KR930007101B1 - Manufacturing method of self ldd junction - Google Patents

Manufacturing method of self ldd junction Download PDF

Info

Publication number
KR930007101B1
KR930007101B1 KR1019900014492A KR900014492A KR930007101B1 KR 930007101 B1 KR930007101 B1 KR 930007101B1 KR 1019900014492 A KR1019900014492 A KR 1019900014492A KR 900014492 A KR900014492 A KR 900014492A KR 930007101 B1 KR930007101 B1 KR 930007101B1
Authority
KR
South Korea
Prior art keywords
gate
forming
oxide film
region
film
Prior art date
Application number
KR1019900014492A
Other languages
Korean (ko)
Other versions
KR920007099A (en
Inventor
라사균
Original Assignee
금성일렉트론 주식회사
문정환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성일렉트론 주식회사, 문정환 filed Critical 금성일렉트론 주식회사
Priority to KR1019900014492A priority Critical patent/KR930007101B1/en
Publication of KR920007099A publication Critical patent/KR920007099A/en
Application granted granted Critical
Publication of KR930007101B1 publication Critical patent/KR930007101B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

내용 없음.No content.

Description

셀프 LDD 접합 트랜지스터 제조방법Self LDD Junction Transistor Manufacturing Method

제1도는 종래의 공정단면도.1 is a conventional cross-sectional view of the process.

제2도는 본 발명의 공정 단면도.2 is a cross-sectional view of the process of the present invention.

제3도는 (a)는 종래 기술에 의한 커패시터 형성단면도.3 is a cross-sectional view of a capacitor formed according to the prior art.

(b)는 본발명에 의한 커패시터 형성단면도.(b) is a cross-sectional view of the capacitor formation according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 기판 2 : P웰1 substrate 2 P well

3 : N웰 4 : 필드산화막3: N well 4: Field oxide film

5 : 게이트 산화막 6 : 게이트 폴리실리콘막5: gate oxide film 6: gate polysilicon film

7 : HTO 8 : 질화막7: HTO 8: nitride film

9, 9a, 9b : 감광제9, 9a, 9b: photosensitive agent

본 발명은 셀프 LDD(Self Lightly Doped Drain) 접합 트랜지스터 제조방법에 관한 것으로, 특히 하이그레이드(High Grade) 소자에 적당하도록 한 것이다.The present invention relates to a method for manufacturing a self lightly doped drain (LDD) junction transistor, and is particularly suitable for a high grade device.

종래의 기판(11) 위에 P웰(12), N웰(13), 필드산화막(14) 형성 및 문턱전압 조절을 위한 이온주입 공정후 진행되는 일반적인 CMOS LDD 접합 트랜지스터 제조공정을 첨부된 제1도 (a) 내지 (d)를 참조하여 상술하면 다음과 같다.FIG. 1 is a view illustrating a general CMOS LDD junction transistor fabrication process performed after ion implantation processes for forming P wells 12, N wells 13, and field oxide films 14 and adjusting threshold voltages on a substrate 11 of the related art. A detailed description with reference to (a) to (d) is as follows.

먼저, (a)와 같이 게이트 산화막(15)의 성장과 게이트로 쓰일 폴리실리콘막(또는 폴리사이드)(16)의 증착 및 게이트 캡핑(Capping) 역할을 하는 HTD(High Temperature Oxide) (또는 HLD, LTO) (17)를 성장시킨 다음 게이트 마스킹 작업 및 에치작업을 실시한다.First, as shown in (a), a high temperature oxide (HTD) (or HLD), which serves to deposit and gate capping a polysilicon layer (or polyside) 16 to be used as a gate and a gate oxide layer 15, may be used. LTO) (17) is grown and then gate masked and etched.

그리고 나서 감광제(18)를 이용하여 N-S/D 영역을 한정하기 위한 마스킹공정을 행한후 N-S/D 이온주입을 실시하고 열처리를 행하여 N-S/D 영역을 형성한다.Then, after the masking process for limiting the N - S / D region is performed using the photosensitive agent 18, N - S / D ion implantation is performed and heat treatment is performed to form the N - S / D region.

이어 (b)와 같이 감광제(18)를 벗겨내고 다른 감광제(18a)를 이용하여 P-S/D 영역을 한정하기 위한 마스킹 공정을 행한후 P-S/D 이온주입을 실시하고 열처리를 행하여 P-S/D 영역을 형성한다.Subsequently, as shown in (b), the photosensitive agent 18 is peeled off, and a masking process for limiting the P - S / D region is performed using another photosensitive agent 18a, followed by P - S / D ion implantation, followed by heat treatment. -Form S / D area.

그리고 (c)와 같이 감광제(18a)를 벗겨내고 측벽스페이서 형성을 위한 HTO(또는 HLD, LTO)를 증착하고 에치백하여 측벽스페이서(19a)를 형성한 다음 감광제(18b)를 이용하여 N+S/D 영역을 한정하기 위한 마스킹공정을 실시한후 N+S/D 이온주입을 실시하고 열처리를 행하여 N+S/D 영역을 형성한다.As shown in (c), the photosensitive agent 18a is peeled off, and HTO (or HLD and LTO) for forming the sidewall spacers is deposited and etched back to form the sidewall spacers 19a, and then N + S using the photosensitive agent 18b. After the masking process for limiting the / D region is performed, N + S / D ion implantation is performed and heat treatment is performed to form the N + S / D region.

마지막으로 (d)와 같이 상기 감광제(18b)를 벗겨내고 측벽 스페이서 형성을 위한 HTO(또는 HLD, LTO)를 증착하고 에치백하여 측벽스페이서(19b)를 형성한 다음 다시 감광제(18c)를 이용하여 P+S/D영역을 한정하기 위한 마스킹공정을 실시한후 P+S/D 이온주입을 실시하고 열처리를 행하여 P+S/D영역을 형성한다.Finally, as shown in (d), the photoresist 18b is peeled off, and HTO (or HLD and LTO) for forming sidewall spacers is deposited and etched back to form sidewall spacers 19b, and then the photoresist 18c is used again. After performing a masking process to limit the P + S / D region, P + S / D ion implantation and heat treatment to form a P + S / D region.

그러나 상기 종래공정은 다음과 같은 단점이 있다.However, the conventional process has the following disadvantages.

첫째, N-S/D 영역을 N+S/D 영역보다 먼저 형성하기때문에 N-이온으로서 인(P)을 주입하여 접합을 형성한후 N+이온으로서 비소(As)를 주입하여 접합을 형성할 경우 비소(As)를 확산시키기 위해 열처리공정을 진행하게 되면 먼저 주입된 인(P) 이온의 확산거리가 비소(As) 이온의 확산거리보다 길기때문에 N-영역 접합이 깊어지게 되고, 또한 수직 접합길이의 약 70%에 해당하는 길이만큼 측면확산(Lataral diffusion)도 일어나므로 유효채널 길이가 감소하게 된다.First, since the N - S / D region is formed before the N + S / D region, a junction is formed by injecting phosphorus (P) as N - ions, and then a junction is formed by implanting arsenic (As) as N + ions. In this case, when the heat treatment process is performed to diffuse arsenic (As), the diffusion distance of the first implanted phosphorus (P) ion is longer than the diffusion distance of arsenic (As) ion, resulting in a deeper N - region junction. Lateral diffusion also occurs by about 70% of the junction length, which reduces the effective channel length.

따라서, 쇼트채널(Short Channel) 효과가 발생하며, 누설전류(Leakage Current)도 증가된다.Thus, a short channel effect occurs, and leakage current increases.

둘째, LDD 접합형성을 위해 N-, N+, P-, P+이온주입을 위한 4번의 마스킹공정을 실시해야 하므로 공정이 복잡하다.Second, N for forming LDD junction -, N +, P -, P + masking process should be performed four times for the ion injection, so this process is complicated.

셋째, 측벽스페이서(19) 형성을 위한 산화막 에치시 활성영역이나 필드영역에 데미지를 주게되므로 전지적 특성이 악화되고 제3도 (a)와 같이 커패시터 면적이 작아져서 커패시턴스가 감소하게 되는 단점이 있다.Third, since the damage to the active region or the field region when the oxide layer is etched to form the sidewall spacer 19, the battery characteristics are deteriorated and the capacitance is reduced as the capacitor area is reduced as shown in FIG.

본 발명은 상기 문제점을 제거키 위한 것으로, 게이트 폴리실리콘의 산화를 통한 게이트 라인의 축소와 셀프(Self) LDD에 따른 쉘로우접합(Shallow Junction)의 효과를 얻을 수 있는 방법을 제공하는데 그 목적이 있다.Disclosure of Invention The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for obtaining the effect of shrinking a gate line through oxidation of a gate polysilicon and a shallow junction according to a self LDD. .

