LT6309B - Trimatis porėtas celiuliozės karkasas kaulo inžinerijai ir jo gavimo būdas - Google Patents

Trimatis porėtas celiuliozės karkasas kaulo inžinerijai ir jo gavimo būdas Download PDF

Info

Publication number
LT6309B
LT6309B LT2014117A LT2014117A LT6309B LT 6309 B LT6309 B LT 6309B LT 2014117 A LT2014117 A LT 2014117A LT 2014117 A LT2014117 A LT 2014117A LT 6309 B LT6309 B LT 6309B
Authority
LT
Lithuania
Prior art keywords
bone
cellulose
particles
dimensional
gel
Prior art date
Application number
LT2014117A
Other languages
English (en)
Other versions
LT2014117A (lt
Inventor
Eugenijus Liesis
Odeta Baniukaitienė
Alisa Palavenienė
Jolanta Liesienė
Original Assignee
Uab "Biomė"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uab "Biomė" filed Critical Uab "Biomė"
Priority to LT2014117A priority Critical patent/LT6309B/lt
Priority to PCT/IB2015/057597 priority patent/WO2016059508A1/en
Publication of LT2014117A publication Critical patent/LT2014117A/lt
Publication of LT6309B publication Critical patent/LT6309B/lt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3608Bone, e.g. demineralised bone matrix [DBM], bone powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Išradimas priskiriamas medžiagų inžinerijos sričiai ir gali būti panaudotas odontologijoje ar kitos srities chirurgijoje kaulo audinio regeneracijai defekto vietoje.Trimatis porėtas celiuliozės karkasas, pasižymintis bio suderinamumu ir osteokondukcinėmis savybėmis, gaunamas sudarant kompozitą iš gamtinio polimero celiuliozės ir biogeninių kalcio šaltinių, būtent, autogeninio (nuosavo) kaulo, alogeninio (kito tos pačios rūšies, t.y. žmogaus, kito individo) kaulo, ksenogeninio (kitos rūšies organizmo) kaulo dalelių. Šio išradimo tikslas gauti trimatį porėtą celiuliozės karkasą, kuris pasižymėtų bio suderinamumu ir geromis osteokondukcinėmis savybėmis ir struktūra, atitinkančia natūralaus kaulo morfologiją. Išradimo tikslas pasiekiamas sudarant celiuliozės kompozitą su biogeninių kaulų 0,01 - 2000 mikronų dydžio dalelėmis, esant masių santykiui 1:0,12-6,0. Atskiru atveju celiuliozės kompozitas sudaromas su sepijos kaulo, kuriame yra mineraliniai junginiai ir polisacharidas chitinas, 0,01-2000 mikronų dydžio dalelėmis. Atskiru atveju karkaso porų paviršius padengiamas kolagenu, trombocitais praturtintu fibrinu, įvairiais augimo faktoriais, terapeutiniais priedais. Trimatės porėtos struktūros, atitinkančos kaulo morfologiją, karkasas gaunamas celiuliozės gelį formuojant su įterptomis biogeninio kaulo dalelėmis, po to jį inkliuduojant 10-30%, vandeniniu alkoholio tirpalu ir liofilizuojant arba veikiant gelį superkriziniu anglies dioksidu 24-70 Mpa slegyje 35 - 80° temperatūroje. Gautas blokelio formos karkasas gali būti sumalamas iki norimo dydžio granulių ir/ar iš jų pagaminama pasta.

