MD1633Z - Process for corrosion protection of steel in water - Google Patents

Process for corrosion protection of steel in water Download PDF

Info

Publication number
MD1633Z
MD1633Z MDS20210060A MDS20210060A MD1633Z MD 1633 Z MD1633 Z MD 1633Z MD S20210060 A MDS20210060 A MD S20210060A MD S20210060 A MDS20210060 A MD S20210060A MD 1633 Z MD1633 Z MD 1633Z
Authority
MD
Moldova
Prior art keywords
corrosion
water
steel
tannin
corrosion protection
Prior art date
Application number
MDS20210060A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Владимир ПАРШУТИН
Александр КОВАЛЬ
Original Assignee
Институт Прикладной Физики
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Прикладной Физики filed Critical Институт Прикладной Физики
Priority to MDS20210060A priority Critical patent/MD1633Z/en
Publication of MD1633Y publication Critical patent/MD1633Y/en
Publication of MD1633Z publication Critical patent/MD1633Z/en

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The invention relates to the corrosion protection of metals in water and can be used for corrosion inhibition in closed steel pipeline systems.The process for corrosion protection of steel in water consists in introducing into the corrosive medium 1-10 g/L of tannin and 10-30 mL/L of an aqueous extract of walnut leaves, obtained by extraction of dry leaves in water in a mass ratio of (2-4):10 at a temperature of 70-100°C for 1-3 hours, with subsequent filtration.

Description

Invenţia se referă la domeniul protecţiei metalelor de coroziune în apă şi poate fi utilizată pentru a inhiba coroziunea în sistemele închise ale conductelor de oţel. The invention relates to the field of protecting metals from corrosion in water and can be used to inhibit corrosion in closed steel pipeline systems.

Se ştie că apa naturală sau tehnologică, care conţine ioni de activare de clor şi de sulfat, este un mediu destul de agresiv, în care coroziunea oţelului se desfăşoară cu o viteză mare. Astfel, în Chişinău, pentru apa de la robinet, care conţine, mg/l: Ca2+-42,5, Mg2+-19,5, HCO3 --97,6, SO4 2--203,7, Cl--56,7, cu un conţinut total de sare de 0,457 g/l, viteza de coroziune a oţelului St. 3 la 8 ore de testare este foarte mare, ajungând la 21 g/m2· zi. Pe măsură ce timpul de expunere creşte, viteza de coroziune scade (de exemplu până la 4 g/m2·zi la 240 ore), datorită formării produselor de coroziune pe suprafaţa de corodare a filmului de peroxid-oxid. Cu toate acestea, peretele ţevii devine mai subţire şi, datorită prezenţei ionilor de clor în apă, se pot forma adâncituri pe suprafaţă care, în unele cazuri, pot deveni penetrante, ceea ce va conduce la o situaţie de urgenţă (Паршутин В. В., Шолтоян Н. С., Сидельникова С. П., Володина Г. Ф. Ингибирование бороглюконатом кальция коррозии углеродистой стали Ст. 3 в воде. Коррозия в условиях естественной аэрации и принудительной конвекции. Электронная обработка материалов, 1999, № 5, p. 42-56). It is known that natural or technological water, containing chlorine and sulfate activation ions, is a rather aggressive environment, in which steel corrosion proceeds at a high speed. Thus, in Chisinau, for tap water, which contains, mg/l: Ca2+-42.5, Mg2+-19.5, HCO3--97.6, SO4-2--203.7, Cl--56.7, with a total salt content of 0.457 g/l, the corrosion rate of St. 3 steel at 8 hours of testing is very high, reaching 21 g/m2· day. As the exposure time increases, the corrosion rate decreases (for example, up to 4 g/m2· day at 240 hours), due to the formation of corrosion products on the corroding surface of the peroxide-oxide film. However, the pipe wall becomes thinner, and due to the presence of chlorine ions in the water, indentations can form on the surface, which in some cases can become penetrating, which will lead to an emergency situation (Паршутин В. В., Шолтоян Н. С., Сидельникова С. П., Володина Г. Ф. Ингибирование бороглюконатом калция корозии углеродистой стали Ст. 3 в воде. Коррозия в условия Natural ventilation and forced convection. Electronic processing of materials, 1999, № 5, p. 42-56).

Sunt cunoscuţi diferiţi inhibitori ai coroziunii, care reprezintă extracte din seminţe de schinduf, lupin, vânătă, sfeclă ş.a. [1]. Various corrosion inhibitors are known, which are extracts from fenugreek seeds, lupine, eggplant, beet, etc. [1].

Dar aceste extracte pot fi utilizate numai pentru inhibarea coroziunii în soluţii acide. În apă, care prezintă un mediu neutru, influenţa lor la diminuarea pierderilor de coroziune este nesemnificativă. Totodată metoda de extracţie utilizată nu permite extragerea în soluţie a tuturor substanţelor, care pot inhiba coroziunea. But these extracts can only be used to inhibit corrosion in acidic solutions. In water, which is a neutral medium, their influence on reducing corrosion losses is insignificant. At the same time, the extraction method used does not allow the extraction of all substances that can inhibit corrosion from the solution.

Este cunoscut, că taninul pur este un inhibitor al coroziunii metalelor feroase în apă şi în soluţiile apoase de săruri. Acesta previne coroziunea şi apariţia depunerilor de săruri în sistemele de răcire, inclusiv a motoarelor, în special a motoarelor diesel [2, 3]. Pure tannin is known to be an inhibitor of corrosion of ferrous metals in water and aqueous salt solutions. It prevents corrosion and the appearance of salt deposits in cooling systems, including engines, especially diesel engines [2, 3].

Dezavantajul utilizării acestui inhibitor fără componente suplimentare constă în aceea că taninurile şi complexele insolubile ale fierului acestuia le formează numai pe suprafaţa corodată a oţelului. The disadvantage of using this inhibitor without additional components is that its tannins and insoluble iron complexes form only on the corroded surface of the steel.

Din punct de vedere tehnic soluţia cea mai apropiată este procedeul de protecţie a oţelului de coroziune prin utilizarea extractului uscat din coajă de nucă, care a fost folosită pentru soluţia de NaCl de 3,5% şi un şir de acide organice. În acelaşi timp, extractul a fost pregătit în modul următor: 50 g de coajă de nucă uscată se adaugă la 1 litru de apă şi se încălzeşte la temperatura de 75 °C timp de 24 ore, apoi se filtrează şi se usucă în vid la temperatura de 65 °C timp de 98 ore. Apoi praful uscat în cantitate de 1g se dizolvă în mediul corosiv [4]. From a technical point of view, the closest solution is the process of protecting steel from corrosion by using the dry extract of walnut shells, which was used for the 3.5% NaCl solution and a number of organic acids. At the same time, the extract was prepared as follows: 50 g of dry walnut shells are added to 1 liter of water and heated at a temperature of 75 °C for 24 hours, then filtered and dried in a vacuum at a temperature of 65 °C for 98 hours. Then the dried powder in the amount of 1 g is dissolved in the corrosive medium [4].

Dezavantajul principal al acestui procedeu este utilizarea cojilor de nuci verzi, în care este o cantitate foarte mică de substanţe de inhibare. În afară de aceasta, procesul de obţinere a inhibitorului este foarte complicat şi costisitor: din punct de vedere tehnologic este foarte complicat să se scoată coaja nucilor verzi, în plus, se efectuează cheltuieli energetice foarte mari la vaporizarea extractului şi obţinerea substanţei uscate. The main disadvantage of this process is the use of green walnut shells, which contain a very small amount of inhibitory substances. In addition, the process of obtaining the inhibitor is very complicated and expensive: from a technological point of view it is very complicated to remove the shell of green walnuts, in addition, very high energy costs are incurred in vaporizing the extract and obtaining the dry substance.

Problema pe care o rezolvă invenţia este elaborarea unui inhibitor de coroziune a oţelului în apele naturale şi industriale ecologic inofensiv, sigur şi necostisitor şi sporirea rezistenţei la coroziune a sistemelor închise de conducte din oţel. The problem solved by the invention is to develop an environmentally harmless, safe and inexpensive steel corrosion inhibitor in natural and industrial waters and to increase the corrosion resistance of closed steel pipeline systems.

Problema propusă este rezolvată prin procedeul de protecţie a oţelului de coroziune în apă, care constă în introducerea în mediul coroziv a 1-10 g/l de tanin şi 10-30 ml/l de extract apos din frunze de nuc, obţinut prin extracţia frunzelor uscate cu apă în raport de masă de (2-4):10 la temperatura de 70-100°C timp de 1-3 ore, cu filtrarea ulterioară. The proposed problem is solved by the process of protecting steel from corrosion in water, which consists of introducing into the corrosive environment 1-10 g/l of tannin and 10-30 ml/l of aqueous extract from walnut leaves, obtained by extracting dried leaves with water in a mass ratio of (2-4):10 at a temperature of 70-100°C for 1-3 hours, with subsequent filtration.

Rezultatul tehnic al invenţiei propuse constă în utilizarea unui inhibitor ecologic inofensiv, sigur şi necostisitor, care asigură sporirea rezistenţei la coroziune cu până la 12,35 ori. The technical result of the proposed invention consists in the use of an ecologically harmless, safe and inexpensive inhibitor, which ensures an increase in corrosion resistance by up to 12.35 times.

Testele la coroziune ale probelor cu dimensiuni de 50×25×3 mm au fost efectuate la imersia completă în soluţie la aceeaşi adâncime cu accesul aerului. Rugozitatea lor iniţială a fost stabilită prin şlefuire. Pierderile la coroziune au fost înregistrate gravimetric. Efectul de acţiune a inhibitorului a fost evaluat cantitativ prin viteza de coroziune k, g/m2·zi şi valoarea coeficientului de inhibare γ = k/k1, unde k1, k sunt vitezele de coroziune ale metalului, respectiv cu şi fără utilizarea inhibitorului. Acest coeficient indică de câte ori viteza de coroziune se micşorează, ca urmare a acţiunii inhibitorului. Corrosion tests of samples with dimensions of 50×25×3 mm were carried out at full immersion in the solution at the same depth as the air access. Their initial roughness was established by grinding. Corrosion losses were recorded gravimetrically. The effect of the inhibitor action was quantitatively evaluated by the corrosion rate k, g/m2·day and the value of the inhibition coefficient γ = k/k1, where k1, k are the corrosion rates of the metal, respectively with and without the use of the inhibitor. This coefficient indicates how many times the corrosion rate decreases as a result of the inhibitor action.

Efectul concentraţiei inhibitorului şi a timpului de încercare asupra vitezei de coroziune k, g/m2·zi şi a coeficientului de inhibare γ este prezentat în tabelele 1 şi 2. The effect of inhibitor concentration and test time on the corrosion rate k, g/m2·day and the inhibition coefficient γ is presented in Tables 1 and 2.

Tabelul 1 Table 1

Influenţa cantităţii extractului apos din frunze de nuc asupra parametrilor procesului coroziv al oţelului St.3 în apă Influence of the amount of aqueous extract from walnut leaves on the parameters of the corrosion process of St.3 steel in water

Concentraţia extractului, ml/l Timpul testării, ore Viteza de coroziune, k, g/м2·zi Coeficientul de inhibare, γ 0 8 24 48 72 168 21,0 12,0 8,8 6,6 4,2 - - - - - 10 8 24 48 72 168 5,0 2,29 1,96 1,53 1,0 4,2 5,24 4,5 4,3 4,2 20 8 24 48 72 168 4,9 2,24 1,91 1,47 0,88 4,3 5,35 4,6 4,5 4,8 30 8 24 48 72 168 3,96 2,33 1,6 1,22 0,75 5,3 5,15 5,5 5,4 5,6Extract concentration, ml/l Testing time, hours Corrosion rate, k, g/m2·day Inhibition coefficient, γ 0 8 24 48 72 168 21.0 12.0 8.8 6.6 4.2 - - - - - 10 8 24 48 72 168 5.0 2.29 1.96 1.53 1.0 4.2 5.24 4.5 4.3 4.2 20 8 24 48 72 168 4.9 2.24 1.91 1.47 0.88 4.3 5.35 4.6 4.5 4.8 30 8 24 48 72 168 3.96 2.33 1.6 1.22 0.75 5.3 5.15 5.5 5.4 5.6

Tabelul 2 Table 2

Influenţa introducerii în mediul coroziv a taninului (g/l) şi extractului apos din frunze de nuc asupra parametrilor procesului coroziv al oţelului St.3 în apă Influence of the introduction of tannin (g/l) and aqueous extract of walnut leaves into the corrosive environment on the parameters of the corrosion process of St.3 steel in water

Concentraţia extractului, ml/l Timpul testării, ore Viteza de coroziune, k, g/м2·zi Coeficientul de inhibare, γ 10 1 g/l tanin 8 24 48 72 168 3,89 2,0 1,54 1,08 0,67 5,4 6,0 5,7 6,1 6,27 5 g/l tanin 8 24 48 72 168 2,92 1,58 1,09 0,84 0,45 7,2 7,6 8,07 7,86 9,33 10 g/l tanin 8 24 48 72 168 2,5 1,32 0,92 0,65 0,38 8,4 9,1 9,57 10,15 11,05 20 1 g/l tanin 8 24 48 72 168 3,56 1,88 1,29 0,93 0,55 5,9 6,4 6,82 7,1 7,63 5 g/l tanin 8 24 48 72 168 2,89 1,41 0,97 0,69 0,42 7,27 8,5 9,07 9,57 10,0 10 g/l tanin 8 24 48 72 168 2,28 1,21 0,83 0,58 0,35 9,2 9,9 10,6 11,38 12,0 30 1 g/l tanin 8 24 48 72 168 3,44 1,79 1,22 0,89 0,525 6,1 6,7 7,2 7,4 8,0 5 g/l tanin 8 24 48 72 168 2,66 1,36 0,95 0,66 0,40 7,9 8,82 9,26 10,0 10,5 10 g/l tanin 8 24 48 72 168 2,21 1,18 0,79 0,55 0,34 9,5 10,17 11,14 12,0 12,35Extract concentration, ml/l Testing time, hours Corrosion rate, k, g/m2·day Inhibition coefficient, γ 10 1 g/l tannin 8 24 48 72 168 3.89 2.0 1.54 1.08 0.67 5.4 6.0 5.7 6.1 6.27 5 g/l tannin 8 24 48 72 168 2.92 1.58 1.09 0.84 0.45 7.2 7.6 8.07 7.86 9.33 10 g/l tannin 8 24 48 72 168 2.5 1.32 0.92 0.65 0.38 8.4 9.1 9.57 10.15 11.05 20 1 g/l tannin 8 24 48 72 168 3.56 1.88 1.29 0.93 0.55 5.9 6.4 6.82 7.1 7.63 5 g/l tannin 8 24 48 72 168 2.89 1.41 0.97 0.69 0.42 7.27 8.5 9.07 9.57 10.0 10 g/l tannin 8 24 48 72 168 2.28 1.21 0.83 0.58 0.35 9.2 9.9 10.6 11.38 12.0 30 1 g/l tannin 8 24 48 72 168 3.44 1.79 1.22 0.89 0.525 6.1 6.7 7.2 7.4 8.0 5 g/l tannin 8 24 48 72 168 2.66 1.36 0.95 0.66 0.40 7.9 8.82 9.26 10.0 10.5 10 g/l tannin 8 24 48 72 168 2.21 1.18 0.79 0.55 0.34 9.5 10.17 11.14 12.0 12.35

Din datele prezentate în tab. 1 se vede că adăugarea în mediul coroziv numai a extractului apos din frunze de nuc micşorează pierderile corozive, inhibarea coroziunii în dependenţă de timpul testării se aliniază, dar valorile coeficientului de inhibare γ nu depăşesc 5,6 (30 ml/l şi 168 ore de testare). From the data presented in Table 1, it can be seen that adding only the aqueous extract of walnut leaves to the corrosive medium reduces corrosive losses, the corrosion inhibition depending on the testing time is aligned, but the values of the inhibition coefficient γ do not exceed 5.6 (30 ml/l and 168 hours of testing).

Limita superioară a concentraţiei extractului trebuie luată în considerare la 30 ml pe litru de mediu coroziv, deoarece o concentraţie mai mare practic nu influenţează viteza de coroziune, ci duce la costuri ridicate. The upper limit of the extract concentration should be considered at 30 ml per liter of corrosive medium, since a higher concentration practically does not influence the corrosion rate, but leads to high costs.

Limita inferioară a concentraţiei extractului este de 10 ml pe litru de mediu coroziv, deoarece cu un conţinut mai scăzut de extract nu există o reducere a pierderilor corozive. The lower limit of the extract concentration is 10 ml per liter of corrosive medium, because with a lower extract content there is no reduction in corrosive losses.

În cazul utilizării amestecului de tanin şi extractului apos din frunze de nuc (tab. 2) se vede că în rezultatul efectului sinergetic al interacţiunii dintre componente se observă inhibarea mult mai mare a procesului de coroziune a oţelului în apă. În acelaşi timp, inhibarea coroziunii se accentuează cu mărirea timpului de testare, ceea ce contribuie la o mai bună protecţie a conductelor din oţel. In the case of using the mixture of tannin and aqueous extract of walnut leaves (tab. 2) it is seen that as a result of the synergistic effect of the interaction between the components, a much greater inhibition of the corrosion process of steel in water is observed. At the same time, the corrosion inhibition increases with increasing test time, which contributes to better protection of steel pipelines.

Astfel, a fost elaborat un inhibitor al coroziunii oţelului în apă inofensiv din punct de vedere ecologic, necostisitor, eficient, care poate fi utilizat pentru a inhiba coroziunea în sistemele închise ale conductelor de oţel şi permite reducerea considerabilă a pierderilor corozive de până la 12,35 ori. Thus, an environmentally friendly, inexpensive, effective steel corrosion inhibitor in water was developed, which can be used to inhibit corrosion in closed steel pipeline systems and allows for a considerable reduction in corrosion losses by up to 12.35 times.

1. Saleh R. M., Ismail A. A., Hosary A. A. Ингибирование коррозии экстрактами природных соединений. Экспресс-информация. Коррозия и защита от коррозии. М., 1985, nr. 1, p. 22-25 1. Saleh R. M., Ismail A. A., Hosary A. A. Inhibition of corrosion by extracts of natural compounds. Express information. Corrosion and corrosion protection. M., 1985, no. 1, p. 22-25

2. Алцыбеева А. И., Левин С. З. Ингибиторы коррозии металлов. Ленинград, 1968, p. 85, 86 2. Алцыбеева А. I., Levin С. З. Metal corrosion inhibitors. Leningrad, 1968, p. 85, 86

3. Эванс Ю. Р. Коррозия и окисление металлов. Москва, 1962, p. 160-161 3. Evans Yu. R. Corrosion and oxidation of metals. Moscow, 1962, p. 160-161

4. Haddadi S.A., Alibakhshi E., Bahlakeh G., Ramezanzadeh B., Mahdavian M. A detailed atomic level computational and electrochemical exploration of the Juglans regia green fruit shell extract as a sustainable and highly efficient green corrosion inhibitor for mild steel in 3.5 wt% NaCl solution. J. Mol. Liq., 2019, v. 284, p. 682-699 [online], găsit pe Internet la 2022.03.18, URL: <https://www.sciencedirect.com/science/article/abs/pii/S0167732219305331> 4. Haddadi S.A., Alibakhshi E., Bahlakeh G., Ramezanzadeh B., Mahdavian M. A detailed atomic level computational and electrochemical exploration of the Juglans regia green fruit shell extract as a sustainable and highly efficient green corrosion inhibitor for mild steel in 3.5 wt% NaCl solution. J. Mol. Liq., 2019, v. 284, p. 682-699 [online], found on the Internet at 2022.03.18, URL: <https://www.sciencedirect.com/science/article/abs/pii/S0167732219305331>

Claims (1)

Procedeu de protecţie a oţelului de coroziune în apă, care constă în introducerea în mediul coroziv a 1-10 g/l de tanin şi 10-30 ml/l de extract apos din frunze de nuc, obţinut prin extracţia frunzelor uscate cu apă în raport de masă de (2-4):10 la temperatura de 70-100°C timp de 1-3 ore, cu filtrarea ulterioară.Process for protecting steel from corrosion in water, which consists of introducing into the corrosive medium 1-10 g/l of tannin and 10-30 ml/l of aqueous extract from walnut leaves, obtained by extracting dried leaves with water in a mass ratio of (2-4):10 at a temperature of 70-100°C for 1-3 hours, with subsequent filtration.
MDS20210060A 2021-07-22 2021-07-22 Process for corrosion protection of steel in water MD1633Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20210060A MD1633Z (en) 2021-07-22 2021-07-22 Process for corrosion protection of steel in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20210060A MD1633Z (en) 2021-07-22 2021-07-22 Process for corrosion protection of steel in water

Publications (2)

Publication Number Publication Date
MD1633Y MD1633Y (en) 2022-07-31
MD1633Z true MD1633Z (en) 2023-02-28

Family

ID=82608778

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20210060A MD1633Z (en) 2021-07-22 2021-07-22 Process for corrosion protection of steel in water

Country Status (1)

Country Link
MD (1) MD1633Z (en)

Also Published As

Publication number Publication date
MD1633Y (en) 2022-07-31

Similar Documents

Publication Publication Date Title
Alinnor et al. Corrosion inhibition of aluminium in acidic medium by different extracts of Ocimum Gratissimum
Sangeetha et al. Inhibition of corrosion of aluminium and its alloys by extracts of green inhibitors
Ajayi et al. Inhibition of mild steel corrosion using Jatropha Curcas leaf extract
Ajani et al. Inhibitory action of aqueous Citrus aurantifolia seed extract on the corrosion of mild steel in H2SO4 Solution
Olamide et al. Corrosion inhibition of mild steel in seawater using Jatropha stem
MD1633Z (en) Process for corrosion protection of steel in water
RU2702542C1 (en) Inhibitor of corrosion and scale formation for use in systems of reverse cooling of power plants or other industrial enterprises
Buyuksagis et al. Corrosion inhibition of st37 steel in geothermal fluid by Quercus robur and pomegranate peels extracts
MD1507Z (en) Process for corrosion protection of steel in water
MD1495Z (en) Process for corrosion protection of steel in water
MD1494Z (en) Process for corrosion protection of steel in water
MD1371Y (en) Process for corrosion protection of steel in water
MD1496Z (en) Process for corrosion protection of steel in water
Matheswaran et al. Corrosion inhibition of mild steel in citric acid by aqueous extract of Piper nigrum L.
Boulahlib-Bendaoud et al. Effect of temperature on the efficiency of inorganic phosphate used as antiscaling inhibitors
RU2693243C1 (en) Corrosion and scale-formation inhibitor for water treatment of heating systems and other heating systems
Verma et al. Inhibition Effect of Bombax ceiba Flower Extract as Green Corrosion Inhibitor of Mild Steel in 0.5 MH2so4 Medium
MD1329Y (en) Inhibitor of steel corrosion in water
Kadirov MODIFICATION OF COMPOSITION OF SALINITY INHIBITORS BASED ON ORGANOPHOSPHONATES AND ACRYLIC ACID
MD1416Z (en) Process for corrosion protection of steel in water
MD1427Z (en) Inhibitor of steel corrosion in water
MD4310C1 (en) Inhibitor of steel corrosion in water
MD1397Z (en) Process for corrosion protection of steel in water
MD1415Z (en) Process for corrosion protection of steel in water
Oladunni et al. INVESTIGATION OF CORROSION INHIBITION POTENTIAL OF HYPHAENE THEBAICA SHELLS EXTRACT ON TANNERY MACHINES PARTS IN ACIDIC MEDIUM

Legal Events

Date Code Title Description
FG9Y Short term patent issued