MD752Z - Method for measuring the resistance, inductance or capacitance of the two-terminal network - Google Patents
Method for measuring the resistance, inductance or capacitance of the two-terminal network Download PDFInfo
- Publication number
- MD752Z MD752Z MDS20130133A MDS20130133A MD752Z MD 752 Z MD752 Z MD 752Z MD S20130133 A MDS20130133 A MD S20130133A MD S20130133 A MDS20130133 A MD S20130133A MD 752 Z MD752 Z MD 752Z
- Authority
- MD
- Moldova
- Prior art keywords
- converter
- measured
- value
- impedance
- measuring
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000005259 measurement Methods 0.000 abstract description 15
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000011067 equilibration Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
Invenţia se referă la domeniul măsurărilor electrice şi electronice şi poate fi utilizată pentru măsurarea cu precizie înaltă a rezistenţei, inductanţei sau capacităţii dipolilor. The invention relates to the field of electrical and electronic measurements and can be used for high-precision measurement of the resistance, inductance or capacitance of dipoles.
Cea mai apropiată soluţie este metoda de măsurare a componentei impedanţei, care constă în formarea unui circuit de măsurare în serie din obiectul măsurat, contactele de ieşire ale unui convertor de impedanţă şi un generator de semnal, formarea unui semnal de referinţă, controlul defazajului între semnalul de dezechilibru obţinut în urma interacţiunii circuitului rezonant cu semnalul de măsurare şi semnalul de referinţă, echilibrarea circuitului de măsurare prin reglarea impedanţei reproduse de convertor şi determinarea componentei măsurate a impedanţei necunoscute din dependenţa ei de impedanţa reprodusă de convertor. Valoarea inductanţei sau capacităţii poate fi recalculată din dependenţa cunoscută a componentei măsurate de impedanţa reprodusă de convertor [1]. The closest solution is the impedance component measurement method, which consists of forming a series measurement circuit from the measured object, the output contacts of an impedance converter and a signal generator, forming a reference signal, controlling the phase shift between the unbalance signal obtained as a result of the interaction of the resonant circuit with the measurement signal and the reference signal, balancing the measurement circuit by adjusting the impedance reproduced by the converter and determining the measured component of the unknown impedance from its dependence on the impedance reproduced by the converter. The value of the inductance or capacitance can be recalculated from the known dependence of the measured component on the impedance reproduced by the converter [1].
Dezavantajele acestei metode constau în imposibilitatea de a obţine nemijlocit valoarea mărimii măsurate în cazul măsurării inductanţei sau capacităţii, ceea ce complică utilizarea metodei şi în necesitatea formării unui semnal de referinţă, ceea ce complică construcţia dispozitivului. Acestea complică utilizarea metodei în cazul măsurării nemijlocite a capacităţii sau inductanţei dipolilor. The disadvantages of this method are the impossibility of directly obtaining the value of the measured quantity in the case of measuring inductance or capacitance, which complicates the use of the method, and the need to form a reference signal, which complicates the construction of the device. These complicate the use of the method in the case of directly measuring the capacitance or inductance of dipoles.
Problema pe care o rezolvă invenţia constă în simplificarea metodei de măsurare. The problem that the invention solves consists in simplifying the measurement method.