Description

Išradimas priklauso medžiagų inžinerijos sričiai ir gali būti panaudotas odontologijoje ar kitos srities chirurgijoje kaulo audinio regeneracijai defekto vietoje.
Trimatis porėtas celiuliozės karkasas, pasižymintis biosuderinamumu, geromis osteokondukcinėmis ir mechaninėmis savybėmis, gaunamas sudarant kompo zitą iš gamtinio polimero - celiuliozės ir biogeninių kalcio šaltinių, būtent, autogeninio (nuosavo) kaulo, alogeninio (kito tos pačios rūšies, t.y. žmogaus, kito individo) kaulo, ksenogeninio (kitos rūšies organizmo) kaulo dalelių. Kompozito struktūra, tinkama kaulo audinio regeneracijai, formuojama liofilizacijos būdu ar veikiant superkriziniu skysčiu, prieš tai inkliudavus vandeniniais alkoholio tirpalais. Gali būti blokelio ar granulių pavidalo, gali būti pagaminta pasta.
Kaulo audinio atstatymui defekto srityje odontologai naudoja kaulo pakaitalus. Tai gali būti:
- autogeniniai pakaitalai - nuosavas kaulas iš kitos to paties žmogaus vietos. Privalumai - neiššaukia imuninės sistemos atsako. Trūkumai - reikalinga papildoma chirurginė operacija kaulo išėmimui, neretai trūksta kaulo, be to sunku jam suteikti reikiamą formą;
- alogeniniai kaulo pakaitalai - kito tos pačios rūšies (t.y. žmogaus) individo kaulas. Pagal fizikines savybes tinkamas, bet galima pernešti kito žmogaus ligų užkratus;
- ksenogeniniai kaulo pakaitalai - tai gyvūno, dažniausiai jauno jautuko kaulas, kuriame išdeginti baltymai ir likusi tik mineralinė dalis. Jo morfologija ne visai atitinka žmogaus kaulo struktūrai. Jis pernelyg greitai rezorbuojasi organizme;
- sintetiniai kaulo pakaitalai. Tarpe jų, populiariausi - trikalcio fosfatas (TCP) ir hidroksiapatitas (HA).
Dauguma kaulo pakaitalų yra miltelių ar granulių (0,5-2 mm) pavidalo.
Pagrindinis jų trūkumas - jie dažnai sušoka į monolitinį gabalą, kuriame neįauga kraujagyslės. Susidaro nepakankamo stiprumo darinys, kuris trupa įsukant metalinį implantą,
Siekiant gauti porėtą trimatę struktūrą, įvairios formos kaulo pakaitalų dalelės sumaišomos ir iš jų gaminami agregatai, įvairiais būdais suklijuojant, supresuojant ar sukepant daleles. Tam naudojamos įvairios kaulinės dalelės, TCP, HA (VVinterbottom
J.M. et ai. Implant, method of making šame and ūse of the implant for the treatment of bone defects. Patent No. US 6478825 B 1, 2002-11-02) arba šios mineralinės medžiagos kartu su polimero dalelėmis (Giomo T. PLGA/HA hydroxyapatite composite bone grafts and method of making. Pub. No. US 2013/02 18291 Al, 201308-22). Trimatės struktūros kompozitai taip pat sudaromi elektrinio verpimo metodu (Mei Wei, Fei Peng, Zhi-kang Xu. Electrospun apatite/polymer nano-composite scaffolds. Patent No. US7879093 B2, 2011-02-01) arba naudojant sparčios prototipų gamybos technologijas (angį. Rapid Prototyping) (Sawkins, M.J., et ai. 3D Cell and scaffold patteming strategies in tissue engineering. Recent Patente on Biomedical Engineering, 2013, vol. 6, no. 1, p. 3-21; Teoh, S.H., et ai. Three-dimensional bioresorbable scaffolds for tissue engineering applications. Patent No. US8071007 B 1, 2011-12-06). Naudojami sintetiniai polimerai: poli( s-kaprolaktonas), poli(L-pieno rūgštis), poli(glikolio rūgštis), poli(D,L-pieno-ko-glikolio rūgštis), polifosfazenai, polipropilenfumaratas (Muhammad, I.S.; Xiaoxue, X.; Li, L. A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 2009, p. 5713-5724). Iš sintetinių polimerų plačiausiai naudojamas polifs-kaprolaktonas) (Dhandayuthapani, B., et ai. Polymeric scaffolds in tissue engineering application: A review. International Journal of Polymer Science, 2011,vol.2011,p.l-19).
Tačiau sintetiniai polimerai pasižymi mažesniu biosuderinamumu nei natūralūs, jie neretai sukelia audinių nekrozę, jų skilimo produktai, kaip kad glikolio rūgštis ir kiti rūgštiniai junginiai gali padidinti vietinį rūgštingumą, kas gali sukelti audinių pažeidimus. Be to, polimerams yrant organizme gali susidaryti ir toksiški metabolitai. Aprašyti gavimo būdai sudėtingi ir neužtikrina reikiamo porėtumo, nes dalelės yra sulipdomos arba sukepinamos. Be to, svarbus trūkumas yra tai, kad kalcio šaltiniais naudojami sintetinės kilmės mineraliniai junginiai - TCP ir HA.
Artimiausias prototipas yra celiuliozės pagrindu gaunamas trimatis karkasas, kurio paviršius mineralizuojamas modeliniame kūno skystyje (SBF -angį. simulated body jluid) (Petrauskaite, o. et.al. Biomimetic mineralization on a macroporous cellulose-based matrix for bone regeneration. BioMed Research International. ISSN 2314-6133. 2013, vol. 2013, p. 1-9). Šiuo atveju porėtas karkasas yra gaunamas iš regeneruotos celiuliozės gelio liofilizacijos būdu. Gaunamas tolygiai porėtas blokas, pasižymintis morfologija, atitinkančia natūralaus kaulo struktūrą.
Prie esminių metodo trūkumų galima priskirti tai, kad celiuliozė nepasižymi bioaktyvumu, nesuauga su kauliniais audiniais, pasižymi prastomis osteokondukcinėmis savybėmis. Nors šių savybių pagerinimui karkaso paviršius mineralizuojamas SBF tirpale, tačiau gaunamas padengimas sintetiniais mineralais, kurie visada pasižymi mažesniu biosuderinamumu nei natūralūs. Be to, mineralizuojant SBF-e, padengiamas tik paviršius, ir mineralų kiekis kompozituose sudaro tik iki 12 procentų nuo celiuliozės svorio, todėl tokio karkaso osteokondukcinės savybės pagerėja nežymiai. Be to, gautas karkasas pasižymi prastomis mechaninėmis savybėmis (Jungo modulis 4 MPa).
Šio išradimo tikslas - gauti trimatį porėtą celiuliozės karkasą, kuris pasi žymėtų biosuderinamumu ir geromis osteokondukcinėmis bei mechaninėmis savybėmis ir struktūra, atitinkančią natūralaus kaulo morfologiją.
Šis tikslas pasiekiamas sudarant celiuliozės kompozitą su biogeninių kaulų 0,01-2000 mikronų dydžio dalelėmis, esant masių santykiui 1: 0,12-6,0. Atskiru atveju celiuliozės kompo zitas sudaromas su sepijos kaulo, kuriame yra mineralinių junginių ir polisacharidas chitinas, 0,01-2000 mikronų dydžio dalelėmis. Atskiru atveju karkaso porų paviršius padengiamas kolagenu, trombocitais praturtintu fibrinu, įvairiais augimo faktoriais, terapeutiniais priedais, kamieninėmis ląstelėmis. Trimatės porėtos struktūros, atitinkančios kaulo morfologiją, karkasas gaunamas celiuliozės geli formuojant iš acetilceliuliozės tirpalo su įterptomis biogeninio kaulo dalelėmis masių santykiu 1: 0,12-6,0, po to jį inkliuduojant 10-30 % vandeniniu alkoholio tirpalu ir liofilizuojant arba veikiant gelį superkriziniu anglies dioksidu 24-70 MPa slėgyje 3580°C temperatūroje. Gautas blokelio formos karkasas gali būti sumalamas iki norimo dydžio granulių ir/ar iš jų pagaminama pasta.
Gaunamo karkaso privalumai - naudojami ne sintetiniai, o natūralūs komponentai: gamtinis polimeras - celiuliozė ir smulkinti biogeniniai kaulai. Celiuliozė yra necitotoksiška, pasižymi biosuderinamumu. Jos irimo produktai nėra toksiški. Biogeniniais kaulais gali būti naudojami autogeninis, alogeninis ar ksenogeninis (bet kurio gyvūno) kaulas. Atskiru atveju gali būti naudojamas smulkintas sepijos kaulas, kuriame be mineralinių junginių yra ir polisacharidas chitinas, pasižymintis priešuždegiminėmis, antimikrobinėmis ir koaguliacinėmis savybėmis, kas suteikia papildomus privalumus. Celiuliozės ir smulkintų kaulų dalelių masių santykis kompozitel: 0,12-6,0.
Išradimo rezultatus iliustruoja brėžiniai. Fig. 1 - 1-ame pavyzdyje pagaminto karkaso skerspjūvio vaizdas, gautas mikrokompiuterinės tomografijos metodu. Fig. 2 - 1-ame pavyzdyje pagaminto karkaso trimatis vaizdas, gautas mikrokompiuterinės tomografijos metodu. Fig. 3 - ll-ame pavyzdyje pagaminto karkaso skerspjūvio vaizdas, gautas mikrokompiuterinės tomografijos metodu. Fig. 4 - ll-ame pavyzdyje pagaminto karkaso trimatis vaizdas, gautas mikrokompiuterinės tomografijos metodu. Fig. 5 - ląstelių proliferacija karkasuose.
Būdo atlikimas.
Smulkinti kaulai įvedami į acetilceliuliozės tirpalą, iš kurio gaunamas regeneruotos celiuliozės gelis su įterptomis kaulų dalelėmis. Smulkintų kaulų dalelių dydis 0,01-2000 mikronų, optimalus dydis - iki 200 mikronų. Porėta struktūra, atitinkanti kaulo morfologiją, suformuojama celiuliozės gelį su įterptomis biogeninių kaulo dalelėmis liofiiizuojant arba veikiant gelį superkriziniu anglies dioksidu 24-70 MPa slėgyje 35-80 - °C temperatūroje, prieš tai jį inkliudavus 10-30 % vandeniniais alkoholio tirpalais. Galima naudoti įvairius vandenyje tirpius alkoholius, tačiau tinkamiausias yra etanolis. Kompozitas pasižymi geromis mechaninėmis savybėmis Jungo modulis sudaro ne mažiau 8 MPa. Kompozito morfologija (porėta struktūra) pilnai atitinka žmogaus kaulo morfologijai (lentelė). Poros savo dydžiu tinkamos vaskuliarizacijai (kraujagyslių tinklui susidaryti) ir ląstelių proliferacijai. Bandymais su pelėmis nustatyta, kad kompozite po 2 savaičių buvo išplitęs kraujagyslių tinklas. Poros tarpusavyje susisiekiančios, todėl užtikrina maistinių medžiagų ir metabolitų transportą.
Lentelė. Pagamintų kompozitų ir natūralaus kaulo struktūriniai parametrai
Karkasai, gauti pagal 1,2,3 pavyzdžius Struktūriniai parametrai
Skeleto tūrio dalis, % Porėtumas, % Savitasis paviršiaus plotas, mm-l Vidutinis sijų storis, mm Porų skersmuo, mm
Nr.1 25 75 15 0,20 0,1-1,1
Nr.2 27 73 14 0,21 0,1-1,1
Nr.3 28 72 19 0,18 0,2-0,6
Žandikaulio kaulas (priklauso nuo vietos) 7-49 72-93 9-30 0,12-0,41 0,4-1,7
Tiriant žmogaus osteoblastų linijos ląstelių MG-63 proliferaciją, nustatyta, kad pagaminti karkasai pasižymi geresnėmis osteokondukcinėmis savybėmis nei prototipe gautas karkasas (Fig. 5).
Osteokondukcinių savybių ivertinimo metodas. Tyrimui naudojamos žmogaus osteoblastų linijos ląstelės MG-63 (ATCCVV CRL_1427™) (American Type Collection Culture, JAV). Išaugintos ląstelės sėjamos ant mėginių prieš tai juos sterilizavus UV jonizuojančia spinduliuote, švitinant 24 vai. Mėginiai, mirkomi 1 vai. mitybinėje terpėje, patalpinami j 24 duobučių plokšteles (vienas mėginys vienoje plokštelėje) ir supilstoma ant jų ląstelių suspensija. Karkasai su pasėtomis ląstelėmis laikomi termostate 37 C temperatūroje esant 5 % CO2. Tiriamos medžiagos poveikis ląstelių augimui vertinamas, nustačius DNR kiekį po 1, 3 ir 7 dienų. DNR kiekis nustatomas, naudojant fluorochromą Quant-iTP PicoGreen® (Life Technologies, JAV) pagal gamintojo nurodymus.
Karkaso porų paviršius gali būti padengtas kolagenu, trombocitais praturtintu fibrinu, įvairiais augimo faktoriais, terapeutiniais priedais, kamieninėmis ląstelėmis. Karkasas gaunamas blokelio formos, iš kurio galima lengvai išpjauti norimo pavidalo implantus, gali būti sum altas iki norimo dydžio granulių, gali būti suformuota pasta.
Pasta gaminama sumaišant sumaltą kompozitą su gliceroliu, polietilenglikoliu (molekulinė masė 400-600) ar kitu hidrogeliu.
pavyzdys g acetilceliuliozės ištirpina 261 ml acetono-amoniako tirpalo (tūrių santykis lygus 1 :0,45), prideda 15 galogeninio kaulo granulių (granulių dydis neviršija 200 mikronų), gerai išmaišo. Gautą dispersiją išpūsto į norimo tūrio ir formos indus ir išlaiko, kol susiformuoja kietas gelis. Gautą gelį kruopščiai išplauna distiliuotu vandeniu. Po to, 24 valandas palaiko 25 % etanolio tirpale ir liofilizuoja. Kompozito Jungo modulis sudaro 8 MPa. Mėginio skerspjūvio vaizdas, gautas mikrokompiuterinės tomografijos metodu, pateiktas Fig. 1, o trimatis vaizdas - Fig. 2. Ląstelių proliferacijos karkase duomenys pateikti Fig. 5.
pavyzdys g acetilceliuliozės ištirpina 267 ml acetono-amoniako tirpalo (tūrių santykis lygus 1 :0,5), prideda 12 g susmulkinto (dalelių dydis neviršija 100 mikronų) sepijos kaulo, gerai išmaišo. Gautą dispersiją išpūsto į norimo tūrio ir formos indus ir išlaiko, kol susiformuoja kietas gelis. Gautą geli kruopščiai išplauna distiliuotu vandeniu. Po to, 24 valandas palaiko 20 % etanolio tirpale ir liofilizuoja.
Iš susmulkinto sepijos kaulo, prieš jį naudojant, išplauna baltymus. Tam sepijos kaulo miltelius užpila 0,5 M natrio šarmo tirpalu ir maišo 5 vai. 80 °C temperatūroje. Po to kruopščiai išplauna distiliuotu vandeniu, išdžiovina ir persijoja.
Kompozito Jungo modulis sudaro 10 MPa. Mėginio skerspjūvio vaizdas, gautas mikrokompiuterinės tomografijos metodu, pateiktas Fig. 3, o trimatis vaizdas Fig. 4. Ląstelių proliferacijos karkase duomenys pateikti Fig. 5.
pavyzdys g acetilceliuliozės ištirpina 10 1,5 ml acetono-amoniako tirpalo (tūrių santykis lygus 1 :0,45), prideda 12 g smulkinto ksenogeninio kaulo (jautuko) granulių (granulių dydis neviršija 200 mikronų), gerai išmaišo. Gautą dispersiją išpūsto į norimo tūrio ir formos indus ir išlaiko, kol susiformuoja kietas gelis. Gautą geli kruopščiai išplauna distiliuotu vandeniu ir veikia superkriziniu anglies dioksidu esant 80 °C temperatūrai, 30 MPa slėgyje.
Kompozito Jungo modulis sudaro 20 MPa. Ląstelių proliferacijos karkase duomenys pateikti Fig. 5.
pavyzdys
Pagaminto karkaso pavirstų padengia kolageno sluoksniu. Tam įvairios kilmės (žmogaus, kiaulės, žiurkės, karvės, rekombinantinio) I tipo kolageną ištirpina 0,1 M acto rūgštyje pagal Sigma Aldrich pateikiamą metodiką, po to tirpalą praskiedžia 10 kartų fosfatiniu buferiu ir titruoja su 0,1 M natrio šarmu iki pH 7. Norimos formos karkasą patalpina į centrifūgos mėgintuvėlį, užpila kolageno tirpalu ir centrifuguoja 10 min 4000-6000 aps/min greičiu. Po to karkasą liofilizuoja.

Claims (7)

1. Trimatis porėtas celiuliozės karkasas kaulo audinio inžinerijai, pasižymintis morfologija, atitinkančia natūralaus kaulo struktūrą, besiskiriantis tuo, kad jį sudaro celiuliozės kompozitas su biogeninių kaulų 0,01-2000 mikronų dydžio dalelėmis, esant masių santykiui 1: 0,12-6,0.
2. Trimatis porėtas celiuliozės karkasas pagal 1 punktą, besiskiriantis tuo, kad jį sudaro celiuliozės kompozitas su sepijos kaulo, kuriame yra mineralinių junginių ir chitinas, 0,01-2000 mikronų dydžio dalelėmis.
3. Trimatis porėtas celiuliozės karkasas pagal 1 ir 2 punktą, b e s i s k i r i a n t i s tuo, kad jo paviršius padengtas kolagenu, trombocitais praturtintu fibrinu, įvairiais augimo faktoriais, terapeutiniais priedais, kamieninėmis ląstelėmis.
4. Trimačio porėto celiuliozės karkaso kaulo audinio inžinerijai gavimo būdas iš regeneruotos celiuliozės gelio, besiskiriantis tuo, kad geli formuoja iš acetilceliuliozės tirpalo su įterptomis biogeninio kaulo dalelėmis masių santykiu 1: 0,12-6,0.
5. Trimačio porėto celiuliozės karkaso kaulo audinio inžinerijai gavimo būdas liofilizuojant regeneruotos celiuliozės gelį gautą pagal 4 punktą besiskiriantis tuo, kad celiuliozės gelį su įterptomis biogeninio kaulo dalelėmis prieš liofilizaciją inkliuduoja 10-30 % vandeniniu alkoholio tirpalu.
6. Trimačio porėto celiuliozės karkaso gavimo būdas pagal 4 punktą, b e s i s k i r i a n t i s tuo, kad celiuliozės geli su įterptomis kaulo dalelėmis inkliuduoja 10-30 % vandeniniu alkoholio tirpalu ir veikia superkriziniu anglies dioksidu 24-70 MPa slėgyje 35-80 °C temperatūroje.
7. Trimačio porėto celiuliozės karkaso gavimo būdas pagal 4, 5 ir 6 punktą, b esiskiriantis tuo, kad blokelio formos karkasą sumala iki norimo dydžio granulių ir/ar iš jų pagamina pastą.
LT2014117A 2014-10-13 2014-10-13 Trimatis porėtas celiuliozės karkasas kaulo inžinerijai ir jo gavimo būdas LT6309B (lt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
LT2014117A LT6309B (lt) 2014-10-13 2014-10-13 Trimatis porėtas celiuliozės karkasas kaulo inžinerijai ir jo gavimo būdas
PCT/IB2015/057597 WO2016059508A1 (en) 2014-10-13 2015-10-05 A 3d porous cellulose scaffold for bone tissue engineering and the method for its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LT2014117A LT6309B (lt) 2014-10-13 2014-10-13 Trimatis porėtas celiuliozės karkasas kaulo inžinerijai ir jo gavimo būdas

Publications (2)

Publication Number Publication Date
LT2014117A LT2014117A (lt) 2016-05-10
LT6309B true LT6309B (lt) 2016-08-25

Family

ID=54345553

Family Applications (1)

Application Number Title Priority Date Filing Date
LT2014117A LT6309B (lt) 2014-10-13 2014-10-13 Trimatis porėtas celiuliozės karkasas kaulo inžinerijai ir jo gavimo būdas

Country Status (2)

Country Link
LT (1) LT6309B (lt)
WO (1) WO2016059508A1 (lt)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660588C1 (ru) * 2017-07-18 2018-07-06 Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" Способ упрочнения гидрогелей
CN114904052B (zh) * 2022-05-06 2024-02-02 南京友德邦医疗科技有限公司 一种新型可降解镁合金血管支架及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478825B1 (en) 2001-11-28 2002-11-12 Osteotech, Inc. Implant, method of making same and use of the implant for the treatment of bone defects
US7879093B2 (en) 2007-03-26 2011-02-01 University Of Connecticut Electrospun apatite/polymer nano-composite scaffolds
US8071007B1 (en) 2000-09-20 2011-12-06 Osteopore International Pte. Ltd. Three-dimensional bioresorbable scaffolds for tissue engineering applications
US20130218291A1 (en) 2012-02-21 2013-08-22 Thierry Giorno Plga/ha hydroxyapatite composite bone grafts and method of making

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340477B1 (en) * 2000-04-27 2002-01-22 Lifenet Bone matrix composition and methods for making and using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071007B1 (en) 2000-09-20 2011-12-06 Osteopore International Pte. Ltd. Three-dimensional bioresorbable scaffolds for tissue engineering applications
US6478825B1 (en) 2001-11-28 2002-11-12 Osteotech, Inc. Implant, method of making same and use of the implant for the treatment of bone defects
US7879093B2 (en) 2007-03-26 2011-02-01 University Of Connecticut Electrospun apatite/polymer nano-composite scaffolds
US20130218291A1 (en) 2012-02-21 2013-08-22 Thierry Giorno Plga/ha hydroxyapatite composite bone grafts and method of making

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DHANDAYUTHAPANI, B., ET AL: "Polymeric scaffolds in tissue engineering application:", INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2011, pages 19
MUHAMMAD, I.S.; XIAOXUE, X.; LI, L.: "review on biodegradable polymeric materials for bone tissue engineering applications", JOURNAL OF MATERIALS SCIENCE, 2009, pages 5713 - 5724, XP019750027, DOI: doi:10.1007/s10853-009-3770-7

Also Published As

Publication number Publication date
WO2016059508A1 (en) 2016-04-21
LT2014117A (lt) 2016-05-10

Similar Documents

Publication Publication Date Title
Levengood et al. Chitosan-based scaffolds for bone tissue engineering
JP5881669B2 (ja) コラーゲン/ヒドロキシアパタイト複合骨格及びその生成方法
JP4873555B2 (ja) アパタイト/コラーゲン複合体繊維を含む多孔体の製造方法
KR101027630B1 (ko) 연골 재생용 다공성 히알루론산-콜라겐 천연 고분자 지지체의 제조방법
JP2010273847A (ja) 高密度多孔質複合体
KR20130037324A (ko) 조직재생용 스캐폴드 제조를 위한 3차원 프린팅 적층용 조성물과 그 제조방법
JP2009132601A (ja) アパタイト/コラーゲン複合体繊維を含む多孔体及びその製造方法
RU2376019C2 (ru) Пористые композиционные материалы на основе хитозана для заполнения костных дефектов
KR101379894B1 (ko) 형질전환 돼지 뼈를 이용한 골 이식용 세라믹 입자, 그 제조방법 및 상기 입자를 포함하는 생체의료용 세라믹재료
Liao et al. Size matters: Effects of PLGA‐microsphere size in injectable CPC/PLGA on bone formation
US10517993B2 (en) Porous composite, bone regeneration material, and method for producing porous composite
US8465582B2 (en) Process for producing inorganic interconnected 3D open cell bone substitutes
KR102014248B1 (ko) 이상 인산 칼슘이 탑재된 탈세포화된 돼지 피부 유래 주입형 세포외 기질 기반 하이드로겔의 제조방법
LT6309B (lt) Trimatis porėtas celiuliozės karkasas kaulo inžinerijai ir jo gavimo būdas
JP5881206B2 (ja) 骨再生材料
RU2554804C1 (ru) Способ получения композиционного материала на основе фосфата кальция
Yu et al. Antler collagen/chitosan scaffolds improve critical calvarial defect healing in rats
JP6018477B2 (ja) 人工骨−軟骨複合体及びその製造方法
KR102494197B1 (ko) 연골 성분 기반 바이오 잉크를 이용한 소이증 치료 목적 구조체 제작용 조성물 및 그 제조방법
EP3697461A1 (en) Porous material
JP2021115165A (ja) 多孔質複合体
Pan et al. Assessment of the suitability of a new composite as a bone defect filler in a rabbit model
JP2012120735A (ja) 骨補填材、及び骨補填材の製造方法
bin Mohamed Amin et al. Physical properties and biocompatibility of 3D hybrid PLGA based scaffolds
Srimora et al. Evaluation of physical properties of bone scaffolds prepared from polycaprolactone microspheres

Legal Events

Date Code Title Description
BB1A Patent application published

Effective date: 20160510

FG9A Patent granted

Effective date: 20160825

MM9A Lapsed patents

Effective date: 20171013