본 발명에 의한 셀프 LDD 접합 트랜지스터 제조공정중 기판(1) 위의 소정부분에 P웰 (2), N웰 (3), 필드산화막(4)을 형성하고 문턱전압 조절을 위한 이온주입공정후 진행되는 공정을 첨부된 제2도 (a) 내지 (f)를 참조하여 상술하면 다음과 같다.P wells 2, N wells 3, and field oxide films 4 are formed in predetermined portions on the substrate 1 during the self LDD junction transistor fabrication process according to the present invention, followed by an ion implantation process for adjusting the threshold voltage. Referring to the accompanying drawings 2 (a) to (f) process is as follows.

면저 (a)와 같이 게이트 산화막(5)과 게이트로 쓰일 폴리실리콘막(또는 폴리사이드) (6), 게이트 캡핑역할을 하는 HTO(또는 LTO, HLD) (7), 폴리실리콘막(6)의 선택적 산화를 위한 마스킹 역할과 이온주입시 캡핑역할을 위한 질화막(8)을 차례로 형성하고 게이트 형성을 위하여 감광제(9)를 이용한 마스킹공정 및 에치공정을 실시하여 상기 질화막(8), HTO(7), 폴리실리콘막(6) 및 게이트산화막(5)을 소정 패턴으로 패터닝한다.Like the surface bottom (a), the gate oxide film 5 and the polysilicon film (or polyside) 6 to be used as a gate, the HTO (or LTO, HLD) 7 serving as the gate capping, and the polysilicon film 6 The nitride film (8) and the HTO (7) are formed by sequentially forming a nitride film (8) for a masking role for selective oxidation and a capping role for ion implantation, and a masking process and an etching process using a photosensitive agent (9) to form a gate. The polysilicon film 6 and the gate oxide film 5 are patterned in a predetermined pattern.

이때 상기 캡 게이트 산화막(7)을 형성하지않고 바로 질화막(8)을 형성할 수도 있다.In this case, the nitride film 8 may be formed without forming the cap gate oxide film 7.

이어서 상기 감광제(9)를 벗겨내고, 게이트 폴리실리콘막(6)의 산화공정을 행하면 노출된 게이트 폴리실리콘막의 측면이 산화되어 산화막(도시되지않음)이 형성됨에 따라 게이트 폴리실리콘의 쪽은 상기 산화된 부분만큼 줄어들게 된다.Subsequently, the photoresist 9 is peeled off and the gate polysilicon film 6 is oxidized, so that the exposed side of the gate polysilicon film is oxidized to form an oxide film (not shown). Will be reduced by as much as

이후 상기 게이트 폴리실리콘 측면의 산화막을 제거하게 되면 제2도 (b)에 도시된 것과 같은 형태의 게이트패턴이 얻어진다.Subsequently, when the oxide film on the side of the gate polysilicon is removed, a gate pattern having a shape as shown in FIG. 2B is obtained.

이어서 N+S/D 영역한정을 위하여 감광제(9a)를 이용한 마스킹 작업을 거쳐 0° 틸트(Tilt) 방식으로 N+S/D 이온주입을 실시한다.Subsequently, N + S / D ion implantation is performed in a 0 ° tilt manner through a masking operation using the photosensitive agent 9a for N + S / D region limitation.

이어 (c)와 같이 N+S/D 영역한정 마스크인 감광제(9a)를 그대로 둔 상태에서 틸트 앤드 로테이션(Tilt & Rotation) 방식으로 N-S/D 이온주입을 실시한다.Next, as shown in (c), N - S / D ion implantation is performed in a tilt & rotation manner with the photosensitive agent 9a serving as the N + S / D region limitation mask intact.

그리고 (d)와 같이 상기 감광제(9a)를 벗겨내고 P+S/D 영역한정을 위하여 감광제(9b)를 이용한 마스킹작업을 거친후 0° 틸트 방식으로 P+S/D 이온주입을 실시한다.Then, as shown in (d), the photosensitive agent 9a is peeled off and subjected to masking operation using the photosensitive agent 9b to limit the P + S / D region, and then P + S / D ion implantation is performed in a 0 ° tilting manner.

이어 (e)와 같이 P+S/D 영역한정용 감광제(9b)를 그대로 둔 상태에서 틸트 앤드 로테이션 방식으로 P-S/D 이온주입을 실시한다.Then, P - S / D ion implantation is performed in a tilt and rotation manner with the P + S / D region limiting photosensitive agent 9b intact as shown in (e).

마지막으로 (f)와 같이 게이트 상부의 질화막(8)을 벗겨내므로써 공정이 완료된다.Finally, the process is completed by peeling off the nitride film 8 on the gate as shown in (f).

이상과 같이 본 발명에 의한 공정에 따르면 다음과 같은 효과가 있다.According to the process according to the present invention as described above has the following effects.

첫째, N+S/D 이온주입을 먼저 실시한 다음 N-S/D 이온주입을 실시하기때문에 종래기술과 같이 N+S/D 영역형성을 위한 열처리공정시에 미리 형성된 N-S/D 접합이 깊어지게 되는 단점이 제거되므로 쉘로우 접합을 얻을 수 있다.First, since N + S / D ion implantation is performed first and then N - S / D ion implantation is performed, the N - S / D junction formed in advance during the heat treatment process for forming the N + S / D region, as in the prior art, The disadvantage of deepening is eliminated, resulting in a shallow joint.

따라서, 쇼트 채널 발생을 방지하고 누설전류를 감소시키는 효과가 있다.Therefore, there is an effect of preventing short channel generation and reducing leakage current.

둘째, N-S/D 영역한정 마스킹공정과 P-S/D 영역한정 마스킹공정을 별도로 진행하지않기때문에 공정을 단순화시킬 수 있다.Second, the process can be simplified because the N - S / D region limited masking process and the P - S / D region limited masking process are not performed separately.

셋째, 종래에는 LDD구조의 S/D 영역형성시, 게이트를 마스크로 하여 고농도 불순물(N+, P+)을 주입하고 게이트 측벽에 스페이서를 형성한후 게이트와 측벽스페이서를 마스크로 하여 저농도 불순물(N-, P-)을 주입하였으나, 본 발명에서는 0° 틸트방시, 즉 수직으로 이온주입을 실시하여 고농도 불순물영역(N+S/D, P+S/D)을 형성한후, 틸트 앤드 로테이션(Tilt & Rotation) 즉, 수직 및 경사이온주입을 실시하여 저농도 불순물영역(N-S/D, P-S/D)을 형성하므로 게이트 측벽 스페이서가 필요없게 된다.Third, in forming the S / D region of the LDD structure, a high concentration of impurities (N + , P + ) are implanted using a gate as a mask, a spacer is formed on the sidewall of the gate, and a low concentration impurity (a gate and a sidewall spacer is used as a mask). N -, P -) a, but injection, in the present invention, the 0 ° tilt room during, or after subjected to ion implantation to the vertical forming a high concentration impurity region (N + S / D, P + S / D), a tilt-and- The gate < RTI ID = 0.0 > Tilt & Rotation < / RTI > i.e., vertical and inclined ion implantation are formed to form low concentration impurity regions N - S / D and P - S / D, thus eliminating the need for gate sidewall spacers.

따라서 측벽형성공정을 진행하지않기때문에 측벽형성을 위한 산화막 형성/에치공정시 활성영역 또는 필드영역의 손상을 주는 일이 없게 되고 또한 측벽스페이서가 없으므로 인해 제3도 (b)에 도시된 바와 같이 B부분이 제3도 (a)에서 게이트 측벽스페이서로 인해 완만해진 A부분보다 단자가 있으므로 제3도 (b)에 비해 커패시터 면적이 증가되므로 커패시턴스를 증가시킬 수 있는 효과가 있다.Therefore, since the sidewall forming process is not performed, the active region or the field region is not damaged during the oxide film forming / etching process for forming the sidewall, and since there is no sidewall spacer, as shown in FIG. Since the portion has a terminal than the portion A smoothed by the gate sidewall spacer in FIG. 3 (a), the capacitor area is increased compared to FIG. 3 (b), thereby increasing capacitance.

Claims (4)

기판(1) 위의 소정영역에 P웰 (2), N웰 (3), 필드산화막(4)을 형성하고 문턱전압 조절을 위한 이온주입후 진행되는 공정에 있어서, 게이트 산화막(5)과 게이트 폴리실리콘막(6), 캡게이트 산화막(7), 선택적인 게이트 폴리실리콘막의 산화를 위한 질화막(8)을 차례로 형성한후 마스킹/에치공정을 거쳐 상기 차례로 형성된 막들을 소정패턴으로 형성하는 단계와, 산화공정에 의해 상기 게이트 폴리실리콘막의 노출된 측면에 폴리실리콘 산화막을 형성한후 형성된 폴리실리콘 산화막을 제거하는 단계, N+S/D 영역을 한정하는 마스킹공정을 행한후 N+S/D 이온주입 및 N-S/D 이온주입을 차례로 행하는 단계, P+S/D 영역을 한정하는 마스킹공정을 행한후 P+S/D 이온주입 및 P-S/D 이온주입을 차례로 행하는 단계, 상기 질화막을 벗겨내는 단계를 포함하여 이루어진 것을 특징으로 하는 셀프 LDD 접합 트랜지스터 제조방법.In the process of forming a P well 2, an N well 3, and a field oxide film 4 in a predetermined region on the substrate 1 and implanting ions for adjusting the threshold voltage, the gate oxide film 5 and the gate Forming a polysilicon film (6), a capgate oxide film (7), and a nitride film (8) for the oxidation of the selective gate polysilicon film in order, and then forming the films formed in a predetermined pattern through a masking / etching process; Forming a polysilicon oxide film on the exposed side of the gate polysilicon film by an oxidation process, removing the polysilicon oxide film formed, and performing a masking process defining a N + S / D region, followed by N + S / D ions. Performing implantation and N - S / D ion implantation in sequence, performing a masking process defining a P + S / D region, and then performing P + S / D ion implantation and P - S / D ion implantation in sequence, the nitride film Consisting of stripping off Self-LDD junction transistor manufacturing method as claimed. 제1항에 있어서, 상기 게이트 폴리실리콘위에 캡 게이트 산화막을 형성하지않고 바로 질화막만을 증착하는 단계로 이루어짐을 특징으로 하는 셀프 LDD 접합 트랜지스터 제조방법.The method of claim 1, wherein only the nitride layer is deposited without forming a cap gate oxide layer on the gate polysilicon. 제1항 및 제2항에 있어서, N+및 P+S/D 이온주입을 0° 틸트방식으로 하고 N-및 P-S/D 이온주입을 틸트 앤드 로테이션 방식으로 함을 특징으로 하는 셀프 LDD 접합 트랜지스터 제조방법.The self LDD according to claim 1 or 2, wherein the N + and P + S / D ion implants are tilted at 0 ° and the N - and P - S / D ion implants are tilted and rotated. Method of manufacturing a junction transistor. 제1항에 있어서, 캡형 게이트 산화막을 HTO 또는 LTO 또는 HLD로 함을 특징으로 하는 셀프 LDD 접합 트랜지스터 제조방법.The method of claim 1, wherein the cap gate oxide film is HTO, LTO, or HLD.
KR1019900014492A 1990-09-13 1990-09-13 Manufacturing method of self ldd junction KR930007101B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900014492A KR930007101B1 (en) 1990-09-13 1990-09-13 Manufacturing method of self ldd junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900014492A KR930007101B1 (en) 1990-09-13 1990-09-13 Manufacturing method of self ldd junction

Publications (2)

Publication Number Publication Date
KR920007099A KR920007099A (en) 1992-04-28
KR930007101B1 true KR930007101B1 (en) 1993-07-29

Family

ID=19303569

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900014492A KR930007101B1 (en) 1990-09-13 1990-09-13 Manufacturing method of self ldd junction

Country Status (1)

Country Link
KR (1) KR930007101B1 (en)

Also Published As

Publication number Publication date
KR920007099A (en) 1992-04-28

Similar Documents

Publication Publication Date Title
KR0159075B1 (en) Trench dmos device and a method of fabricating the same
US4486943A (en) Zero drain overlap and self aligned contact method for MOS devices
KR930007101B1 (en) Manufacturing method of self ldd junction
KR910007103A (en) Method for manufacturing self-aligned contacts in semiconductor devices
KR960014720B1 (en) Method of formation gate electrode with poly silicide type
KR20010003787A (en) Method of forming a flash memory device
JPH0779101B2 (en) Manufacturing method of semiconductor device
KR0186019B1 (en) Method of processing trench capacitor cell
KR960013943B1 (en) Thin film transistor & method of manufacturing thereof
KR100280535B1 (en) MOS transistor manufacturing method
KR940002778B1 (en) Manufacturing method for ldd-strucutred tr
KR100215871B1 (en) Method for fabricating semiconductor device
KR960013640B1 (en) Dram cell manufacture
KR100364794B1 (en) Method for fabricating of semiconductor device
KR940010544B1 (en) Manufacturing method of transistor
KR19980058454A (en) Manufacturing method of semiconductor device
KR100261185B1 (en) Method for manufacturing semiconductor device
KR0155827B1 (en) Isolation method of nonvolatile semiconductor device
KR0170338B1 (en) Gate pattern forming method of semiconductor device
KR100250686B1 (en) Manufacturing method of a semiconductor device
KR100192398B1 (en) Capacitor fabrication method of semiconductor device
KR0166793B1 (en) Method of forming ldd structure in memory device
KR930001893B1 (en) Cmos transistor manufacturing method
KR100268924B1 (en) method for manufacturing semiconductor device
KR100358126B1 (en) Method for manufacturing transistor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020618

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee