MD1494Z - Process for corrosion protection of steel in water - Google Patents
Process for corrosion protection of steel in water Download PDFInfo
- Publication number
- MD1494Z MD1494Z MDS20200076A MDS20200076A MD1494Z MD 1494 Z MD1494 Z MD 1494Z MD S20200076 A MDS20200076 A MD S20200076A MD S20200076 A MDS20200076 A MD S20200076A MD 1494 Z MD1494 Z MD 1494Z
- Authority
- MD
- Moldova
- Prior art keywords
- corrosion
- water
- steel
- inhibitor
- hours
- Prior art date
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 46
- 230000007797 corrosion Effects 0.000 title claims abstract description 46
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 19
- 239000010959 steel Substances 0.000 title claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000008569 process Effects 0.000 title claims abstract description 11
- 239000012286 potassium permanganate Substances 0.000 claims abstract description 15
- 239000006286 aqueous extract Substances 0.000 claims abstract description 10
- 235000009496 Juglans regia Nutrition 0.000 claims abstract description 7
- 235000020234 walnut Nutrition 0.000 claims abstract description 7
- 238000001914 filtration Methods 0.000 claims abstract description 3
- 240000007049 Juglans regia Species 0.000 claims abstract 2
- 239000003112 inhibitor Substances 0.000 abstract description 15
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 238000000605 extraction Methods 0.000 abstract description 3
- 230000005764 inhibitory process Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000000284 extract Substances 0.000 description 6
- 241000758789 Juglans Species 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 235000018185 Betula X alpestris Nutrition 0.000 description 2
- 235000018212 Betula X uliginosa Nutrition 0.000 description 2
- 241001233914 Chelidonium majus Species 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 235000001019 trigonella foenum-graecum Nutrition 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
Invenţia se referă la domeniul protecţiei metalelor de coroziune în apă şi poate fi utilizată pentru a inhiba coroziunea în sistemele închise ale conductelor de oţel. The invention relates to the field of protecting metals from corrosion in water and can be used to inhibit corrosion in closed steel pipeline systems.
Se ştie că apa naturală sau tehnologică, care conţine ioni de activare de clor şi de sulfat, este un mediu destul de agresiv, în care coroziunea oţelului se desfăşoară cu o viteză mare. Astfel, în Chişinău, pentru apa de la robinet, care conţine, mg/l: Ca2+-42,5, Mg2+-19,5, HCO3 --97,6, SO4 2--203,7, Cl--56,7, cu un conţinut total de sare de 0,457 g/l, viteza de coroziune a oţelului St. 3 la 8 ore de testare este foarte mare, ajungând la 21 g/m2· zi. Pe măsură ce timpul de expunere creşte, viteza de coroziune scade (de exemplu până la 4 g/m2·zi la 240 ore), datorită formării produselor de coroziune pe suprafaţa de corodare a filmului de peroxid-oxid. Cu toate acestea, peretele ţevii devine mai subţire şi, datorită prezenţei ionilor de clor în apă, se pot forma adâncituri pe suprafaţă care, în unele cazuri, pot deveni penetrante, ceea ce va conduce la o situaţie de urgenţă (Паршутин В. В., Шолтоян Н. С., Сидельникова С. П., Володина Г. Ф. Ингибирование бороглюконатом кальция коррозии углеродистой стали Ст. 3 в воде. Коррозия в условиях естественной аэрации и принудительной конвекции. Электронная обработка материалов, 1999, № 5, p. 42-56). It is known that natural or technological water, containing chlorine and sulfate activation ions, is a rather aggressive environment, in which steel corrosion proceeds at a high speed. Thus, in Chisinau, for tap water, which contains, mg/l: Ca2+-42.5, Mg2+-19.5, HCO3--97.6, SO4-2--203.7, Cl--56.7, with a total salt content of 0.457 g/l, the corrosion rate of St. 3 steel at 8 hours of testing is very high, reaching 21 g/m2· day. As the exposure time increases, the corrosion rate decreases (for example, up to 4 g/m2· day at 240 hours), due to the formation of corrosion products on the corroding surface of the peroxide-oxide film. However, the pipe wall becomes thinner, and due to the presence of chlorine ions in the water, indentations can form on the surface, which in some cases can become penetrating, which will lead to an emergency situation (Паршутин В. В., Шолтоян Н. С., Сидельникова С. П., Володина Г. Ф. Ингибирование бороглюконатом калция корозии углеродистой стали Ст. 3 в воде. Коррозия в условия Natural ventilation and forced convection. Electronic processing of materials, 1999, № 5, p. 42-56).
Este cunoscută utilizarea permanganatului de potasiu KMnO4 ca inhibitor al coroziunii oţelului în acid nitric de diferite concentraţii, în acid acetic (81%) la temperatura de fierbere, precum şi a cuprului în acidul nitric şi soluţiile de săruri, a aluminiului în substanţe alcaline [1]. The use of potassium permanganate KMnO4 as a corrosion inhibitor of steel in nitric acid of various concentrations, in acetic acid (81%) at boiling temperature, as well as of copper in nitric acid and salt solutions, and of aluminum in alkaline substances is known [1].
Dezavantajul acestui inhibitor este concentraţia înaltă şi micşorarea nesemnificativă a pierderilor corozive ale metalelor în mediile acide şi alcaline. The disadvantage of this inhibitor is the high concentration and the insignificant reduction of corrosive losses of metals in acidic and alkaline environments.
Sunt cunoscuţi diferiţi inhibitori ai coroziunii, care reprezintă extracte din seminţe de schinduf, lupin, vânătă, sfeclă ş.a. [2]. Various corrosion inhibitors are known, which are extracts from fenugreek seeds, lupine, eggplant, beet, etc. [2].
Dar aceste extracte pot fi utilizate numai pentru inhibarea coroziunii în soluţii acide. În apă, care prezintă un mediu neutru, influenţa lor la diminuarea pierderilor de coroziune este nesemnificativă. Totodată metoda de extracţie utilizată nu permite extragerea în soluţie a tuturor substanţelor, care pot inhiba coroziunea. But these extracts can only be used to inhibit corrosion in acidic solutions. In water, which is a neutral medium, their influence on reducing corrosion losses is insignificant. At the same time, the extraction method used does not allow the extraction of all substances that can inhibit corrosion from the solution.
Este cunoscut procedeul de protecţie a oţelurilor împotriva coroziunii, care constă în utilizarea extractului apos din frunze şi tulpini uscate de rostopască Chelidonium majus şi acid sulfuric concentrat, cu următorul conţinut al componentelor, ml/l: extract apos de rostopască - 20-40 (sau 1,1-2,9 g, recalculat la masa uscată pe litru de mediu agresiv), acid sulfuric - 0,5-2 [3]. The process of protecting steel against corrosion is known, which consists of using an aqueous extract of dried leaves and stems of the greater celandine Chelidonium majus and concentrated sulfuric acid, with the following content of components, ml/l: aqueous extract of celandine - 20-40 (or 1.1-2.9 g, recalculated to dry mass per liter of aggressive medium), sulfuric acid - 0.5-2 [3].
Dezavantajul acestui inhibitor este prezenţa acidului sulfuric concentrat în inhibitor, ce reprezintă un pericol înalt pentru personalul de serviciu. The disadvantage of this inhibitor is the presence of concentrated sulfuric acid in the inhibitor, which represents a high hazard for service personnel.
În calitate de soluţie proximă poate fi procedeul de protecţie a oţelurilor împotriva coroziunii, în care în mediul coroziv se introduc 0,35-1,05 g/l de hidroxid de calciu şi extract apos din frunze de mesteacăn în cantitate de 10-150 ml/l [4]. As a close solution, the process of protecting steel against corrosion can be used, in which 0.35-1.05 g/l of calcium hydroxide and aqueous extract of birch leaves in an amount of 10-150 ml/l are introduced into the corrosive environment [4].
Dezavantajul acestui procedeu este deficitul de materie primă în RM din cauza dispariţiei masive de mesteceni şi existenţa pericolului pentru ochi, care o prezintă hidroxidul de calciu. The disadvantage of this process is the shortage of raw material in the Republic of Moldova due to the massive disappearance of birch trees and the existence of the danger to the eyes posed by calcium hydroxide.
Problema pe care o rezolvă invenţia este elaborarea unui inhibitor de coroziune a oţelului în apele naturale şi industriale ecologic inofensiv, sigur şi necostisitor şi sporirea rezistenţei la coroziune a sistemelor închise de conducte din oţel. The problem solved by the invention is to develop an environmentally harmless, safe and inexpensive steel corrosion inhibitor in natural and industrial waters and to increase the corrosion resistance of closed steel pipeline systems.
Problema propusă este rezolvată prin procedeul de protecţie a oţelului de coroziune în apă, care constă în introducerea în mediul coroziv a 0,5-1,5 g/l de permanganat de potasiu KMnO4 şi 10-30 ml/l de extract apos din frunze de nuc, obţinut prin extracţia frunzelor uscate cu apă în raport masic de (2-4):10 la temperatura de 70-100°C timp de 1-3 ore, cu filtrarea ulterioară. The proposed problem is solved by the process of protecting steel from corrosion in water, which consists of introducing into the corrosive environment 0.5-1.5 g/l of potassium permanganate KMnO4 and 10-30 ml/l of aqueous extract from walnut leaves, obtained by extracting dried leaves with water in a mass ratio of (2-4):10 at a temperature of 70-100°C for 1-3 hours, with subsequent filtration.
Rezultatul tehnic al invenţiei constă în utilizarea unui inhibitor ecologic inofensiv, sigur şi necostisitor, care asigură sporirea rezistenţei la coroziune cu până la 10,8 ori. The technical result of the invention consists in the use of an ecologically harmless, safe and inexpensive inhibitor, which ensures an increase in corrosion resistance by up to 10.8 times.
Testele la coroziune ale probelor cu dimensiuni de 50×25×3 mm au fost efectuate la imersia completă în soluţie la aceeaşi adâncime cu accesul aerului. Rugozitatea lor iniţială a fost stabilită prin şlefuire. Pierderile la coroziune au fost înregistrate gravimetric. Efectul de acţiune a inhibitorului a fost evaluat cantitativ prin viteza de coroziune k, g/m2·zi şi valoarea coeficientului de inhibare γ = k/k1, unde k1, k sunt vitezele de coroziune ale metalului, respectiv cu şi fără utilizarea inhibitorului. Acest coeficient indică de câte ori viteza de coroziune se micşorează, ca urmare a acţiunii inhibitorului. Corrosion tests of samples with dimensions of 50×25×3 mm were carried out at full immersion in the solution at the same depth as the air access. Their initial roughness was established by grinding. Corrosion losses were recorded gravimetrically. The effect of the inhibitor action was quantitatively evaluated by the corrosion rate k, g/m2·day and the value of the inhibition coefficient γ = k/k1, where k1, k are the corrosion rates of the metal, respectively with and without the use of the inhibitor. This coefficient indicates how many times the corrosion rate decreases as a result of the inhibitor action.
Efectul concentraţiei inhibitorului şi a timpului de încercare asupra vitezei de coroziune k, g/m2·zi şi a coeficientului de inhibare γ este prezentat în tabelele 1-3. The effect of inhibitor concentration and test time on the corrosion rate k, g/m2·day and the inhibition coefficient γ is presented in tables 1-3.
Tabelul 1 Table 1
Influenţa cantităţii de KMnO4 asupra parametrilor procesului coroziv al oţelului St.3 în apă Influence of the amount of KMnO4 on the parameters of the corrosion process of St.3 steel in water
Concentraţia inhibitorului, g/l Timpul testării, ore Viteza de coroziune, k, g/м2·zi Coeficientul de inhibare, γ 0 8 24 48 72 168 21,0 12,0 8,8 6,6 4,2 - - - - - 0,5 8 24 48 72 168 7,8 5,22 2,51 2,06 1,35 2,7 2,3 3,5 3,2 3,1 1,0 8 24 48 72 168 6,36 3,69 2,51 1,74 1,02 3,3 3,25 3,5 3,8 4,1 1,5 8 24 48 72 168 6,0 3,24 2,44 1,61 0,95 3,5 3,7 3,6 4,1 4,4Inhibitor concentration, g/l Testing time, hours Corrosion rate, k, g/m2·day Inhibition coefficient, γ 0 8 24 48 72 168 21.0 12.0 8.8 6.6 4.2 - - - - - 0.5 8 24 48 72 168 7.8 5.22 2.51 2.06 1.35 2.7 2.3 3.5 3.2 3.1 1.0 8 24 48 72 168 6.36 3.69 2.51 1.74 1.02 3.3 3.25 3.5 3.8 4.1 1.5 8 24 48 72 168 6.0 3.24 2.44 1.61 0.95 3.5 3.7 3.6 4.1 4.4
Tabelul 2 Table 2
Influenţa cantităţii extractului apos din frunze de nuc Influence of the amount of aqueous extract from walnut leaves
asupra parametrilor procesului coroziv al oţelului St. 3 în apă on the parameters of the corrosion process of St. 3 steel in water
Concentraţia extractului, ml/l Timpul testării, ore Viteza de coroziune, k, g/м2·zi Coeficientul de inhibare, γ 0 8 24 48 72 168 21,0 12,0 8,8 6,6 4,2 - - - - - 10 8 24 48 72 168 5,0 2,29 1,96 1,53 1,0 4,2 5,25 4,5 4,3 4,2 20 8 24 48 72 168 4,9 2,24 1,91 1,47 0,88 4,3 5,35 4,6 4,5 4,8 30 8 24 48 72 168 3,96 2,33 1,6 1,22 0,75 5,3 5,15 5,5 5,4 5,6Extract concentration, ml/l Testing time, hours Corrosion rate, k, g/m2·day Inhibition coefficient, γ 0 8 24 48 72 168 21.0 12.0 8.8 6.6 4.2 - - - - - 10 8 24 48 72 168 5.0 2.29 1.96 1.53 1.0 4.2 5.25 4.5 4.3 4.2 20 8 24 48 72 168 4.9 2.24 1.91 1.47 0.88 4.3 5.35 4.6 4.5 4.8 30 8 24 48 72 168 3.96 2.33 1.6 1.22 0.75 5.3 5.15 5.5 5.4 5.6
Din datele prezentate în tab. 1 se vede că adăugarea în mediul coroziv numai a permanganatului de potasiu permite micşorarea pierderilor corozive până la 4,4 ori (1,5 g/l KMnO4 la 168 ore de testare), ceea ce în mod clar este insuficient. Totodată, coroziunea în dependenţă de timpul de testare este inhibată neuniform. From the data presented in Table 1 it is seen that the addition of only potassium permanganate to the corrosive medium allows reducing the corrosive losses up to 4.4 times (1.5 g/l KMnO4 at 168 hours of testing), which is clearly insufficient. At the same time, corrosion is inhibited unevenly depending on the testing time.
Din datele prezentate în tab. 2 se vede că adăugarea în mediul coroziv numai a extractului apos din frunze de nuc micşorează pierderile corozive, inhibarea coroziunii în dependenţa de timpul testării se aliniază, dar valorile coeficientului de inhibare γ nu depăşesc 5,6 (30 ml/l şi 168 ore de testare). From the data presented in Table 2, it can be seen that adding only the aqueous extract of walnut leaves to the corrosive medium reduces corrosive losses, the corrosion inhibition in dependence on the testing time is aligned, but the values of the inhibition coefficient γ do not exceed 5.6 (30 ml/l and 168 hours of testing).
În cazul folosirii amestecului de permanganat de potasiu KMnO4 şi extractului apos din frunze de nuc (tab. 3) se vede că în rezultatul efectului sinergetic al interacţiunii dintre componente se observă inhibarea mult mai mare a procesului de coroziune a oţelului în apă, valoarea maximă a coeficientului de inhibare γ ajungând la 10,8 la concentraţia KMnO4 de1,0 g/l şi a extractului de 30 ml/l şi la o durată de 168 ore. În acelaşi timp, inhibarea coroziunii se accentuează cu mărirea timpului de testare. In the case of using the mixture of potassium permanganate KMnO4 and aqueous extract of walnut leaves (tab. 3) it is seen that as a result of the synergistic effect of the interaction between the components, a much greater inhibition of the corrosion process of steel in water is observed, the maximum value of the inhibition coefficient γ reaching 10.8 at a KMnO4 concentration of 1.0 g/l and an extract of 30 ml/l and a duration of 168 hours. At the same time, the corrosion inhibition increases with increasing test time.
Tabelul 3 Table 3
Influenţa introducerii în mediul coroziv a KMnO4 (1, 0 g/l) şi extractului apos din The influence of introducing KMnO4 (1.0 g/l) and the aqueous extract of
frunze de nuc asupra parametrilor procesului coroziv al oţelului St. 3 în apă walnut leaves on the parameters of the corrosion process of St. 3 steel in water
Concentraţia extractului, ml/l Timpul testării, ore Viteza de coroziune, k, g/м2·zi Coeficientul de inhibare, γ 0 8 24 48 72 168 6,36 3,69 2,51 1,74 1,02 3,3 3,25 3,5 3,8 4,1 10 8 24 48 72 168 4,04 1,88 1,29 1,08 0,66 5,2 6,4 6,82 6,1 6,36 20 8 24 48 72 168 2,84 1,58 1,13 0,81 0,50 7,4 7,6 7,8 8,15 8,4 30 8 24 48 72 168 2,56 1,40 0,90 0,64 0,39 8,2 8,57 9,8 10,3 10,8Extract concentration, ml/l Testing time, hours Corrosion rate, k, g/m2·day Inhibition coefficient, γ 0 8 24 48 72 168 6.36 3.69 2.51 1.74 1.02 3.3 3.25 3.5 3.8 4.1 10 8 24 48 72 168 4.04 1.88 1.29 1.08 0.66 5.2 6.4 6.82 6.1 6.36 20 8 24 48 72 168 2.84 1.58 1.13 0.81 0.50 7.4 7.6 7.8 8.15 8.4 30 8 24 48 72 168 2.56 1.40 0.90 0.64 0.39 8.2 8.57 9.8 10.3 10.8
Astfel, a fost elaborat un inhibitor al coroziunii oţelului în apă inofensiv din punct de vedere ecologic, necostisitor, eficient, care poate fi utilizat pentru a inhiba coroziunea in sistemele închise ale conductelor de oţel şi permite reducerea considerabilă a pierderilor corozive de până la 10,8 ori. Thus, an environmentally friendly, inexpensive, effective steel corrosion inhibitor in water was developed, which can be used to inhibit corrosion in closed steel pipeline systems and allows for a considerable reduction in corrosion losses of up to 10.8 times.
1. Алцыбеева А.И., Левин С.З. Ингибиторы коррозии металлов. Л., 1968, p. 77 1. Alcybeeva A.I., Levin S.Z. Metal corrosion inhibitors. L., 1968, p. 77
2. Saleh R. M., Ismail A. A., Hosary A. A. Ингибирование коррозии экстрактами природных соединений. Экспресс-информация. Коррозия и защита от коррозии. М., 1985, nr. 1, p. 22-25 2. Saleh R. M., Ismail A. A., Hosary A. A. Corrosion inhibition by extracts of natural compounds. Express information. Corrosion and corrosion protection. M., 1985, no. 1, p. 22-25
3. MD 1329 Y 2019.03.31 3. MD 1329 Y 2019.03.31
4. MD 1371 Y 2019.09.30 4. MD 1371 Y 2019.09.30
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20200076A MD1494Z (en) | 2020-07-17 | 2020-07-17 | Process for corrosion protection of steel in water |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20200076A MD1494Z (en) | 2020-07-17 | 2020-07-17 | Process for corrosion protection of steel in water |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD1494Y MD1494Y (en) | 2021-01-31 |
| MD1494Z true MD1494Z (en) | 2021-08-31 |
Family
ID=74479102
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20200076A MD1494Z (en) | 2020-07-17 | 2020-07-17 | Process for corrosion protection of steel in water |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD1494Z (en) |
-
2020
- 2020-07-17 MD MDS20200076A patent/MD1494Z/en active IP Right Grant
Also Published As
| Publication number | Publication date |
|---|---|
| MD1494Y (en) | 2021-01-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2989176B1 (en) | Method for controlling scale formation, using an allylsulfonate-styrene sulfonate polymer | |
| Mejeha et al. | The inhibitive effect of Solanum melongena L. leaf extract on the corrosion of aluminium in tetraoxosulphate (VI) acid | |
| MD1494Z (en) | Process for corrosion protection of steel in water | |
| RU2702542C1 (en) | Inhibitor of corrosion and scale formation for use in systems of reverse cooling of power plants or other industrial enterprises | |
| MD1507Z (en) | Process for corrosion protection of steel in water | |
| MD1496Z (en) | Process for corrosion protection of steel in water | |
| CN102553453A (en) | Scale inhibitor for reverse osmosis membrane | |
| Abiola et al. | Gossipium hirsutum L. extract as green corrosion inhibitor for aluminum in HCl solution | |
| MD1633Z (en) | Process for corrosion protection of steel in water | |
| MD1371Y (en) | Process for corrosion protection of steel in water | |
| Singh | A survey of corrosivity of underground mine waters from Indian coal mines | |
| MD1495Z (en) | Process for corrosion protection of steel in water | |
| MD1329Y (en) | Inhibitor of steel corrosion in water | |
| RU2693243C1 (en) | Corrosion and scale-formation inhibitor for water treatment of heating systems and other heating systems | |
| MD1726Z (en) | Process for corrosion protection of steel in water | |
| MD1397Z (en) | Process for corrosion protection of steel in water | |
| MD1415Z (en) | Process for corrosion protection of steel in water | |
| MD1416Z (en) | Process for corrosion protection of steel in water | |
| MD1414Z (en) | Process for corrosion protection of steel in water | |
| MD1382Z (en) | Process for corrosion protection of steel in water | |
| MD4310C1 (en) | Inhibitor of steel corrosion in water | |
| MD1746Z (en) | Process for corrosion protection of steel in water | |
| RU2835103C1 (en) | Method of purifying waste water from sulphides | |
| MD1427Z (en) | Inhibitor of steel corrosion in water | |
| MD1615Z (en) | Process for corrosion protection of steel in water |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG9Y | Short term patent issued |