Metoda, conform invenţiei, înlătură dezavantajele menţionate mai sus prin aceea că include formarea unui circuit de măsurare în serie din dipolul măsurat, contactele de ieşire ale unui convertor de impedanţă şi un generator de semnal, controlul semnalului de dezechilibru, format din căderea sumară de tensiune pe dipolul măsurat şi circuitul de ieşire al convertorului, echilibrarea circuitului de măsurare prin reglarea impedanţei reproduse de convertor, precum şi determinarea valorii mărimii măsurate din egalitatea ei cu valoarea mărimii reproduse de convertor în starea de echilibru luată cu semn opus. În calitate de convertor de impedanţă se utilizează un convertor, care asigură reproducerea unei mărimi cu caracteristica de fază opusă celei măsurate. Echilibrarea circuitului de măsurare se efectuează până la obţinerea valorii minime a modulului semnalului de dezechilibru. The method, according to the invention, eliminates the above-mentioned disadvantages by including the formation of a series measuring circuit from the measured dipole, the output contacts of an impedance converter and a signal generator, the control of the unbalance signal, formed by the sum of the voltage drop on the measured dipole and the output circuit of the converter, the balancing of the measuring circuit by adjusting the impedance reproduced by the converter, as well as the determination of the value of the measured quantity from its equality with the value of the quantity reproduced by the converter in the equilibrium state taken with the opposite sign. As an impedance converter, a converter is used, which ensures the reproduction of a quantity with the phase characteristic opposite to the measured one. The balancing of the measuring circuit is carried out until the minimum value of the modulus of the unbalance signal is obtained.
Rezultatul tehnic al invenţiei constă în posibilitatea măsurării nemijlocite cu precizie înaltă a rezistenţei, inductanţei sau capacităţii dipolilor. The technical result of the invention consists in the possibility of direct measurement with high precision of the resistance, inductance or capacitance of dipoles.
Invenţia se explică prin desenele din fig. 1-3, care reprezintă: The invention is explained by the drawings in Fig. 1-3, which represent:
- fig. 1, diagrama vectorială pentru cazul măsurării rezistenţei dipolului; - Fig. 1, vector diagram for the case of measuring the dipole resistance;
- fig. 2, diagrama vectorială pentru cazul măsurării inductanţei dipolului; - Fig. 2, vector diagram for the case of measuring the dipole inductance;
- fig. 3, diagrama vectorială pentru cazul măsurării capacităţii dipolului. - Fig. 3, vector diagram for the case of measuring the dipole capacitance.
În cazul măsurării rezistenţei (Fig. 1) URx prezintă căderea de tensiune pe rezistenţa măsurată RX, URr - căderea de tensiune pe impedanţa reprodusă de convertor, care în acest caz posedă un caracter de rezistenţă negativă: Zr = -Rr췍췍În procesul măsurării se efectuează reglarea impedanţei Zr, căderea de tensiune URr poate lua valorile URr1, URr2, obţinându-se respectiv valorile semnalului de dezechilibru Ude1, Ude2. La satisfacerea condiţiei de0 = 0 procesul de echilibrare se opreşte. Acestei stări îi corespunde relaţia: 췍de0 = URx + URr0 = 0 sau RX = Rr , ceea ce prezintă rezultatul măsurării. In the case of resistance measurement (Fig. 1) URx represents the voltage drop across the measured resistance RX, URr - the voltage drop across the impedance reproduced by the converter, which in this case has a negative resistance character: Zr = -Rr췍췍In the process of measurement, the impedance Zr is adjusted, the voltage drop URr can take the values URr1, URr2, obtaining the values of the unbalance signal Ude1, Ude2, respectively. When the condition de0 = 0 is satisfied, the balancing process stops. This state corresponds to the relation: 췍de0 = URx + URr0 = 0 or RX = Rr , which represents the measurement result.
În cazul măsurării inductanţei LX (Fig. 2) ULx = +jωLX, unde: j - unitatea imaginară, ω - frecvenţa semnalului de măsurare. Impedanţa reprodusă de convertor Zr posedă un unghi de fază de -90°, ceea ce îi conferă un caracter de inductanţă negativă Zr = -jωLr . În stare de echilibru Ude0 = ULx + ULr0 = 0 sau LX = Lr. In the case of measuring the inductance LX (Fig. 2) ULx = +jωLX, where: j - imaginary unit, ω - frequency of the measurement signal. The impedance reproduced by the converter Zr has a phase angle of -90°, which gives it a negative inductance character Zr = -jωLr . In the equilibrium state Ude0 = ULx + ULr0 = 0 or LX = Lr.
În cazul măsurării capacităţii CX (Fig. 3) UCx = (jωCX)-1, iar impedanţa reprodusă de convertor Zr posedă un unghi de fază de +90°, ceea ce îi conferă un caracter de capacitate negativă Zr = -(jωCr)-1 . În stare de echilibru de0 = UCx + UCr0 = 0 sau CX = Cr . In the case of measuring the capacitance CX (Fig. 3) UCx = (jωCX)-1, and the impedance reproduced by the converter Zr has a phase angle of +90°, which gives it a negative capacitance character Zr = -(jωCr)-1 . In a state of equilibrium de0 = UCx + UCr0 = 0 or CX = Cr .
După cum rezultă din cele expuse, în toate cazurile de măsurare valoarea mărimii măsurate se determină nemijlocit din valoarea mărimii reproduse de convertor. As can be seen from the above, in all measurement cases the value of the measured quantity is determined directly from the value of the quantity reproduced by the converter.
Exemple de implementare practică Examples of practical implementation
La măsurarea rezistenţei unui rezistor cu valoarea RX = 10 KΩ, se reglează valoarea impedanţei reproduse de convertor Rr până la starea de echilibru a circuitului de măsurare, ceea ce corespunde Rr = -10 KΩ. When measuring the resistance of a resistor with a value of RX = 10 KΩ, the impedance value reproduced by the converter Rr is adjusted until the equilibrium state of the measurement circuit is reached, which corresponds to Rr = -10 KΩ.
La măsurarea inductanţei unei bobine cu valoarea LX = 20 mH, în stare de echilibru impedanţa reprodusă de convertor va avea un caracter de inductanţă negativă cu valoarea Lr = - 20 mH, iar la măsurarea capacităţii unui condensator cu valoarea CX = 20 µF, la finalizarea măsurării convertorul va reproduce o capacitate negativă cu valoarea Cr = -20 µF. When measuring the inductance of a coil with the value LX = 20 mH, in equilibrium the impedance reproduced by the converter will have a negative inductance character with the value Lr = - 20 mH, and when measuring the capacitance of a capacitor with the value CX = 20 µF, upon completion of the measurement the converter will reproduce a negative capacitance with the value Cr = -20 µF.
1. MD 447 Z 2012.06.30 1. MD 447 Z 2012.06.30
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20130133A MD752Z (en) | 2013-07-24 | 2013-07-24 | Method for measuring the resistance, inductance or capacitance of the two-terminal network |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20130133A MD752Z (en) | 2013-07-24 | 2013-07-24 | Method for measuring the resistance, inductance or capacitance of the two-terminal network |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD752Y MD752Y (en) | 2014-03-31 |
| MD752Z true MD752Z (en) | 2014-10-31 |
Family
ID=50685403
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20130133A MD752Z (en) | 2013-07-24 | 2013-07-24 | Method for measuring the resistance, inductance or capacitance of the two-terminal network |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD752Z (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD943Z (en) * | 2015-01-30 | 2016-03-31 | Технический университет Молдовы | Method for measuring the impedance components |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2095849C1 (en) * | 1996-04-11 | 1997-11-10 | Институт горного дела СО РАН | Method for automatic control of current of electrochemical cell |
| MD2086G2 (en) * | 2001-12-03 | 2003-08-31 | Виталие НАСТАС | Method for measurement of impedance components |
| MD2509G2 (en) * | 2004-01-12 | 2005-02-28 | Технический университет Молдовы | Method of impedance components measurement |
| MD3577G2 (en) * | 2006-09-21 | 2008-11-30 | Технический университет Молдовы | Method of measuring the impedance components |
| MD3578G2 (en) * | 2006-10-19 | 2008-11-30 | Технический университет Молдовы | Method of resistance measurement |
| MD3949G2 (en) * | 2008-04-24 | 2010-02-28 | Технический университет Молдовы | Method for resistance measurement |
| MD392Z (en) * | 2010-11-25 | 2012-01-31 | Технический университет Молдовы | Method for measuring the impedance components |
| MD447Z (en) * | 2011-03-10 | 2012-06-30 | Технический университет Молдовы | Method for measuring the impedance component |
| MD489Z (en) * | 2011-06-09 | 2012-09-30 | Технический университет Молдовы | Method for measuring the impedance components |
-
2013
- 2013-07-24 MD MDS20130133A patent/MD752Z/en not_active IP Right Cessation
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2095849C1 (en) * | 1996-04-11 | 1997-11-10 | Институт горного дела СО РАН | Method for automatic control of current of electrochemical cell |
| MD2086G2 (en) * | 2001-12-03 | 2003-08-31 | Виталие НАСТАС | Method for measurement of impedance components |
| MD2509G2 (en) * | 2004-01-12 | 2005-02-28 | Технический университет Молдовы | Method of impedance components measurement |
| MD3577G2 (en) * | 2006-09-21 | 2008-11-30 | Технический университет Молдовы | Method of measuring the impedance components |
| MD3578G2 (en) * | 2006-10-19 | 2008-11-30 | Технический университет Молдовы | Method of resistance measurement |
| MD3949G2 (en) * | 2008-04-24 | 2010-02-28 | Технический университет Молдовы | Method for resistance measurement |
| MD392Z (en) * | 2010-11-25 | 2012-01-31 | Технический университет Молдовы | Method for measuring the impedance components |
| MD447Z (en) * | 2011-03-10 | 2012-06-30 | Технический университет Молдовы | Method for measuring the impedance component |
| MD489Z (en) * | 2011-06-09 | 2012-09-30 | Технический университет Молдовы | Method for measuring the impedance components |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD943Z (en) * | 2015-01-30 | 2016-03-31 | Технический университет Молдовы | Method for measuring the impedance components |
Also Published As
| Publication number | Publication date |
|---|---|
| MD752Y (en) | 2014-03-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104246518B (en) | For the method for the current transducer for calibrating Rogovski type | |
| AU2022203050B2 (en) | System for measuring the voltage of a busbar | |
| KR20140049551A (en) | An adaptive voltage divider with corrected frequency characteristic for measuring high voltages | |
| CN107132417A (en) | A kind of precision resister measuring method of reactive circuit parameter drift | |
| MD752Z (en) | Method for measuring the resistance, inductance or capacitance of the two-terminal network | |
| MD591Z (en) | Method for measurement of impedance component | |
| RU2511673C2 (en) | Bridge measuring instrument of parameters of dipoles | |
| MD639Z (en) | Impedance meter | |
| JP2014149282A (en) | Conductivity measuring instrument and calibrating method therefor | |
| RU2475764C1 (en) | Bridge meter of bipoles parameters | |
| RU2527658C1 (en) | Bridge meter of dipole parameters | |
| MD662Z (en) | Method for measuring the impedance components | |
| RU2499264C2 (en) | Bridge meter of parameters of dipoles | |
| RU2569043C2 (en) | Bridge meter of two-terminal circuit parameters | |
| MD859Z (en) | Method for measuring impedance components | |
| RU2549567C2 (en) | Bridge meter of dipole parameters | |
| RU2541423C1 (en) | Bridge meter of parameters of dipoles | |
| Kim et al. | All-around dual source impedance bridge | |
| RU2525717C1 (en) | Bridge meter of bipoles parameters | |
| KR100968896B1 (en) | Complex capacitive measuring device | |
| US2930965A (en) | Variable conductance standard | |
| JP2019184533A (en) | Environment detector | |
| SU834538A1 (en) | Capacitive electrically balanced bridge | |
| RU2670811C9 (en) | Measuring instrument for parameters of objects based on multi-branch bridge circuit | |
| SU1206718A1 (en) | Bridge for measuring components of complex admitance |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG9Y | Short term patent issued | ||
| KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |