MD1496Z - Process for corrosion protection of steel in water - Google Patents
Process for corrosion protection of steel in water Download PDFInfo
- Publication number
- MD1496Z MD1496Z MDS20200079A MDS20200079A MD1496Z MD 1496 Z MD1496 Z MD 1496Z MD S20200079 A MDS20200079 A MD S20200079A MD S20200079 A MDS20200079 A MD S20200079A MD 1496 Z MD1496 Z MD 1496Z
- Authority
- MD
- Moldova
- Prior art keywords
- corrosion
- water
- steel
- inhibitor
- hours
- Prior art date
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 44
- 230000007797 corrosion Effects 0.000 title claims abstract description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 17
- 239000010959 steel Substances 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 10
- 230000008569 process Effects 0.000 title claims abstract description 10
- 239000012286 potassium permanganate Substances 0.000 claims abstract description 14
- 240000001592 Amaranthus caudatus Species 0.000 claims abstract description 8
- 235000009328 Amaranthus caudatus Nutrition 0.000 claims abstract description 8
- 235000012735 amaranth Nutrition 0.000 claims abstract description 8
- 239000004178 amaranth Substances 0.000 claims abstract description 8
- 239000006286 aqueous extract Substances 0.000 claims abstract description 7
- 244000237956 Amaranthus retroflexus Species 0.000 claims abstract description 3
- 235000013479 Amaranthus retroflexus Nutrition 0.000 claims abstract description 3
- 238000001914 filtration Methods 0.000 claims abstract description 3
- 239000003112 inhibitor Substances 0.000 abstract description 15
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 238000000605 extraction Methods 0.000 abstract description 3
- 239000000284 extract Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 241001233914 Chelidonium majus Species 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 235000001019 trigonella foenum-graecum Nutrition 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Filtering Materials (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
Invenţia se referă la domeniul protecţiei metalelor de coroziune în apă şi poate fi utilizată pentru a inhiba coroziunea în sistemele închise ale conductelor de oţel. The invention relates to the field of protecting metals from corrosion in water and can be used to inhibit corrosion in closed steel pipeline systems.
Se ştie că apa naturală sau tehnologică, care conţine ioni de activare de clor şi de sulfat, este un mediu destul de agresiv, în care coroziunea oţelului se desfăşoară cu o viteză mare. Astfel, în Chişinău, pentru apa de la robinet, care conţine, mg/l: Ca2+ - 42,5, Mg2+ - 19,5, HCO3 - - 97,6, SO4 2- - 203,7, Cl- - 56,7, cu un conţinut total de sare de 0,457 g/l, viteza de coroziune a oţelului St. 3 la 8 ore de testare este foarte mare, ajungând la 21 g/m2·zi. Pe măsură ce timpul de expunere creşte, viteza de coroziune scade (de exemplu până la 4 g/m2·zi la 240 ore), datorită formării produselor de coroziune pe suprafaţa de corodare a filmului de peroxid-oxid. Cu toate acestea, peretele ţevii devine mai subţire şi, datorită prezenţei ionilor de clor în apă, se pot forma adâncituri pe suprafaţă care, în unele cazuri, pot deveni penetrante, ceea ce va conduce la o situaţie de urgenţă (Паршутин В. В., Шолтоян Н. С., Сидельникова С. П., Володина Г. Ф. Ингибирование бороглюконатом кальция коррозии углеродистой стали Ст. 3 в воде. Коррозия в условиях естественной аэрации и принудительной конвекции. Электронная обработка материалов, 1999, № 5, p. 42-56). It is known that natural or technological water, containing chlorine and sulfate activation ions, is a rather aggressive environment, in which steel corrosion proceeds at a high speed. Thus, in Chisinau, for tap water, which contains, mg/l: Ca2+ - 42.5, Mg2+ - 19.5, HCO3 - - 97.6, SO4 2- - 203.7, Cl- - 56.7, with a total salt content of 0.457 g/l, the corrosion rate of St. 3 steel at 8 hours of testing is very high, reaching 21 g/m2·day. As the exposure time increases, the corrosion rate decreases (for example, up to 4 g/m2·day at 240 hours), due to the formation of corrosion products on the corroding surface of the peroxide-oxide film. However, the pipe wall becomes thinner, and due to the presence of chlorine ions in the water, indentations can form on the surface, which in some cases can become penetrating, which will lead to an emergency situation (Паршутин В. В., Шолтоян Н. С., Сидельникова С. П., Володина Г. Ф. Ингибирование бороглюконатом калция корозии углеродистой стали Ст. 3 в воде. Коррозия в условия Natural ventilation and forced convection. Electronic processing of materials, 1999, № 5, p. 42-56).
Este cunoscută utilizarea permanganatului de potasiu KMnO4 ca inhibitor al coroziunii oţelului în acid nitric de diferite concentraţii, în acid acetic (81%) la temperatura de fierbere, a cuprului în acidul nitric şi soluţiile de săruri, precum şi a aluminiului în substanţe alcaline [1]. The use of potassium permanganate KMnO4 as a corrosion inhibitor of steel in nitric acid of various concentrations, in acetic acid (81%) at boiling temperature, of copper in nitric acid and salt solutions, as well as of aluminum in alkaline substances is known [1].
Dezavantajul acestui inhibitor este concentraţia înaltă şi micşorarea nesemnificativă a pierderilor corozive ale metalelor în mediile acide şi alcaline. The disadvantage of this inhibitor is the high concentration and the insignificant reduction of corrosive losses of metals in acidic and alkaline environments.
Sunt cunoscuţi diferiţi inhibitori ai coroziunii, care reprezintă extracte din seminţe de schinduf, lupin, vânătă, sfeclă ş.a. [2]. Various corrosion inhibitors are known, which are extracts from fenugreek seeds, lupine, eggplant, beet, etc. [2].
Dar aceste extracte pot fi utilizate numai pentru inhibarea coroziunii în soluţii acide. În apă, care prezintă un mediu neutru, influenţa lor la diminuarea pierderilor de coroziune este nesemnificativă. Totodată metoda de extracţie utilizată nu permite extragerea tuturor substanţelor în soluţie, care pot inhiba coroziunea. But these extracts can only be used to inhibit corrosion in acidic solutions. In water, which is a neutral medium, their influence on reducing corrosion losses is insignificant. At the same time, the extraction method used does not allow the extraction of all substances in the solution that can inhibit corrosion.
În calitate de soluţie proximă poate fi luat procedeul de protecţie a oţelului împotriva coroziunii în apă cu utilizarea extractului apos din frunze şi tulpini uscate de rostopască Chelidonium majus şi acid sulfuric concentrat, care se introduc în mediul coroziv în următorul raport, ml/l: extract apos de rostopască - 20-40 (sau 1,1-2,9 g, recalculat la masa uscată pe litru de mediu agresiv), acid sulfuric - 0,5-2 [3]. As a close solution, the process of protecting steel against corrosion in water using an aqueous extract of dried leaves and stems of celandine Chelidonium majus and concentrated sulfuric acid can be taken, which are introduced into the corrosive medium in the following ratio, ml/l: aqueous extract of celandine - 20-40 (or 1.1-2.9 g, recalculated to dry mass per liter of aggressive medium), sulfuric acid - 0.5-2 [3].
Dezavantajul acestui inhibitor este prezenţa în inhibitor a acidului sulfuric concentrat, ce reprezintă un pericol înalt pentru personalul de serviciu. The disadvantage of this inhibitor is the presence of concentrated sulfuric acid in the inhibitor, which represents a high danger for service personnel.
Problema pe care o rezolvă invenţia constă în ridicarea nivelului de rezistenţă la coroziune a sistemelor închise de conducte din oţel. The problem solved by the invention is to increase the corrosion resistance of closed steel piping systems.
Problema propusă este rezolvată prin procedeul de protecţie a oţelului de coroziune în apă, care constă în introducerea în mediul coroziv a 0,5-1,5 g/l de permanganat de potasiu KMnO4 şi 10-30 ml/l de extract apos de amarant Amaranthus retroflexus L., obţinut prin extracţia ierbii uscate cu apă în raport de masă de 4:10 la temperatura de 70-90°C timp de 1-3 ore, cu filtrarea ulterioară. The proposed problem is solved by the process of protecting steel from corrosion in water, which consists of introducing into the corrosive environment 0.5-1.5 g/l of potassium permanganate KMnO4 and 10-30 ml/l of aqueous extract of amaranth Amaranthus retroflexus L., obtained by extracting the dried herb with water in a mass ratio of 4:10 at a temperature of 70-90°C for 1-3 hours, with subsequent filtration.
Extractul se obţine astfel: 400 g de iarbă uscată de amarant se adaugă la 1 l de apă distilată, se amestecă, şi este ţinută la o temperatură de 70-90°С timp de 1-3 ore. După răcire, extractul se filtrează, apoi se adaugă în mediul coroziv. The extract is obtained as follows: 400 g of dried amaranth grass is added to 1 l of distilled water, mixed, and kept at a temperature of 70-90°С for 1-3 hours. After cooling, the extract is filtered, then added to the corrosive medium.
Rezultatul tehnic al invenţiei constă în sporirea rezistenţei la coroziune de până la 35 ori cu utilizarea unui inhibitor eficient, ecologic inofensiv şi necostisitor. The technical result of the invention consists in increasing corrosion resistance up to 35 times with the use of an efficient, environmentally harmless and inexpensive inhibitor.
Testele la coroziune ale probelor cu dimensiuni de 50×25×3 mm au fost efectuate la imersia completă în soluţie la aceeaşi adâncime cu accesul aerului. Rugozitatea lor iniţială a fost stabilită prin şlefuire. Pierderile la coroziune au fost înregistrate gravimetric. Efectul de acţiune a inhibitorului a fost evaluat cantitativ prin viteza de coroziune k, g/m2·zi şi valoarea coeficientului de inhibare γ = k/k1, unde k1, k sunt vitezele de coroziune ale metalului, respectiv cu şi fără utilizarea inhibitorului. Acest coeficient indică de câte ori viteza de coroziune se micşorează, ca urmare a acţiunii inhibitorului. Corrosion tests of samples with dimensions of 50×25×3 mm were carried out at full immersion in the solution at the same depth as the air access. Their initial roughness was established by grinding. Corrosion losses were recorded gravimetrically. The effect of the inhibitor action was quantitatively evaluated by the corrosion rate k, g/m2·day and the value of the inhibition coefficient γ = k/k1, where k1, k are the corrosion rates of the metal, respectively with and without the use of the inhibitor. This coefficient indicates how many times the corrosion rate decreases as a result of the inhibitor action.
Efectul concentraţiei inhibitorului şi a timpului de încercare asupra vitezei de coroziune k, g/m2·zi şi a coeficientului de inhibare γ este prezentat în tabelele 1-3. The effect of inhibitor concentration and test time on the corrosion rate k, g/m2·day and the inhibition coefficient γ is presented in tables 1-3.
Tabelul 1 Table 1
Influenţa cantităţii de KMnO4 asupra parametrilor procesului coroziv al oţelului St. 3 în apă Influence of the amount of KMnO4 on the parameters of the corrosion process of St. 3 steel in water
Concentraţia inhibitorului, g/l Timpul testării, ore Viteza de coroziune, k, g/м2·zi Coeficientul de inhibare, γ 0 8 24 48 72 168 21,0 12,0 8,8 6,6 4,2 - - - - - 0,5 8 24 48 72 168 7,8 5,22 2,51 2,06 1,35 2,7 2,3 3,5 3,2 3,1 1,0 8 24 48 72 168 6,36 3,69 2,51 1,74 1,02 3,3 3,25 3,5 3,8 4,1 1,5 8 24 48 72 168 6,0 3,24 2,44 1,61 0,95 3,5 3,7 3,6 4,1 4,4Inhibitor concentration, g/l Testing time, hours Corrosion rate, k, g/m2·day Inhibition coefficient, γ 0 8 24 48 72 168 21.0 12.0 8.8 6.6 4.2 - - - - - 0.5 8 24 48 72 168 7.8 5.22 2.51 2.06 1.35 2.7 2.3 3.5 3.2 3.1 1.0 8 24 48 72 168 6.36 3.69 2.51 1.74 1.02 3.3 3.25 3.5 3.8 4.1 1.5 8 24 48 72 168 6.0 3.24 2.44 1.61 0.95 3.5 3.7 3.6 4.1 4.4
Tabelul 2 Table 2
Influenţa cantităţii de extract apos de amarant asupra The influence of the amount of aqueous amaranth extract on
parametrilor procesului coroziv al oţelului St. 3 în apă parameters of the corrosion process of St. 3 steel in water
Concentraţia extractului, ml/l Timpul testării, ore Viteza de coroziune, k, g/м2·zi Coeficientul de inhibare, γ 0 8 24 48 72 168 21,0 12,0 8,8 6,6 4,2 - - - - - 10 8 24 48 72 168 4,0 2,03 1,4 1,05 0,5 5,25 5,9 6,3 6,3 8,4 20 8 24 48 72 168 3,5 1,85 1,28 0,89 0,55 6,0 6,5 6,9 7,4 7,64 30 8 24 48 72 168 2,96 1,67 1,17 0,85 0,525 7,1 7,2 7,5 7,75 8,0Extract concentration, ml/l Testing time, hours Corrosion rate, k, g/m2·day Inhibition coefficient, γ 0 8 24 48 72 168 21.0 12.0 8.8 6.6 4.2 - - - - - 10 8 24 48 72 168 4.0 2.03 1.4 1.05 0.5 5.25 5.9 6.3 6.3 8.4 20 8 24 48 72 168 3.5 1.85 1.28 0.89 0.55 6.0 6.5 6.9 7.4 7.64 30 8 24 48 72 168 2.96 1.67 1.17 0.85 0.525 7.1 7.2 7.5 7.75 8.0
Din datele prezentate în tab. 1 se vede, că adăugarea în mediul coroziv numai a permanganatului de potasiu permite să se micşoreze pierderile corozive de până la 4, 4 ori (1,5 g/l KMnO4 la 168 ore de testare), ceea ce în mod clar este insuficient. Totodată, coroziunea în dependenţă de timpul de testare se inhibează neuniform. From the data presented in Table 1 it is seen that the addition of only potassium permanganate to the corrosive medium allows to reduce the corrosive losses by up to 4.4 times (1.5 g/l KMnO4 at 168 hours of testing), which is clearly insufficient. At the same time, the corrosion is inhibited unevenly depending on the testing time.
Din datele prezentate în tab. 2 se vede, că folosirea în calitate de inhibitor al coroziunii a extractului apos de amarant duce la o inhibare semnificativ mai mare a coroziunii, decât în cazul administrării numai a permanganatului de potasiu. From the data presented in Table 2, it can be seen that the use of amaranth aqueous extract as a corrosion inhibitor leads to significantly greater corrosion inhibition than the use of potassium permanganate alone.
Folosirea amestecului din permanganat de potasiu şi extractului apos de amarant duce la un efect sinergetic al interacţiunii dintre componente şi inhibarea mult mai mare a procesului de coroziune a oţelului în apă (tab. 3). Astfel, se vede, că coeficientul de inhibare γ creşte cu mărirea timpului de testare, ce reprezintă o dovadă a formării pe suprafaţa corozivă a oţelului a unei pelicule mai dense, care inhibă procesul coroziv. Astfel, la o concentraţie a extractului de 30 ml/l şi o perioadă de testare de 168 ore viteza de coroziune se micşorează de până la 35 ori. The use of a mixture of potassium permanganate and aqueous amaranth extract leads to a synergistic effect of the interaction between the components and a much greater inhibition of the corrosion process of steel in water (tab. 3). Thus, it is seen that the inhibition coefficient γ increases with increasing test time, which is evidence of the formation of a denser film on the corrosive surface of steel, which inhibits the corrosion process. Thus, at an extract concentration of 30 ml/l and a test period of 168 hours, the corrosion rate decreases by up to 35 times.
Tabelul 3 Table 3
Influenţa introducerii în mediul coroziv KMnO4 (1,0 g/l) şi a extractului apos Influence of introducing KMnO4 (1.0 g/l) and aqueous extract into the corrosive medium
de amarant asupra parametrilor procesului coroziv al oţelului St. 3 în apă of amaranth on the parameters of the corrosion process of St. 3 steel in water
Concentraţia extractului, ml/l Timpul testării, ore Viteza de coroziune, k, g/м2·zi Coeficientul de inhibare, γ 0 8 24 48 72 168 6,36 3,69 2,51 1,74 1,02 3,3 3,25 3,5 3,8 4,1 10 8 24 48 72 168 2,0 1,1 0,72 0,38 0,22 10,5 10,9 12,2 17,37 19,1 20 8 24 48 72 168 2,1 0,97 0,4 0,29 0,168 10,0 12,4 22,0 22,75 25,0 30 8 24 48 72 168 1,89 0,92 0,29 0,21 0,12 11,1 13,05 30,35 31,4 35,0Extract concentration, ml/l Testing time, hours Corrosion rate, k, g/m2·day Inhibition coefficient, γ 0 8 24 48 72 168 6.36 3.69 2.51 1.74 1.02 3.3 3.25 3.5 3.8 4.1 10 8 24 48 72 168 2.0 1.1 0.72 0.38 0.22 10.5 10.9 12.2 17.37 19.1 20 8 24 48 72 168 2.1 0.97 0.4 0.29 0.168 10.0 12.4 22.0 22.75 25.0 30 8 24 48 72 168 1.89 0.92 0.29 0.21 0.12 11.1 13.05 30.35 31.4 35.0
Astfel, a fost elaborat un inhibitor al coroziunii oţelurilor în apă, eficient, inofensiv din punct de vedere ecologic, care permite reducerea considerabilă a pierderilor corozive de până la 35 ori. Thus, an efficient, environmentally friendly steel corrosion inhibitor in water was developed, which allows for a considerable reduction in corrosive losses of up to 35 times.
1. Алцыбеева А.И., Левин С.З. Ингибиторы коррозии металлов. Л., 1968, p. 77 1. Alcybeeva A.I., Levin S.Z. Metal corrosion inhibitors. L., 1968, p. 77
2. Saleh R. M., Ismail A. A., Hosary A. A. Ингибирование коррозии экстрактами природных соединений. Экспресс-информация. Коррозия и защита от коррозии. М., 1985, nr. 1, p. 22-25 2. Saleh R. M., Ismail A. A., Hosary A. A. Corrosion inhibition by extracts of natural compounds. Express information. Corrosion and corrosion protection. M., 1985, no. 1, p. 22-25
3. MD 1329 Y 2019.03.31 3. MD 1329 Y 2019.03.31
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20200079A MD1496Z (en) | 2020-07-17 | 2020-07-17 | Process for corrosion protection of steel in water |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20200079A MD1496Z (en) | 2020-07-17 | 2020-07-17 | Process for corrosion protection of steel in water |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD1496Y MD1496Y (en) | 2021-01-31 |
| MD1496Z true MD1496Z (en) | 2021-08-31 |
Family
ID=74479105
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20200079A MD1496Z (en) | 2020-07-17 | 2020-07-17 | Process for corrosion protection of steel in water |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD1496Z (en) |
-
2020
- 2020-07-17 MD MDS20200079A patent/MD1496Z/en active IP Right Grant
Also Published As
| Publication number | Publication date |
|---|---|
| MD1496Y (en) | 2021-01-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Ajayi et al. | Inhibition of mild steel corrosion using Jatropha Curcas leaf extract | |
| Ajani et al. | Inhibitory action of aqueous Citrus aurantifolia seed extract on the corrosion of mild steel in H2SO4 Solution | |
| Lehrman et al. | The role of sodium silicate in inhibiting corrosion by film formation on water piping | |
| MD1496Z (en) | Process for corrosion protection of steel in water | |
| MD1494Z (en) | Process for corrosion protection of steel in water | |
| MD1507Z (en) | Process for corrosion protection of steel in water | |
| RU2702542C1 (en) | Inhibitor of corrosion and scale formation for use in systems of reverse cooling of power plants or other industrial enterprises | |
| JPS5852486A (en) | oxygen absorber | |
| MD1633Z (en) | Process for corrosion protection of steel in water | |
| MD1495Z (en) | Process for corrosion protection of steel in water | |
| Oki et al. | Performance of mild steel in nitric acid/carica papaya leaf extracts corrosion system | |
| MD1371Y (en) | Process for corrosion protection of steel in water | |
| CN102553453A (en) | Scale inhibitor for reverse osmosis membrane | |
| Singh | A survey of corrosivity of underground mine waters from Indian coal mines | |
| US2499283A (en) | Inhibited hydrochloric acid | |
| MD1397Z (en) | Process for corrosion protection of steel in water | |
| MD1416Z (en) | Process for corrosion protection of steel in water | |
| MD1415Z (en) | Process for corrosion protection of steel in water | |
| Matheswaran et al. | Corrosion inhibition of mild steel in citric acid by aqueous extract of Piper nigrum L. | |
| RU2693243C1 (en) | Corrosion and scale-formation inhibitor for water treatment of heating systems and other heating systems | |
| MD1414Z (en) | Process for corrosion protection of steel in water | |
| MD1382Z (en) | Process for corrosion protection of steel in water | |
| MD1329Y (en) | Inhibitor of steel corrosion in water | |
| Hamdona et al. | The influence of polyphosphonates on the precipitation of strontium sulfate (celestite) from aqueous solutions | |
| MD1746Z (en) | Process for corrosion protection of steel in water |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG9Y | Short term patent issued |