KR930004071B1 - 플루오르-함유 산화주석 피막을 형성시키기 위한 화학적 증착법 - Google Patents

플루오르-함유 산화주석 피막을 형성시키기 위한 화학적 증착법 Download PDF

Info

Publication number
KR930004071B1
KR930004071B1 KR1019850009308A KR850009308A KR930004071B1 KR 930004071 B1 KR930004071 B1 KR 930004071B1 KR 1019850009308 A KR1019850009308 A KR 1019850009308A KR 850009308 A KR850009308 A KR 850009308A KR 930004071 B1 KR930004071 B1 KR 930004071B1
Authority
KR
South Korea
Prior art keywords
deposition method
vapor deposition
weight
carrier gas
fluorine
Prior art date
Application number
KR1019850009308A
Other languages
English (en)
Other versions
KR860005048A (ko
Inventor
에취. 린드너 게오르그
Original Assignee
엘프 아토켐 노스 아메리카 인코포레이티드
프레드 더블유 베인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24758907&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR930004071(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 엘프 아토켐 노스 아메리카 인코포레이티드, 프레드 더블유 베인 filed Critical 엘프 아토켐 노스 아메리카 인코포레이티드
Publication of KR860005048A publication Critical patent/KR860005048A/ko
Application granted granted Critical
Publication of KR930004071B1 publication Critical patent/KR930004071B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2453Coating containing SnO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

내용 없음.

Description

플루오르-함유 산화주석 피막을 형성시키기 위한 화학적 증착법
제1도는 화학적 증착법을 행하는데 적합한 장치의 개략도.
제2도는 본 발명에 의하여 형성된 산화주석 파막에 대한 시이트 저항대 M값의 그라프.
본 발명은 산화주석 피막에 관한 것으로, 특히 화학적 증착에 의하여 플루오르-함유 산화주석 피막을 형성시키기 위한 개량된 방법에 관한 것이다.
플루오르-함유 산화주석 피막은 유리, 세라믹과 소자 필라멘트를 포함한 각종 다른 소재 접착표면에 유용한 성질을 나타낸다는 것은 알려져 있다. 이러한 피복된 소재는 에너지 효율 윈도우로서나 광전자 및 반도체장치에서 열반사 요소로서 사용된다.
산화주석 피막의 화학적 증착은 문헌에 소개되어 있으며, 예를 들면 미국특허 제3,677,814호; 제3,949,146호; 제4,130,673호; 제4,146,657호; 제4,213,594호; 제4,265,974호; Thin Solid Films 77, 51-63(1981); 65-66; 과 J. Electrochem. Soc. 12, 1144(1975).가 있다.
종래에 소개된 화학적 증착법은 처리조건, 또는 살용된 조성물이나 어떠한 상업적 용도에 완전한 만족감을 주지 못하는 결함이 하나 또는 그 이상이 있었다. 예를 들면, 제품에 에너지 효율 윈도우가 있으면, 처리하여 얻은 피막이 비교적 높은 가변성의 시이트 저항을 갖고, 낮은 증착율을 가지므로서 성공율이 한정된다.
미국특허 제3,949,146호에서 케인은 안티모니와 혼합된 이초산디부틸주석, 산화비스(트리-n-프로필)주석, 또는 산화 비스(트리-n-부틸)주석으로 산화주석 피막을 화학적 증착시키는 것을 서술하고 있다. 그러나 여기서는 저항이 가변성의 처리와는 무관한 낮은 시이트 저항을 갖는 플루오르-함유 피막을 형성시키는 방법은 언급되지 않았다.
또한 화학적 증착법은 미국특허 제4,500,567호에서 케이호에 의하여 소개되었다. 이 방법에서는 각 반응물이 분리된 가스의 유동으로 형성되는 삼염화 모노부틸주석과 할로디플루오르메탄의 가스혼합물을 사용하고 있다. 이때 가스혼합물은 유리표면에 증착된다. 그러나 이 방법에서 피막의 전기적 성질은 적합치 못하고, 증착시간은 길다.
전술한 종래 기술의 관찰로 볼 수 있는 바와 같이, 플루오르-함유산화 주석피막을 형성하는 개량된 화학적 증착법은, 특히 처리조건 범위하에서 일정한 최소의 시이트 저항을 갖는 피막을 공급하는 것을 필요로 하는 것이다.
따라서, 본 발명에서는 반응성 유기 플루오르 도판트와 유기주석 화합물을 함유하는 액체 피막 조성물을 사용하여 플루오르-함유 산화주석을 형성시키기 위한 개량된 화학적 증착법은 제공한다. 이 방법은 생성된 피막이 실제적으로 온도에 관계없이 최소의 일정한 시이트 저항을 갖는 처리조건하에서 행한다. 이 처리공정에서 변화는 운반가스, 물, 유리 플루오르 도판트와 유기주석 화합물의 증기상의 농도에 따라 일어난다.
이들 농도는 파라미터 M에 관련되며, 이를 방정식으로 설명하면 다음과 같다.
Figure kpo00001
이 식에서 (공기)는 운반가스의 물 농도이고; (H2O)는 운반가스내의 수분의 물 농도이고; (OFD)는 운반가스내의 유기플루오르 도판트의 물농도이고; (O)는 운반가스내의 유기주석 화합물의 물 농도이다.
적합하기로는 M의 값이 10,000-50,000일때이고, 바람직하기는 20,000 또는 그 이하일때이다. 이들 M값에서, 증착된 산화주석 피막은 실제적으로 증착온도와 관계없이 최소의 일정한 시이트 저항을 갖는다. 전술한 값 보다도 M값이 높으면, 시이트 저항은 M값의 증가에 따라 실제적으로 증가하고 증착온도도 증가한다.
화학적 증착 방법은 1-30중량%의 유리 플루오르 도판트와, 70-99%의 유기주석 화합물로 된 액체피막 조성물을 사용하여 행한다. 조성물은 2-10%의 유기 플루오르 도판트와 90-98중량%의 유기주석 화합물, 임의적으로 1-10중량%의 극성 유기용제로 이루어지는 것이 바람직하다.
증착을 유리상에서 행하면 10,000-50,000, 바람직하기로는 20,000 또는 그 이하인 M값에 대하여 250ohms/sq.인 최소의 일정한 시이트 저항을 갖는 180-210mm두께의 플루오르-함유 산화주석 피막이 형성된다.
첨부된 도면에 따라 본 발명을 상세히 설명하면 다음고 같다.
제1도는 본 발명의 화학적 증착법을 행하는데 적합한 장치의 개략도를 도시한 것이다.
산소를 함유하는 운반가스(10), 바람직하기로는 공기를 공급라인(1)과 동기건조탑(12)으로 보내어 건조기류(13)를 공급한다. 분리된 기류를 적당량의 물(15)을 함유하는 가습기로 보내어 원하는 상대습도를 갖는 습윤기류(16)가 되도록 한다. 또한, 주입펌프(20)와 주입기(21)에 의하여 증발기(18)에 공급된 액체피막 조성물을 갖는 용기(19)를 함유하는 증발기(18)로 습윤기류(17)를 통과시킨다. 기류를 오일중량(도시되지 않았음)에서 원하는 증발온도까지 가열한다. 기류(22)의 증발된 액체피막 조성물은 기체(25)가 가열판(26)상에 설치된 피복노즐(24)을 갖는 증착실(23)로 보낸다. 원하는 피막이 증착된 후 증착시 가스부산물은 없어진다.
본 발명의 방법에서 액체 피막 조성물은; (a) 탄소가 카르복실산, 무수물, 에스테르, 알콜, 케톤, 산 할라이드 또는 에테르의 산소에 결합된 관능기의 알파 또는 베타위치에 최소한 하나의 플루오르 원자가 있는, 1-30중량%의 반응성 유기 플루오르 도판트 화합물; (b) 삼염화 알킬주석, 이염화 디알킬주석, 초산 알킬디클로로주석, 알킬 블로로디아세테이트 또는 삼염화 주석에스테르, 또는 사염화 주석으로된 70-99중량%의 유기주석 화합물로 이루어진다.
따라서, 적합한 관능기와 반응성 유기 플루오르 도판트는 다음과 같다:
카르복실산
트리플루오르초산, 클로로디플루오르초산, 디플루오르초산, 헴트플루오르부틴산, 펜타플루오르프로피온산, 3-트리플루오르메틸크로론산
무수물
트리플루오르초산무수물, 헵타플루오르부티르산무수물, 펜타플루오르프로피온산무수물, 클로로디플루오르초산무수물, 퍼플루오르글루타르산무수물, 퍼플루오르석신산무수물
에스테르
에틸트리플루오르아세테이트, 부틸트리플루오르아세테이트, 에틸브로모디플루오르아세테이트 에틸클로로플루오르아세테이트, 메틸펠타플루오르프로피온네이트, 메틸헵트플루오르부티레이트, 메틸트리플루오르아세테이트, 메틸퍼플루오르부텐-3-오에이트, 2,2,2-트리플루오르에틸트리플루오르아세테이트, 1,1,1-트리플루오르이소프로필아세테이트
알콜
2,2,2-트리플루오르에탄올, 1H,1H-헵타플루오르부탄올-1, 3,3,4,4,5,5,5-헵타플루오르펜탄올-2,헵타플루오르이소프로판올, 헥사플루오르-2-메틸이소프라판올, 1H,1H,5H-옥타플루오르-1-펜탄올, 퍼플루오르-t-부탄올, 2-트리플루오르메틸프로판올-2, 1,1,1-트리플로오르프로판올-2,
케톤
에틸 4,4,4-트리플루오르아세트아세테이트, 1,1,1-트리플루오르아세틸아세톤, 비스(퍼플루오르이소프로필)케톤, 3-브로모-1,1,1-트리플루오르프로판올, 에틸 4,4,4-트리플루오르아세트아세테이트, 헥사플루오르아세틸아세톤, 펜타플루오르에틸에틸케톤, 1,1,1-트리플루오르아세톤, 메틸헵타플루오르프로필케톤
산 할라이드
염화헵타플루오르부티릴, 불화퍼플루오르부타릴, 염화퍼플루오르옥탄오일, 염화퍼플루오르석신일,
에테르
2-클로로-1,1,2-트리플루오르에틸 메틸 에테르, 2-클로로-1,1,2-트리플루오르에틸 에틸 에테르
대표적인 반응성 유기 플루오르 도판트는 트리플루오르초산, 트리플루오르초산무수물, 에틸 트리플루오르아세트 아세테이트, 트리플루오르에탄올, 에틸 트리플루오르아세테이트, 펜타플루오르프로피온산, 2-클로로-1,1,2-트리플루오르에틸 메틸 에테르, 1,1,1-트리플루오르아세틸아세톤과 염화헵타플루오르부티릴이 있다.
대표적인 유기주석 화합물에는 삼염화 모노부틸주석, 이염화 디부틸주석, 초산 부틸디클로로주석, 이초산 부틸클로로주석, 삼염화 카르브에톡시에틸주석이 있다. 또한 사염화주석도 주석화합물로서 사용할 수 있다.
본 발명의 바람직한 형태로서는, 액체 피막 조성물이 2-10중량%의 유기 플루오르 화합물과 90-98중량%의 유기주석 화합물을 함유하는 것이다.
또한 본 발명의 액체 피막조성물은 약 1-10중량%의 조성물의 양에서 극성 유기화합물을 함유할 수 있으며, 이는 저온에서 액체조성물의 안정성을 확고하게 한다.
극성 유기액체가 존재하면, 액체피막 조성물은 2-10중량%의 유기플루오르도판트, 80-97중량%의 유기주석 화합물과 1-10중량%의 극성 유기액체를 함유한다.
본 발명에서, 유기 플루오르 도판트가 트리플루오르초산, 트리플루오르초산 무수물 또는 에틸 트리플루오르아세트 아세테이트이고, 유기주석 화합물이 삼염화 모노부틸주석일때가 바람직하다.
처리공정에서 증발온도는 100-400℃가 적합하고, 바람직하기로는 150-250℃일 때이다. 소재온도는 400-700℃이고 바람직하기는 550-650℃일 때이다.
운반가스는 공기인 산소-함유 가스 또는 신호와 불활성 가스의 혼합물이 있고, 바람직하기로는 공기 일 때이다.
운반가스는 본 발명의 공정에서 수증기를 함유한다. 피복되는 소재는 유리, 세라믹, 고체상재료, 금속 소자필라멘트 등이 있다.
산화주석 필름의 시이트 저항(ohms/sq.) 은 표준방법 F 374-81에 따라 통상의 사점탐침으로 측정한다.
필름두께는 영국 협회 표준 방법 BS 5411: 12부, 1981, ISO 3543-1981에 따라 베타-후방사탄방법에 의하여 측정한다.
제2도에 있어서, 본 발명의 처리조건을 나타내는 파라메터 M은 최소의 일정한 시이트 저항을 갖는 플루오르-함유 산화주석 피막을 제공토록 변할 수 있음을 나타낸다. 50,000 이하의 M값에 있어서, 약 180-210mm의 두께에서의 피막의 시이트 저항은 25ohms/sq.이다. 50,000 이상의 M값에 있어서, 시이트 저항은 M값의 증가에 따라 빠르게 증가한다.
[실시예 1]
"M" 값이 50,000 이하인 조건하에서 형성된 산화주석 피막
100부의 삼염화 모노부틸주석(MBTC), 4.04부의 트리플루오르초산(TFA)과 1.45부의 초산무수물(AA)의 액체피막 조성물(비중 1.62)을 0.35mol/hr의 MBTC와 0.0035mol/hr에 해당하는 10.5g/hr의 속도로 120℃로 가열된 증발기에 펌프로 주입한다. 다음 28.8mol/hr의 공기와 0.067mol/hr의 H2O를 함유하는 습윤공기를 증발기로 통과시키면, 500℃로 가열된 유리 슬라이드상에 20초 사이에 증기가 증착된다. 이렇게하여 형성된 피막의 두께는 210nm이고, 계산된 M값은 16,000이고, 측정된 피막의 시이트 저항은 25ohms/sq. 이다.
[실시예 2]
"M"값이 50,000 이상인 조건하에서 형성된 산화주석 피막
100부의 MBTC, 2부의 TFA와 0.72부의 AA의 액체 피막조성물을 0.36mol/hr의 MBTC와 0.0018mol/hr의 TFA에 해당하는 10.5g/hr의 속도로 증발기에 펌프로 주입한다. 다음 27.6mol/hr공기와 1.02mol/hr의 H2O를 함유하는 습윤공기를 증발기로 통과시키고 여기서 형성된 증기혼합물을 500℃로 가열된 유리 슬라이드상에 증착시킨다. 12초간에 190nm의 두께를 갖는 플루오르-함유 산화주석 피막이 형성된다. 계산된 M값은 4.3×105이고, 측정된 피막의 시이트 저항은 239ohme/sq.이다.
[실시예 3]
실시예 1과 2의 방법에 따라, 50,000 이하 및 이상에 해당하는 MBTC, TFA, 공기와 물의 농도를 약간 변경시켜 시험하고 이를 제2도의 그라프에 표시했다. 50,000이하에서 시이트 저항은 실제적으로 약 30ohms/sq.의 일정한 최소의 값으로 측정되었으며, 반면에 20,000이상의 M값에 있어서 시이트 저항은 실제적으로 더 높아지고, M값 증가에 따라 빠르게 증가한다.
또한 전술한 M값내에 있는 본 발명의 산화주석 피막은 광범위한 증착온도에서 최소의 일정한 시이트 저항을 갖는 것이 관찰되었고, 따라서 더 높은 M값(50,000 이상)에서 형성된 유사한 피막은 다른 증착온도에서 시이트 저항의 증가를 나타낸다.
본 발명을 구체적으로 설명하였으므로, 본 분야의 전문가들은 변경 및 수정을 하여도 이해할 것이다. 특허청구범위는 첨부된 바와 같다.

Claims (12)

  1. (a) 액체피막 조성물을, (1) 탄소가 카르복실산, 무수물, 에스테르, 알콜, 케톤, 산 할라이드 또는 에테르의 산소에 결합된 관능기의 알파 또는 베타에 최소한 하나의 플루오르 원자가 위치하는 1-30중량%의 유기 플루오르 도판트와 (2) 삼염화 알킬주석, 이염화 디알킬주석, 초산알킬 디클로로주석, 이초산 디알킬클로로주석 또는 삼염화 주석 에스테르나 사염화 주석으로 된 70-99중량%의 유기주석 화합물로 형성시키고, (b) 습윤 운반가스로 운반된 상기 액체 피막조성물을 증발시켜 운반 가스, 물, 유기 플루오르 도판트와 유기주석 화합물의 증기 혼합물을 형성시키고, (c) 상기 증기 혼합물을 소재상에서 분해시켜서 피막을 형성시키고, 여기서, 상기 성분들의 증기농도를 다음식:
    Figure kpo00002
    [상기 식에서 (공기)는 운반가스의 물 농도이고; (H2O)는 운반가스내의 수분의 물 농도이고; (OFD)는 운반가스내의 유기 플루오르 도판트의 물 농도; (O)는 운반가스내의 유기주석 화합물의 물 농도이다.]으로 나타낸 바와 같이 10,000-50,000의 값을 가지게 하므로서 상기 M값에 대한 최소의 일정한 시이트 저항을 갖는 플루오르-함유 산화주석 피막을 형성시킴을 특징으로 하는, 상기 처리조건하에서 최소의 일정한 시이트 저항을 갖는 플루오르-함유 산화주석 피막을 형성시키기 위한 화학적 증착법.
  2. 제1항에 있어서, M의 값이 10,000-20,000임을 특징으로 하는 증착법.
  3. 제1항에 있어서, 시이트 저항이 180-210nm의 두께에서 25ohms/sq.임을 특징으로 하는 증착법.
  4. 제1항에 있어서, 액체 피막조성물이 2-10중량%의 유기 플루오르도판트와 90-98중량%의 유기주석화합물임을 특징으로 하는 증착법.
  5. 제1항에 있어서, 액체 피막조성물이 1-10중량%의 극성 유기화합물임을 특징으로 하는 증착법.
  6. 제5항에 있어서, 조성물이 2-10중량%의 유기 플루오르 도판트, 80-97중량%의 유기주석 화합물과, 1-10중량%의 극성 유기화합물을 함유함을 특징으로 하는 증착법.
  7. 제6항에 있어서, 극성 유기 화합물이 초산 무수물, 초산에틸 또는 메틸이소부틸 케톤임을 특징으로 하는 증착법.
  8. 제1항에 있어서, 증발온도가 100-400℃임을 특징으로 하는 증착법.
  9. 제1항에 있어서, 증착온도가 391-698℃임을 특징으로 하는 증착법.
  10. 제1항에 있어서, 소재가 유리임을 특징으로 하는 증착법.
  11. 제1항에 있어서, 유기주석 화합물이 삼염화 모노부틸주석, 삼염화 메틸주석, 삼염화 이소부틸주석, 이염화 디부틸주석, 이염화 디-t-부틸주석, 초산 부틸디클로로주석, 이초산 부틸클로로주석 또는 삼염화 카르브에톡시에틸주석임을 특징으로 하는 증착법.
  12. 유리 시이트가 22-295ohms/sq.의 시이트 저항을 갖는 391-698℃의 증착온도에서 제1항의 증착법으로 제조한 피복된 유리시이트.
KR1019850009308A 1984-12-28 1985-12-11 플루오르-함유 산화주석 피막을 형성시키기 위한 화학적 증착법 KR930004071B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/687,067 US4590096A (en) 1984-12-28 1984-12-28 Water vapor, reaction rate and deposition rate control of tin oxide film by CVD on glass
US687,067 1984-12-28

Publications (2)

Publication Number Publication Date
KR860005048A KR860005048A (ko) 1986-07-16
KR930004071B1 true KR930004071B1 (ko) 1993-05-20

Family

ID=24758907

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850009308A KR930004071B1 (ko) 1984-12-28 1985-12-11 플루오르-함유 산화주석 피막을 형성시키기 위한 화학적 증착법

Country Status (4)

Country Link
US (1) US4590096A (ko)
JP (1) JPS62124276A (ko)
KR (1) KR930004071B1 (ko)
ZA (1) ZA859527B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352922B1 (ko) * 2009-03-31 2014-01-17 피피지 인더스트리즈 오하이오 인코포레이티드 모노부틸틴 트리클로라이드의 회수

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696837A (en) * 1985-06-25 1987-09-29 M&T Chemicals Inc. Chemical vapor deposition method of producing fluorine-doped tin oxide coatings
DE3673612D1 (de) * 1985-05-14 1990-09-27 M & T Chemicals Inc Herstellungsverfahren durchsichtiger schleierfreier zinnoxydschichten.
US4776870A (en) * 1985-08-05 1988-10-11 Ford Motor Company Method for improving emmissivity value of a pyrolytically applied film
GB8630791D0 (en) * 1986-12-23 1987-02-04 Glaverbel Coating glass
US5004490A (en) * 1987-08-10 1991-04-02 Ford Motor Company Method of making glass substrate coated with tin oxide
US4857095A (en) * 1987-08-10 1989-08-15 Ford Motor Company Method for forming a fluorine-doped tin oxide coating on a glass substrate
US5108983A (en) * 1989-11-21 1992-04-28 Georgia Tech Research Corporation Method for the rapid deposition with low vapor pressure reactants by chemical vapor deposition
US5124180A (en) * 1991-03-11 1992-06-23 Btu Engineering Corporation Method for the formation of fluorine doped metal oxide films
US5393563A (en) * 1991-10-29 1995-02-28 Ellis, Jr.; Frank B. Formation of tin oxide films on glass substrates
AU651754B2 (en) * 1991-12-26 1994-07-28 Atofina Chemicals, Inc. Coated glass article
US5599387A (en) * 1993-02-16 1997-02-04 Ppg Industries, Inc. Compounds and compositions for coating glass with silicon oxide
US5863337A (en) * 1993-02-16 1999-01-26 Ppg Industries, Inc. Apparatus for coating a moving glass substrate
US5356718A (en) * 1993-02-16 1994-10-18 Ppg Industries, Inc. Coating apparatus, method of coating glass, compounds and compositions for coating glasss and coated glass substrates
US5496583A (en) * 1994-08-29 1996-03-05 Amoco/Enron Solar Hydrogen fluoride dopant source in the preparation of conductive coated substrate
US5725904A (en) * 1995-06-02 1998-03-10 Elf Atochem North America, Inc. Liquid methyltin halide compositions
DE19526100C1 (de) * 1995-07-18 1996-07-18 Goldschmidt Ag Th Stabilisiertes Monobutylzinntrichlorid
US5536308A (en) * 1995-07-21 1996-07-16 Quattlebaum, Jr.; William M. Compositions and methods for glass coating formation
GB9515198D0 (en) * 1995-07-25 1995-09-20 Pilkington Plc A method of coating glass
US5698262A (en) * 1996-05-06 1997-12-16 Libbey-Owens-Ford Co. Method for forming tin oxide coating on glass
GB9616983D0 (en) 1996-08-13 1996-09-25 Pilkington Plc Method for depositing tin oxide and titanium oxide coatings on flat glass and the resulting coated glass
JP2002520488A (ja) * 1998-07-10 2002-07-09 ジル、メリエンヌ 化学蒸着プロセスに好適なフッ素ドープ酸化スズ層の製造用液体コーティング組成物
US6596398B1 (en) 1998-08-21 2003-07-22 Atofina Chemicals, Inc. Solar control coated glass
JP4272534B2 (ja) * 2002-01-28 2009-06-03 日本板硝子株式会社 透明導電膜を備えたガラス基板の製造方法、透明導電膜を備えたガラス基板、およびそれを用いた光電変換装置
US20050196623A1 (en) * 2004-03-03 2005-09-08 Mckown Clem S.Jr. Solar control coated glass composition
US8734903B2 (en) 2011-09-19 2014-05-27 Pilkington Group Limited Process for forming a silica coating on a glass substrate
CN102603206A (zh) * 2012-03-21 2012-07-25 浙江大学 一种多层氧化锡掺氟镀膜玻璃及其制备方法
US20130334089A1 (en) * 2012-06-15 2013-12-19 Michael P. Remington, Jr. Glass Container Insulative Coating
GB201515985D0 (en) * 2015-09-09 2015-10-21 Pilkington Group Ltd Deposition process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265974A (en) * 1976-11-01 1981-05-05 Gordon Roy G Electrically conductive, infrared reflective, transparent coatings of stannic oxide
US4293594A (en) * 1980-08-22 1981-10-06 Westinghouse Electric Corp. Method for forming conductive, transparent coating on a substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352922B1 (ko) * 2009-03-31 2014-01-17 피피지 인더스트리즈 오하이오 인코포레이티드 모노부틸틴 트리클로라이드의 회수

Also Published As

Publication number Publication date
KR860005048A (ko) 1986-07-16
ZA859527B (en) 1986-08-27
US4590096A (en) 1986-05-20
JPH036993B2 (ko) 1991-01-31
JPS62124276A (ja) 1987-06-05

Similar Documents

Publication Publication Date Title
KR930004071B1 (ko) 플루오르-함유 산화주석 피막을 형성시키기 위한 화학적 증착법
US4601917A (en) Liquid coating composition for producing high quality, high performance fluorine-doped tin oxide coatings
US4696837A (en) Chemical vapor deposition method of producing fluorine-doped tin oxide coatings
EP0186481B1 (en) Improved chemical vapor deposition method of producing fluorine-doped tin oxide coatings
GB2033357A (en) Processes for the Production of Tin Oxide Coatings and Articles Having Such Coatings
US4965137A (en) Liquid preparation for the production of electrically conductive and infrared-reflecting fluorine-doped tin oxide layers on glass or glass-ceramic surfaces, as well as a method for the production of such layers
US4743506A (en) Tin oxide coated article
US4731256A (en) Liquid coating composition for producing high quality, high performance fluorine-doped tin oxide coatings
EP0158399B1 (en) Liquid coating composition for producing high quality, high performance fluorine-doped tin oxide coatings
JPH02500974A (ja) 弗素ドープされた酸化錫の被膜の形成に有用な含弗素有機錫化合物
US5417757A (en) Liquid precursor for the production of fluorine doped tin oxide coatings and corresponding coating process
US4788079A (en) Method of making haze-free tin oxide coatings
KR960015222B1 (ko) 유기 디- 또는 트리카르복실레이트와 유기 플루오로산의 액체 피복조성물과, 낮은 체적 저항률과 낮은 헤이즈 값을 갖는 유리에 불소-도우프 산화 주석 피막을 형성시키는 화학 증착법
KR920007956B1 (ko) 헤이즈가 없는 투명한 산화주석코팅막의 제조방법
JPH046796B2 (ko)
US5000790A (en) Liquid coating composition comprising an organotin di- or tricarboxylate and an organic fluoroacid, and method of coating a transparent substrate therewith
KR890004619B1 (ko) 플루오르화물이 함유된 산화주석피막 형성용 액체조성물과 피막의 형성방법
JP2708120B2 (ja) 透明酸化物薄膜用塗布液の製造方法および透明酸化物薄膜付基材
JPH06263443A (ja) 透明導電性酸化スズ膜の製造方法
JP2561680B2 (ja) 透明酸化物薄膜被着ガラスの製造方法
JP2004018913A (ja) 透明導電膜形成液及びそれを用いた透明導電膜付基体の製造方法
CN1009917B (zh) 制造高质量、高性能、掺氟氧化锡涂层的液态涂料组合物
JP2004039269A (ja) 透明導電膜付基体の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20000422

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee