MD490Z - Method for measuring the admittance components - Google Patents
Method for measuring the admittance components Download PDFInfo
- Publication number
- MD490Z MD490Z MDS20110126A MDS20110126A MD490Z MD 490 Z MD490 Z MD 490Z MD S20110126 A MDS20110126 A MD S20110126A MD S20110126 A MDS20110126 A MD S20110126A MD 490 Z MD490 Z MD 490Z
- Authority
- MD
- Moldova
- Prior art keywords
- admittance
- converter
- components
- reproduced
- signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000010363 phase shift Effects 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 abstract description 15
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 238000011067 equilibration Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
Invenţia se referă la domeniul măsurărilor electrice şi electronice şi poate fi utilizată pentru măsurarea cu precizie înaltă a componentelor admitanţei. The invention relates to the field of electrical and electronic measurements and can be used for high-precision measurement of admittance components.
Cea mai apropiată soluţie este metoda de măsurare a componentelor impedanţei, care constă în formarea unui circuit de măsurare din obiectul măsurat şi contactele de ieşire ale unui convertor de impedanţă, controlul semnalului de dezechilibru, obţinut în urma interacţiunii circuitului rezonant cu semnalul de măsurare, echilibrarea circuitului de măsurare prin reglarea impedanţei reproduse de convertor şi determinarea componentelor impedanţei măsurate din dependenţa lor de componentele impedanţei reproduse de convertor. Reglarea componentelor activă şi reactivă ale impedanţei reproduse se efectuează în două etape consecutive: la prima etapă se reglează componenta activă, iar la etapa a doua - componenta reactivă [1]. The closest solution is the method of measuring impedance components, which consists in forming a measuring circuit from the measured object and the output contacts of an impedance converter, controlling the unbalance signal obtained as a result of the interaction of the resonant circuit with the measurement signal, balancing the measuring circuit by adjusting the impedance reproduced by the converter and determining the components of the measured impedance from their dependence on the impedance components reproduced by the converter. The adjustment of the active and reactive components of the reproduced impedance is carried out in two consecutive stages: at the first stage, the active component is adjusted, and at the second stage - the reactive component [1].
Dezavantajele acestei metode sunt imposibilitatea măsurării directe a componentelor admitanţei şi timpul considerabil de măsurare din cauza echilibrării circuitului de măsurare în două etape consecutive, ceea ce complică aplicarea practică. The disadvantages of this method are the impossibility of directly measuring the admittance components and the considerable measurement time due to balancing the measurement circuit in two consecutive stages, which complicates practical application.
Problema pe care o rezolvă invenţia constă în lărgirea domeniului de aplicare şi reducerea timpului de măsurare. The problem that the invention solves consists in widening the scope of application and reducing the measurement time.
Metoda, conform invenţiei, înlătură dezavantajele menţionate mai sus prin aceea că constă în formarea unui circuit de măsurare din obiectul măsurat, bornele de ieşire ale unui convertor de admitanţă cu reglare independentă a componentelor activă şi reactivă ale admitanţei reproduse şi un generator de semnal, conectate în paralel, formarea unui semnal de dezechilibru şi a unui semnal de referinţă, respectiv, din curentul sumar, care trece prin obiectul măsurat şi circuitul de ieşire al convertorului, şi din curentul, care trece prin componenta activă a admitanţei reproduse de convertor cu păstrarea fazei acestor curenţi, controlul defazajului dintre semnalul de dezechilibru şi semnalul de referinţă, echilibrarea circuitului de măsurare prin reglarea componentelor activă şi reactivă ale admitanţei reproduse de convertor concomitent, până la atingerea defazajelor, respectiv, de 90° (270°) şi 0° (180°) dintre semnalul de dezechilibru şi cel de referinţă, şi determinarea componentelor admitanţei măsurate din dependenţa cunoscută a acestora de componentele admitanţei reproduse de convertor. The method, according to the invention, eliminates the above-mentioned disadvantages by consisting in forming a measuring circuit from the measured object, the output terminals of an admittance converter with independent adjustment of the active and reactive components of the reproduced admittance and a signal generator, connected in parallel, forming an imbalance signal and a reference signal, respectively, from the sum current passing through the measured object and the output circuit of the converter, and from the current passing through the active component of the admittance reproduced by the converter while maintaining the phase of these currents, controlling the phase shift between the imbalance signal and the reference signal, balancing the measuring circuit by adjusting the active and reactive components of the admittance reproduced by the converter simultaneously, until reaching the phase shifts, respectively, of 90° (270°) and 0° (180°) between the imbalance signal and the reference one, and determining the components of the measured admittance from their known dependence on the admittance components reproduced by the converter.
Rezultatul invenţiei constă în reducerea timpului de măsurare a componentelor admitanţei în coordonate carteziene. The result of the invention consists in reducing the time of measuring the admittance components in Cartesian coordinates.
Invenţia se explică prin desenele din fig. 1 şi 2, care reprezintă diagramele vectoriale ale procesului de măsurare. The invention is explained by the drawings in Fig. 1 and 2, which represent the vector diagrams of the measurement process.
Conform metodei propuse obiectul măsurat cu admitanţa YX, convertorul de admitanţă cu admitanţa de ieşire YR (MD 3111 G2 2006.07.31) şi generatorul de semnal cu tensiunea de ieşire UG formează un circuit rezonant paralel. Admitanţa măsurată YX şi admitanţa de referinţă YR, reprodusă de convertor, pot fi reprezentate în coordonate carteziene: According to the proposed method, the measured object with admittance YX, the admittance converter with output admittance YR (MD 3111 G2 2006.07.31) and the signal generator with output voltage UG form a parallel resonant circuit. The measured admittance YX and the reference admittance YR, reproduced by the converter, can be represented in Cartesian coordinates:
YX = GX + jBX\tab\tab\tab\tab\tab\tab\tab(1) YX = GX + jBX\tab\tab\tab\tab\tab\tab\tab(1)
YR = GR + jBR, (2)YR = GR + jBR, (2)
unde: GX, BX, GR, BR - respectiv, componentele activă şi reactivă ale admitanţelor măsurată şi de referinţă; where: GX, BX, GR, BR - respectively, the active and reactive components of the measured and reference admittances;
j - unitatea imaginară. j - imaginary unit.
Semnalul de dezechilibru Ide prezintă curentul sumar, care trece prin componentele activă şi reactivă ale admitanţelor măsurată (IX) şi de referinţă (IR) şi poate fi reprezentat: The unbalance signal Ide presents the sum current, which passes through the active and reactive components of the measured (IX) and reference (IR) admittances and can be represented:
Ide = IX + IR = UG(YX + YR) = UG[(GX +jBX) + (GR+ jBR)] (3) Ide = IX + IR = UG(YX + YR) = UG[(GX +jBX) + (GR+ jBR)] (3)
Admitanţa de referinţă YR se reproduce de convertorul de admitanţă cu posibilitatea reglării independente a componentelor activă GR şi reactivă BR. The reference admittance YR is reproduced by the admittance converter with the possibility of independent adjustment of the active GR and reactive BR components.
Echilibrarea circuitului de măsurare se efectuează prin două operaţii concomitente de reglare. La prima operaţie (vezi fig. 1) se reglează componenta activă GR a admitanţei de referinţă reprodusă de convertor până la valoarea GR0, curentul prin aceasta obţinând valoarea Acest moment se determină după egalarea cu 270° (curentul Ide) sau 90° (curentul Ide2) a defazajului dintre semnalele de dezechilibru Ide şi de referinţă . În operaţia a doua, executată concomitent cu prima (vezi fig. 2), se reglează componenta reactivă BR a admitanţei de referinţă până la valoarea BR0, curentul prin aceasta obţinând valoarea . Acest moment se determină după egalarea cu 180° (curentul Ide1) sau 0° (curentul Ide2) a defazajului dintre semnalele de dezechilibru Ide şi de referinţă . La finisarea procesului de echilibrare a circuitului de măsurare: The balancing of the measuring circuit is performed by two simultaneous adjustment operations. In the first operation (see Fig. 1), the active component GR of the reference admittance reproduced by the converter is adjusted to the value GR0, the current thereby obtaining the value This moment is determined after equalizing the phase shift between the Ide and reference unbalance signals with 270° (Ide current) or 90° (Ide2 current). In the second operation, performed simultaneously with the first (see Fig. 2), the reactive component BR of the reference admittance is adjusted to the value BR0, the current thereby obtaining the value . This moment is determined after equalizing the phase shift between the Ide and reference unbalance signals with 180° (Ide1 current) or 0° (Ide2 current). Upon completion of the balancing process of the measuring circuit:
UG[(GX + jBX) + (GR0 + jBR0)] = 0 (4) UG[(GX + jBX) + (GR0 + jBR0)] = 0 (4)
Soluţia ecuaţiei (4), care prezintă rezultatul măsurării, este: The solution to equation (4), which presents the measurement result, is:
GX = - GR0, BX = -BR0\tab\tab\tab\tab\tab\tab(5) GX = - GR0, BX = -BR0\tab\tab\tab\tab\tab\tab(5)
După cum rezultă din relaţia (5), la finisarea procesului de măsurare componentele activă şi reactivă ale admitanţei măsurate se exprimă respectiv prin componentele activă şi reactivă ale admitanţei de referinţă şi sunt reprezentate în coordonate carteziene. As follows from relation (5), at the end of the measurement process, the active and reactive components of the measured admittance are expressed respectively by the active and reactive components of the reference admittance and are represented in Cartesian coordinates.
Ca exemplu de implementare practică poate servi măsurarea componentelor admitanţei unui condensator cu componenta reactivă BX = 10-4 S şi componenta activă GX = 10-6 S. Din condensatorul măsurat şi bornele de ieşire ale convertorului de admitanţă se formează un circuit de măsurare paralel alimentat cu o tensiune UG = 10 V. În procesul echilibrării circuitului de măsurare se reglează componenta activă a admitanţei de referinţă până la valoarea GR0 = -10-6 S. Concomitent se reglează componenta reactivă a admitanţei de referinţă până la valoarea BR0 = 10-6 S. Valorile componentelor admitanţei măsurate constituie: GX = -GR0 = 10-6 S, BX = -BR0 = 10-4 S, acesta fiind rezultatul măsurării. As an example of practical implementation, the measurement of the admittance components of a capacitor with the reactive component BX = 10-4 S and the active component GX = 10-6 S can serve. A parallel measurement circuit powered by a voltage UG = 10 V is formed from the measured capacitor and the output terminals of the admittance converter. In the process of balancing the measurement circuit, the active component of the reference admittance is adjusted to the value GR0 = -10-6 S. At the same time, the reactive component of the reference admittance is adjusted to the value BR0 = 10-6 S. The values of the measured admittance components are: GX = -GR0 = 10-6 S, BX = -BR0 = 10-4 S, this being the result of the measurement.
1. MD 3577 G2 2008.04.30 1. MD 3577 G2 2008.04.30
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MDS20110126A MD490Z (en) | 2011-07-05 | 2011-07-05 | Method for measuring the admittance components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MDS20110126A MD490Z (en) | 2011-07-05 | 2011-07-05 | Method for measuring the admittance components |
Publications (2)
Publication Number | Publication Date |
---|---|
MD490Y MD490Y (en) | 2012-02-29 |
MD490Z true MD490Z (en) | 2012-09-30 |
Family
ID=45815388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
MDS20110126A MD490Z (en) | 2011-07-05 | 2011-07-05 | Method for measuring the admittance components |
Country Status (1)
Country | Link |
---|---|
MD (1) | MD490Z (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD943Z (en) * | 2015-01-30 | 2016-03-31 | Технический университет Молдовы | Method for measuring the impedance components |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD544Z (en) * | 2011-11-23 | 2013-04-30 | Технический университет Молдовы | Admittance meter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD2086G2 (en) * | 2001-12-03 | 2003-08-31 | Виталие НАСТАС | Method for measurement of impedance components |
MD2509G2 (en) * | 2004-01-12 | 2005-02-28 | Технический университет Молдовы | Method of impedance components measurement |
MD3578G2 (en) * | 2006-10-19 | 2008-11-30 | Технический университет Молдовы | Method of resistance measurement |
MD3577G2 (en) * | 2006-09-21 | 2008-11-30 | Технический университет Молдовы | Method of measuring the impedance components |
MD3949G2 (en) * | 2008-04-24 | 2010-02-28 | Технический университет Молдовы | Method for resistance measurement |
MD351Z (en) * | 2010-10-05 | 2011-10-31 | Технический университет Молдовы | Admittance meter |
-
2011
- 2011-07-05 MD MDS20110126A patent/MD490Z/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD2086G2 (en) * | 2001-12-03 | 2003-08-31 | Виталие НАСТАС | Method for measurement of impedance components |
MD2509G2 (en) * | 2004-01-12 | 2005-02-28 | Технический университет Молдовы | Method of impedance components measurement |
MD3577G2 (en) * | 2006-09-21 | 2008-11-30 | Технический университет Молдовы | Method of measuring the impedance components |
MD3578G2 (en) * | 2006-10-19 | 2008-11-30 | Технический университет Молдовы | Method of resistance measurement |
MD3949G2 (en) * | 2008-04-24 | 2010-02-28 | Технический университет Молдовы | Method for resistance measurement |
MD351Z (en) * | 2010-10-05 | 2011-10-31 | Технический университет Молдовы | Admittance meter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD943Z (en) * | 2015-01-30 | 2016-03-31 | Технический университет Молдовы | Method for measuring the impedance components |
Also Published As
Publication number | Publication date |
---|---|
MD490Y (en) | 2012-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MD3577F1 (en) | Method of measuring the impedance components | |
EA201270093A1 (en) | METHOD AND DEVICE FOR OBSERVING THE STATE OF THE NETWORK | |
CN103344843A (en) | Measurement system of series compensation capacitor group | |
CN201805231U (en) | Dynamic reactive power compensation device | |
MD489Z (en) | Method for measuring the impedance components | |
MD490Z (en) | Method for measuring the admittance components | |
CN105337329A (en) | Method and device for controlling three-phase current of charging station | |
CN104035039A (en) | Device and method for rapidly estimating storage battery capacity | |
KR20170035935A (en) | A voltage source converter | |
CN108054763B (en) | A determination method and system for comprehensive management of power quality | |
RU2015118335A (en) | DEVICE AND METHOD FOR BASED ON THE PROCESSING PROCESS OF ADJUSTING THE POWER OF THE ELECTRIC ARC FURNACE | |
MD628Z (en) | Method for measuring the impedance components | |
MD392Z (en) | Method for measuring the impedance components | |
RU2011128679A (en) | METHOD FOR INCREASING THE QUALITY OF ELECTRIC ENERGY | |
RU2606952C1 (en) | Method of adjusting the mode of compensation of capacitor currents in electric networks | |
Almas et al. | RT-HIL testing of an excitation control system for oscillation damping using external stabilizing signals | |
MD591Z (en) | Method for measurement of impedance component | |
MD639Z (en) | Impedance meter | |
Potdar et al. | Comparison of topologies of shunt active power filter implemented on three phase four wire system | |
MD662Z (en) | Method for measuring the impedance components | |
MD943Z (en) | Method for measuring the impedance components | |
MD790Z (en) | Method for measurement of impedance components | |
JP2016046926A (en) | Power conversion device, power generation system, and power conversion method | |
RU2012119729A (en) | CIRCUIT COMPENSATION DEVICE FOR EARTHING CIRCUIT IN THREE PHASE ELECTRIC NETWORKS (OPTIONS) | |
RU2586061C2 (en) | Method and device for control of adaptive energy-saving system of n-phase network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |