind conectată la intrarea neinversoare a amplificatorului operaţional, precum şi două cleme, conectate respectiv la intrarea inversoare a amplificatorului operaţional şi la masă. Convertorul asigură reproducerea impedanţelor reprezentate în coordonate polare cu reglare independentă a modulului şi fazei impedanţei reproduse [1]. The closest solution is an impedance converter, which contains an op-amp with a code-controlled variable resistor connected in negative feedback, a differential amplifier and a code-controlled phase shifter - all connected in cascade, with the output of the phase shifter connected to the non-inverting input of the operational amplifier, as well as two terminals, respectively connected to the inverting input of the operational amplifier and to ground. The converter ensures the reproduction of the impedances represented in polar coordinates with independent adjustment of the module and the phase of the reproduced impedance [1].

Dezavantajul acestui convertor constă în eroarea considerabilă de instalare a defazajului, cauzată de defazajul parazitar acumulat la trecerea semnalului prin etajele convertorului. The disadvantage of this converter consists in the considerable error of establishing the phase shift, caused by the parasitic phase shift accumulated when the signal passes through the stages of the converter.

Problema pe care o rezolvă invenţia este mărirea preciziei convertorului. The problem that the invention solves is increasing the accuracy of the converter.

Convertorul, conform invenţiei, înlătură dezavantajul menţionat mai sus prin aceea că conţine un amplificator operaţional cu două intrări şi o ieşire, un rezistor variabil comandat în cod, conectat cu polii respectiv la intrarea inversoare şi la ieşirea amplificatorului operaţional, un rezistor fix, conectat între intrarea neinversoare a amplificatorului operaţional şi masă, un amplificator diferenţial cu coeficientul de amplificare unitar, conectat cu intrările respectiv la ieşirea şi la intrarea neinversoare ale amplificatorului operaţional, un defazor comandat în cod cu posibilitatea reglării fazei în banda de valori 0°…360° şi cu coeficientul de amplificare unitar, conectat cu intrarea la ieşirea amplificatorului diferenţial, precum şi două cleme, conectate respectiv la intrarea inversoare a amplificatorului operaţional şi la masă. Convertorul mai conţine un corector de fază cu valoarea instalată a defazajului, egală cu valoarea negativă a erorii de defazaj acumulate la trecerea semnalului prin etajele convertorului, conectat cu intrarea la ieşirea defazorului, iar cu ieşirea - la intrarea neinversoare a amplificatorului operaţional. The converter, according to the invention, removes the disadvantage mentioned above in that it contains an operational amplifier with two inputs and one output, a variable resistor controlled in the code, connected with respective poles to the inverting input and to the output of the operational amplifier, a fixed resistor, connected between the non-inverting input of the operational amplifier and ground, a differential amplifier with the unity amplification coefficient, connected with the inputs respectively to the output and to the non-inverting input of the operational amplifier, a code-controlled phase shifter with the possibility of adjusting the phase in the band of values 0°...360° and with the unity amplification coefficient, connected with the input to the output of the differential amplifier, as well as two clamps, respectively connected to the inverting input of the operational amplifier and to ground. The converter also contains a phase corrector with the installed value of the phase shift, equal to the negative value of the phase shift error accumulated when the signal passes through the stages of the converter, connected with the input to the output of the phase shifter, and with the output - to the non-inverting input of the operational amplifier.

Rezultatul invenţiei prezintă un convertor de impedanţă pentru reproducerea impedanţelor de precizie înaltă, exprimate în coordonate polare şi cu reglare independentă a componentelor. The result of the invention presents an impedance converter for the reproduction of high-precision impedances, expressed in polar coordinates and with independent adjustment of the components.

Invenţia se explică prin desenul din figură, care reprezintă schema convertorului. The invention is explained by the drawing in the figure, which represents the scheme of the converter.

Convertorul de impedanţă conţine amplificatorul operaţional 1, conectat cu intrarea inversoare la clema 2 şi la un pol al rezistorului variabil 3 comandat în cod, iar cu intrarea neinversoare - la un pol al rezistorului fix 4, amplificatorul diferenţial 5, conectat cu intrările respectiv la ieşirea şi la intrarea neinversoare ale amplificatorului operaţional 1, defazorul 6 comandat în cod, conectat cu intrarea la ieşirea amplificatorului diferenţial 5, precum şi corectorul de fază 7, conectat cu intrarea la ieşirea defazorului 6, iar cu ieşirea - la intrarea neinversoare a amplificatorului operaţional 1. Al doilea pol al rezistorului 4 este conectat împreună cu a doua clemă 8 la masă. Rezistorul 3 este dotat cu o intrare de comandă în cod NR, prin care se asigură reglarea rezistenţei lui, defazorul 6 - cu o intrare de comandă în cod Nφ, prin care se asigură reglarea defazajului φ, iar valoarea instalată a defazajului corectorului de fază 7 este egală cu valoarea negativă a defazajului parazitar, acumulat la trecerea semnalului prin etajele convertorului. The impedance converter contains the operational amplifier 1, connected with the inverting input to terminal 2 and to one pole of the variable resistor 3 controlled in the code, and with the non-inverting input - to one pole of the fixed resistor 4, the differential amplifier 5, connected with the inputs respectively to the output and to the non-inverting input of the operational amplifier 1, the phase shifter 6 controlled in the code, connected with the input to the output of the differential amplifier 5, as well as the phase corrector 7, connected with the input to the output of the phase shifter 6, and with the output - to the non-inverting input of the operational amplifier 1 .The second pole of the resistor 4 is connected together with the second terminal 8 to ground. Resistor 3 is equipped with a command input in NR code, which ensures the adjustment of its resistance, phase shifter 6 - with a command input in Nφ code, which ensures the adjustment of the phase shift φ, and the installed value of the phase shift of the phase corrector 7 is equal to the negative value of the parasitic phase shift, accumulated when the signal passes through the stages of the converter.

Convertorul funcţionează în modul următor. The converter works in the following way.

Amplificatorul operaţional 1 şi rezistorul 3 cu rezistenţa R formează un convertor de curent în tensiune. Tensiunea U1 la ieşirea acestuia constituie: Operational amplifier 1 and resistor 3 with resistance R form a current-to-voltage converter. The voltage U1 at its output is:

U1 = - Ii · R + Ui (1) U1 = - Ii · R + Ui (1)

unde: Ii - curentul de intrare; where: Ii - input current;

Ui - căderea de tensiune pe rezistorul 4. Ui - voltage drop across resistor 4.

Tensiunea U2 la ieşirea amplificatorului diferenţial 5, luând în consideraţie relaţia (1), este: The voltage U2 at the output of the differential amplifier 5, taking into account relation (1), is:

U2 = Kd · (Ui - U1) = Ii · R (2) U2 = Kd · (Ui - U1) = Ii · R (2)

unde: Kd = 1 - coeficientul de amplificare al amplificatorului diferenţial 5. where: Kd = 1 - the amplification coefficient of the differential amplifier 5.

Tensiunea U3 la ieşirea defazorului 6: Voltage U3 at the output of phase shifter 6:

U3 = Kφ · U2 = R · Mejφ · Ii = Rejφ · Ii (3) U3 = Kφ U2 = R Mejφ Ii = Rejφ Ii (3)

unde: Kφ = Mejφ = 1 · ejφ - factorul de transfer al defazorului 6. where: Kφ = Mejφ = 1 · ejφ - the phase shifter transfer factor 6.

La trecerea semnalului prin etajele convertorului se acumulează o eroare de defazaj sumară Δφs, care duce la un defazaj de eroare a tensiunii U3, egal cu: Δφs = ΔφAO + ΔφAD + ΔφDP, unde ΔφAO - eroarea de fază a amplificatorului operaţional 1, ΔφAD - eroarea de fază a amplificatorului diferenţial 5, ΔφDP - eroarea de fază a defazorului 6. Corectorului de fază 7 i se instalează valoarea de corecţie a defazajului Δφcor = -Δφs, ceea ce exclude eroarea de defazaj acumulată Δφs. When the signal passes through the stages of the converter, a summary phase shift error Δφs accumulates, which leads to a phase shift error of the voltage U3, equal to: Δφs = ΔφAO + ΔφAD + ΔφDP, where ΔφAO - the phase error of operational amplifier 1, ΔφAD - the phase error of the differential amplifier 5, ΔφDP - the phase error of the phase shifter 6. The phase correction value Δφcor = -Δφs is installed to the phase corrector 7, which excludes the accumulated phase shift error Δφs.

Impedanţa Zi, reprodusă de convertor la clemele 2 şi 7, se determină: Impedance Zi, reproduced by the converter at terminals 2 and 7, is determined:

Zi = Ui/Ii = R ejφ ≡ Zi ejφi (4) Zi = Ui/Ii = R ejφ ≡ Zi ejφi (4)

unde: Zi - modulul impedanţei reproduse; where: Zi - the reproduced impedance module;

φi - faza ei. φi - its phase.

După cum rezultă din relaţia (4), modulul Zi al impedanţei reproduse de convertor Zi este egal cu valoarea rezistenţei R a rezistorului variabil 3 şi poate fi reglată prin intermediul codului de comandă NR, iar faza ei φi este egală cu unghiul de fază φ introdus de defazorul 6 şi corespunde valorii codului de comandă Nφ. As it follows from relation (4), the module Zi of the impedance reproduced by the converter Zi is equal to the value of the resistance R of the variable resistor 3 and can be adjusted by means of the command code NR, and its phase φi is equal to the phase angle φ entered by the phase shifter 6 and corresponds to the value of the command code Nφ.

De exemplu, la utilizarea unui rezistor variabil cu banda de reglare a rezistenţei R = 0…106 Ω şi a unui defazor cu banda de reglare a defazajului φ = 0…360°, defazajul parazitar sumar Δφs poate constitui 30°. Atunci corectorului de fază i se instalează valoarea de corecţie a defazajului Δφcor = -30°, ceea ce duce la un defazaj parazitar sumar de 0°. Conform relaţiei (4), banda de reglare a modulului impedanţei reproduse de convertor constituie Zi = 0…106 Ω, iar a fazei φi = 0…360°. For example, when using a variable resistor with the resistance adjustment band R = 0...106 Ω and a phase shifter with the phase shift adjustment band φ = 0...360°, the total parasitic phase shift Δφs can be 30°. Then the phase corrector is set to the phase shift correction value Δφcor = -30°, which leads to a total parasitic phase shift of 0°. According to relation (4), the adjustment band of the impedance module reproduced by the converter is Zi = 0...106 Ω, and of the phase φi = 0...360°.

1. MD 420 Y 2011.09.30 1. MD 420 Y 2011.09.30

Claims (1)

Convertor de impedanţă, care conţine un amplificator operaţional cu două intrări şi o ieşire, un rezistor variabil comandat în cod, conectat cu polii respectiv la intrarea inversoare şi la ieşirea amplificatorului operaţional, un rezistor fix, conectat între intrarea neinversoare a amplificatorului operaţional şi masă, un amplificator diferenţial cu coeficientul de amplificare unitar, conectat cu intrările respectiv la ieşirea şi la intrarea neinversoare ale amplificatorului operaţional, un defazor comandat în cod cu posibilitatea reglării fazei în banda de valori 0°…360° şi cu coeficientul de amplificare unitar, conectat cu intrarea la ieşirea amplificatorului diferenţial, precum şi două cleme, conectate respectiv la intrarea inversoare a amplificatorului operaţional şi la masă, caracterizat prin aceea că mai conţine un corector de fază cu valoarea instalată a defazajului, egală cu valoarea negativă a erorii de defazaj acumulate la trecerea semnalului prin etajele convertorului, conectat cu intrarea la ieşirea defazorului, iar cu ieşirea - la intrarea neinversoare a amplificatorului operaţional.Impedance converter, which contains an operational amplifier with two inputs and one output, a variable resistor controlled in the code, connected with respective poles to the inverting input and to the output of the operational amplifier, a fixed resistor, connected between the non-inverting input of the operational amplifier and ground, a differential amplifier with the unity amplification coefficient, connected to the inputs respectively to the output and to the non-inverting input of the operational amplifier, a code-controlled phase shifter with the possibility of adjusting the phase in the band of values 0°...360° and with the unity amplification coefficient, connected with the input to the output of the differential amplifier, as well as two terminals, respectively connected to the inverting input of the operational amplifier and to ground, characterized by the fact that it also contains a phase corrector with the installed value of the phase shift, equal to the negative value of the accumulated phase shift error during the transition of the signal through the stages of the converter, connected with the input to the output of the phase shifter, and with the output - to the non-inverting input of the operational amplifier.
MDS20130010A 2013-01-24 2013-01-24 Impedance converter MD672Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20130010A MD672Z (en) 2013-01-24 2013-01-24 Impedance converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20130010A MD672Z (en) 2013-01-24 2013-01-24 Impedance converter

Publications (2)

Publication Number Publication Date
MD672Y MD672Y (en) 2013-08-31
MD672Z true MD672Z (en) 2014-03-31

Family

ID=49117544

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20130010A MD672Z (en) 2013-01-24 2013-01-24 Impedance converter

Country Status (1)

Country Link
MD (1) MD672Z (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD888Z (en) * 2014-11-05 2015-09-30 Технический университет Молдовы Impedance converter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD701Z (en) * 2013-08-28 2014-06-30 Технический университет Молдовы Impedance converter
MD740Z (en) * 2013-08-28 2014-09-30 Технический университет Молдовы Impedance converter
MD818Z (en) * 2014-02-26 2015-04-30 Технический университет Молдовы Impedance converter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD3154G2 (en) * 2005-10-04 2007-03-31 Технический университет Молдовы Impedance converter
MD3173G2 (en) * 2006-03-21 2007-05-31 Технический университет Молдовы Impedance converter
MD90Z (en) * 2008-12-04 2010-04-30 Технический университет Молдовы Admittance converter
MD195Z (en) * 2009-05-06 2010-11-30 Технический университет Молдовы Impedance converter
MD248Z (en) * 2009-07-07 2011-02-28 Технический университет Молдовы Impedance converter
MD420Y (en) * 2011-01-11 2011-09-30 Univ Tehnica Moldovei Impedance converter
MD446Z (en) * 2011-03-04 2012-06-30 Технический университет Молдовы Admittance converter
  • 2013

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD3154G2 (en) * 2005-10-04 2007-03-31 Технический университет Молдовы Impedance converter
MD3173G2 (en) * 2006-03-21 2007-05-31 Технический университет Молдовы Impedance converter
MD90Z (en) * 2008-12-04 2010-04-30 Технический университет Молдовы Admittance converter
MD195Z (en) * 2009-05-06 2010-11-30 Технический университет Молдовы Impedance converter
MD248Z (en) * 2009-07-07 2011-02-28 Технический университет Молдовы Impedance converter
MD420Y (en) * 2011-01-11 2011-09-30 Univ Tehnica Moldovei Impedance converter
MD446Z (en) * 2011-03-04 2012-06-30 Технический университет Молдовы Admittance converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD888Z (en) * 2014-11-05 2015-09-30 Технический университет Молдовы Impedance converter

Also Published As

Publication number Publication date
MD672Y (en) 2013-08-31

Similar Documents

Publication Publication Date Title
JP2016520241A5 (en)
CN203882224U (en) Program-controlled constant-current source circuit
MD672Z (en) Impedance converter
CN103441482A (en) Current monitoring circuit with accurate current-limit function
CN105005349A (en) Overcurrent protection circuit, semiconductor device and voltage regulator
CN105334898B (en) A kind of voltage regulator control circuit in AC voltage regulator
CN203759094U (en) Direct-current bus voltage detection circuit of variable-frequency speed governor
MD701Z (en) Impedance converter
CN204009924U (en) A kind of high precision absolute value circuit
CN204044342U (en) Two-way hysteresis comparator circuit and magnetic sensor circuit
CN102393775A (en) Voltage-current converting circuit
CN103066843A (en) A switching power supply voltage detection circuit and its acquisition method
RU2011151331A (en) ELECTRONIC FIBER OPTICAL GYROSCOPE
CN208258144U (en) A kind of positive alternating current sampling circuit altogether with output voltage clamper
CN202331248U (en) Power source stabilizing device with one power source and capable of regulating voltage from zero volt
MD740Z (en) Impedance converter
CN103791955A (en) Electromagnetic flowmeter energizing circuit based on magnetic field measurement
CN104697658B (en) A kind of sensor circuit
CN109039294A (en) Computer signal automatic calibration circuit
CN104062984B (en) A kind of single axis gimbal system for regulating angle
CN202956422U (en) Novel precision current detection circuit
CN202663365U (en) Comparator offset voltage correcting circuit
CN204119101U (en) A kind of many loop powers drive unit of motor
CN206178519U (en) 0 10V voltage signal changes 10mA electric current signal circuit
MD888Z (en) Impedance converter

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)