KR920007015B1 - 석회-석고-석탄회계 수화경화체의 제조 방법 - Google Patents

석회-석고-석탄회계 수화경화체의 제조 방법 Download PDF

Info

Publication number
KR920007015B1
KR920007015B1 KR1019890015274A KR890015274A KR920007015B1 KR 920007015 B1 KR920007015 B1 KR 920007015B1 KR 1019890015274 A KR1019890015274 A KR 1019890015274A KR 890015274 A KR890015274 A KR 890015274A KR 920007015 B1 KR920007015 B1 KR 920007015B1
Authority
KR
South Korea
Prior art keywords
lime
weight
parts
mixture
curing
Prior art date
Application number
KR1019890015274A
Other languages
English (en)
Other versions
KR900006018A (ko
Inventor
사도시 구로오
쓰도무 우에노
다다아게 미조구찌
다까노리 구와하라
쓰까시 니시무라
Original Assignee
혹가이도오 덴료꾸 가부시기가이샤
도다 가즈오
바부콕구 히다찌 가부시기가이샤
요꼬다 이찌로오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 혹가이도오 덴료꾸 가부시기가이샤, 도다 가즈오, 바부콕구 히다찌 가부시기가이샤, 요꼬다 이찌로오 filed Critical 혹가이도오 덴료꾸 가부시기가이샤
Publication of KR900006018A publication Critical patent/KR900006018A/ko
Application granted granted Critical
Publication of KR920007015B1 publication Critical patent/KR920007015B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/045Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3014Kneading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/02Lime
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/515Specific contaminant removal
    • Y10S502/517Sulfur or sulfur compound removal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fertilizers (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

내용 없음.

Description

석회-석고-석탄회계 수화경화체의 제조 방법
제1도는 본 발명의 탈황제 제조 방법의 한가지 실시예를 예시하는 공정도.
제2도는 종래의 탈황제 제조 방법 중, 파쇄 및 분급 조작을 포함하는 1단계 양생법을 예시하는 공정도.
제3도는 종래의 방법중, 조립(造粒) 조작(granulation)을 포함하는 2단계 양생법을 예시하는 공정도.
제4도는 본 발명에서 사용한 양생 장치의 한가지 실시예를 예시하는 설명도.
본 발명은 가스 정화제인 석회-석고-석탄회 수화 경화체의 제조 방법에 관한 것이다. 더욱 상세하게 말하자면, 고효율의 탈황제(脫黃劑) 제조 방법에 관한 것이다.
화력발전소에서의 중유 연소 보일러 또는 석탄 연소 보일러에서 배출되는 황 산화물의 제거는, 습식법(예를들어, 석회석-석고법) 또는 건식법에 따라 실시되어 왔다. 그러나, 이들 방법을 대체할 수 있는 간략화된 경제적인 탈황 방법의 개발이 바람직하였다.
한편으로, 석탄 연소 보일러에서는 막대한 양의 석탄회가 배출되고, 이들중 일부는 시멘트 혼합제나 토지 매립용으로 이용되고 있는데, 보다 고도의 석탄회 이용법으로서 본 발명자 등이 실용화를 촉진하여 왔던 건식 탈황제의 제조가 개발되게 되었다(일본국 특허 출원 공개 소 61-209038/1986).
석탄회를 이용한 탈항제는, 기본적으로는 소석회(slaked lime), 석고 및 석탄회로 된 원료 혼합물에 물을 가하여 얻은 슬러리(slurry)를 수증기 분위기에서 가열하여 수화(水和) 및 경화시킨 다음에 파쇄, 분급(分級) 및 건조 처리함으로써 제조된다(1단계 양생법은 제2도 참조). 이렇게 얻어진 탈황제는 다공질의 경화체이고, 아래의 (1)식에 있는 바와 같이 배기 가스중의 SO2를 화학적으로 안정한 CaSO4로 고정시켜 제거한다는 특징이 있다.
Figure kpo00001
위의 식에서, X는 Ca(OH)2이외의 수화 경화체 구성 성분이다.
그러나, 본 건식 탈황 방법은 실용화하기 위하여는 높은 활성의 탈황제를 대량으로, 또한 고수득율로 제조하는 기술을 확립하는 것이 극히 중요하다.
이것과 관련하여 원료 혼합물을 일단 가열하여 수화 경화시킨 후에, 조분쇄(粗粉碎)하고, 이 조분쇄물을 조립(造粒)한 다음 2차 양생함으로써 제품 수율의 향상과 제조 소요 시간의 단축을 도모하는 방법이 개발되었다(일본국 특허 출원 공개 소 62-254824/1987, 2단계 양생법은 제3도 참조). 그러나 얻어진 탈황제의 성능은 기본 제조법인 파쇄법 보다 약간 떨어지고, 또한 제조 조작의 관점에서도 더욱 간략화가 요구되었다.
본 발명의 목적은, 고성능의 탈황제가 될수 있는 석회-석고-석탄회계 수화 경화체를 높은 수율로, 또한 간략화된 방법으로 제조할 수 있는 방법을 제공하는데 있다.
상기한 목적은, 석회-석고-석탄회계혼합물의 수화 경화체를 SO2함유 가스와 접촉시켜 수득한 사용된 탈황제와 석회 및 석탄회계로 된 혼합물에 물을 첨가하여 혼련한 후, 그 혼련물을 직경 2∼10㎜의 구멍을 가진 노즐판(nozzle plate)을 통하여 압출하여 원주상 파단물 형태의 압출물을 얻은 다음, 수화 및 경화시킨 후 건조시킴을 특징으로 하는 석회-석고-석탄회계 수화 경화체의 제조 방법에 의하여 달성된다.
본 발명의 건식 탈황제 제조의 기본 원료는 석회, 석고 및 석탄회계 혼합물인데, 대표적인 것은 소석회(Ca(OH2), 2수 석고(CaSO4·2H2O) 및 석탄회이다. 이런 경우에 있어서, 최종적으로 얻어지는 수화 경화체가 소기의 탈황 성능을 나타내기 위하여 출발 원료 100중량부에 대하여 물을 적어도 30중량부 이상, 바람직하게는 40중량부 이상 첨가하여야 한다. 그러나, 이러한 원료-물 혼합물은 슬러리(slurry) 상태를 하고 있고, 직접 성형 조작을 하기가 불가능하다.
따라서, 원료 슬러리를 가열하여 수화 경화시킨 후 조분쇄하여 조립(造粒)하는 방법이 제안되었지만, 이러한 2단계 양생법은 조립 조작을 포함하는 것으로, 1단계 양생법에 비하여 그 성능이 떨어지는 것인데, 그 이유는 조립시에 입자 표면상에 치밀층(dense layer)이 생기기 때문인 것으로 생각된다.
본 발명은 조립화 공정 없이 원료 혼합물을 직접 성형하여 2단계 양생법에 따라 얻어진 것 보다 고성능인 탈황제를 제조하는 방법을 제공하는 것이다.
본 발명자들은 사용된 탈황제가 원료 슬러리에 첨가될 때, 슬러리의 수화율이 높아져서 슬러리의 직접 성형이 가능하고, 수득한 탈황제가 종래의 탈황제 보다 탈황 성능이 우수하다는 것을 알아냈다.
또한, 본 발명에서는 본 발명의 사용된 탈황제를 사용할 경우에 수화 및 경화 속도가 전술한 기타의 CaSO4로 된 것 보다 대단히 크게 된다는 것을 발견하였다. 그리고, 사용된 탈황제가 CaSO4원으로서 원료에 첨가되어 사용되면, 첨가된 물의 양을 2단계 양생법에서의 양과 거의 동일한 40∼45%로 하더라도 원료 혼합물을 사전 양생없이 혼련 조작만으로 압출 성형할 수 있을 정도의 경도(hardness)를 얻게 할 수가 있다.
사용된 탈황제는 석회-석고-석탄회 혼합물의 수화 경화체를 SO2함유 가스와 접촉시킨 후에 수득할 수 있다. 상기한 혼합물은 본 발명의 방법이나 종래의 제조 방법으로 얻어진 것도 될 수 있다.
본 발명을 첨부된 도면에 따라 상세하게 설명한다.
제1도는 본 발명의 방법에 의한 탈황제의 제조 공정도로서, 탈황제의 제조 원료인 소석회(Ca(OH2), 석고(CaSO4로 환산) 및 석탄회의 혼합비율은 각각 15∼40중량부, 5∼20중량부 및 40∼80중량부의 범위가 바람직하다. 또한, SO2와의 반응의 주체인 소석회 대신에 생석회(CaO)를 사용해도 좋은데, 이 경우에는 혼련할 때 발열하여 수화 경화 속도가 상승한다는 잇점이 있게 된다. 한편으로, CaSO4원으로서는 사용된 탈황제가 본 발명의 목적을 달성하는데 적합하다. 예를들자면, 사용된 탈황제를 CaSO4원으로서 사용하면, 혼련시의 수화 경화 속도가 석고를 CaSO4원으로서 사용할 경우 보다 훨씬 커지고, 또한 사용된 탈황제 중의 황산칼슘과 동일 형태인 무수 석고를 사용할 경우의 수화 경화 속도도 사용된 탈황제를 첨가한 경우에 비하여 대단히 작아진다. 이것은 사용된 탈황제가 Ca(OH)2및 석탄회와의 사이에서 수화 경화체를 생성할 때 결정핵적 역할을 수행하는 결과라고 생각된다. 사용된 탈황제의 효력에 대하여는 다음에 더욱 상세하게 설명하겠다.
소석회, 사용된 탈황제 및 석탄회로 된 원료 혼합물은 필요에 따라 건식 혼합한 후에 여기에다 물을 첨가하여 혼련한다. 물의 첨가량은 얻어지는 탈황제의 SO2흡수 성능뿐만 아니라, 제품 수율 및 탈황제의 강도, 조작성 등을 고려하여 결정되어야 하는 것이나, 본 발명의 효과를 최대한으로 나타내는 물 첨가량은 원료 혼합물 100중량부(건조량 기준)에 대하여 30∼45중량부, 바람직하게는 35∼42중량부이다. 혼련시에 첨가하는 물로서는 보통 공업용수 정도의 수질을 가진 것이면 특별한 문제없이 사용 가능하다. 또한, 첨가하는 물의 온도는 특별한 제한을 받지 않으나 경화 속도의 증대를 도모한다는 점에서는 될 수 있는 한 뜨거운 상태에서 첨가하는 것이 바람직하다. 만일, 물의 첨가량이 30% 미만인 경우에는 혼련시 건조된 상태가 되어 제품 수율이 작고, 얻어지는 탈황제의 강도도 작은 것이 된다. 한편, 물 첨가량이 45%를 초과하면 혼련물을 압출기에서 압출할 때 압출된 것들이 서로 부착하므로 탈황제로서 사용할 수 없게 된다. 또한, 물 첨가량이 많으면 건조에 의하여 제거하여야 할 수분량도 당연히 증대하므로 열경제면에서 불리하다. 더욱이, 혼련시에 시멘트의 응결 촉진제로서 알려지고 있는 물질, 예를들자면, 물유리, CaCl2, NaOH, KOH, Na2SO4, Na2CO3, K2CO3, 실리카겔 등을 첨가하면 수화 경화 속도가 증대하고, 때에 따라서는 사용된 탈황제 이외의 CaSO4원을 사용하여도 신속하게 수화 경화가 진행하나, 첨가물의 사용은 탈황제의 제조 코스트의 상승뿐만 아니라 사용된 탈황제의 이용분야를 제한하는 것이 된다.
원료 혼합물의 혼련 시간은 조성의 균일화가 도모됨과 동시에 혼련물의 경도가 소정값이 되도록 조절되는데, 이러한 경도는 침입도(penetration degree)로 평가하는 것이 간편하다. 침입도라 하는 것은, 소정 굵기의 바늘에 소정의 하중을 일정시간 가하였을 때 바늘이 침입해 들어가는 거리(깊이)로 정의되고, 그 값은 작을수록 시료가 단단하다는 것을 표시하며, 굵기(직경) 1㎜의 바늘에 50g의 하중을 5초 동안 가하였을 때 바늘이 침입해 들어간 깊이(㎜), 즉 침입도가 150이하인 경우에는 압출 등의 성형 조작에 견딜 수 있을 정도의 경도를 나타내는 것으로 생각된다. 한편, 혼련물이 너무 단단해지면, 압출기로의 공급이 불가능하게 될뿐만 아니라, 혼련 및 압출 조작 자체도 실시 불가능하게 된다. 바람직한 침입도는 50∼150범위이다.
또한, 본 발명과 같이 혼련물을 압출법에 의하여 성형하는 경우에는 경도의 허용범위가 조립(造粒) 성형의 경우 보다도 현저히 확대되는 것이 특징인 것이다. 즉, 종래의 조립 조작을 할 경우, 입자끼리 서로 충돌하여 합착(合着)하게 되고, 또한 조립기의 내벽면상에서 입자가 로울링(rolling)운동을 하기 때문에 입자표면에 수분이 침출해 나오는 현상이 생긴다. 따라서, 조립 조작을 함으로써 입자끼리 서로 쉽게 부착하기 때문에, 첨가하는 물의 양을 적게 하거나 또는 미리 양생 조작하여 유리 수분의 양을 감소시켜 둘 필요가 있다. Ca(OH)2-CaSO4-석탄회-물로 된 혼합물 또는 그 수화 경화물을 조립, 성형할 수 있도록 하자면, 시료의 침입도가 50∼100범위에 있음이 바람직하나, 본 발명의 압출법에서는 금형의 형상 등을 조정함으로써 조립 성형법의 경우 보다도 연한 혼련물(침입도<150)도 물의 침출 현상 없이 처리할 수가 있다. 본 발명에서는 적절한 침입도(150이하)를 가진 혼련물을 압출기에 공급하여 직경 2∼10㎜의 구멍을 가진 노즐(nozzle)판을 통해 압출한다.
이 경우에 있어서, 압출된 성형품은 길이 5∼30㎜ 정도 되는 원주상 파단물로 된 것이 압출되는 것이다. 탈황제의 적정 사이즈는 탈황 성능 뿐만 아니라 탈황제를 흡수탑에 충전하여 피처리 가스를 공급할 때의 압력 손실 등을 고려하여 결정된다. 즉, 본 발명의 생성물에 의한 SO2흡수 반응의 속도 결정 과정은, 대체로 탈황제속을 SO2분자가 확산하여 가는 과정이고, 따라서 탈황제의 입자 직경이 작을수록 흡수 성능은 양호하게 되지만, 한편에서는 가스가 흡수탑속을 통과할 때 나타내는 압력 손실이 증가하기 때문에 자동적으로 적절한 입자 크기가 존재하게 되는 것이다. 본 발명에서는 압출기에 장착된 노즐판의 노즐 직경을 2∼10㎜ 범위로 설계하였다.
본 발명에서의 압출기는 특별한 제한은 없으나, 압출기에 부착된 노즐판(금형)은 수득한 탈황제의 성능을 결정하는 점에서 중요한 것이다.
본 발명에서는 원주상 파단물로서 성형물을 억제 되는 경우, 혼련물은 압출된 후에 자하중(自荷重)에 의하여 자연스럽게 절단되어 보통 5∼30㎜ 정도의 길이로 되는데, 이러한 압출물을 얻자면 노즐판의 두께는 1∼5㎜의 범위가 바람직하다. 만일, 노즐판의 두께가 너무 두꺼우면 압출물은 길이가 긴 국수발 같은 것이 되므로 탈황제 장치에 공급하기 위하여는 절단 장치를 추가하여야 한다.
만일, 혼련물은 종래의 경우처럼 분말상 또는 작은 덩어리 모양으로 파쇄한 후에 조립등의 성형 조작을 할 경우는, 입자 표면에는 물기가 스며나옴과 동시에 치밀층이 형성되기 때문에 탈황제의 활성은 분명히 저하된다.
반면에, 본 발명에 따르면 압출 성형시에 파단면이 형성되어 탈황제의 활성을 향상시킬 뿐만 아니라, 바깥 주변면에 상응하는 표면도 활성화 된다. 즉, 미세한 관점에서 보면 상기의 압출 과정은 다음에 설명하는 과정을 따른다.
혼련물은 일정 속도로 압출되는 것이 아니고, 미크론(micron) 단위의 길이만큼 압출된 후에 순간적으로 정지하고 또다시 미크론 단위의 길이만큼 압출되며, 금형(노즐판)으로부터 배출된 시간에는 약간 팽창한다는 과정을 거친다. 따라서, 압출물의 표면은 결코 균일하고 평활한 상태가 되지못하고 현미경적으로 보아 비늘상태를 나타낸다. 이러한 본 발명의 압출 성형 방법의 큰 특징은 압축물의 표면에는 비늘모양으로 돌출부와 오목부, 즉 요철이 형성된다는 것이다. 또한, 이렇게 표면이 비늘모양이 됨으로써 입자 내부로의 가스확산이 용이해진다. 압출물의 표면 성상은 압출되는 혼련물의 수분 함유율 및 압출기의 노즐판의 판두께 등에 따라 변화하는데, 탈황제로서 바람직한 성상을 가진 압출물을 얻기 위한 혼련물의 수분 함유율은 30∼45%인데, 바람직하게는 35∼42%이다.
한편, 압출기의 금형의 판두께가 작으면 작을수록 압출 압력은 저하된다. 압출 압력이 낮을 경우에는 압출 성형물은 거친(rough) 입자 충전이되게 되어 두꺼운 금형(노즐판)을 통하여 압출한 경우 보다도 다공질이고 또한 낮은 밀도의 작은 탈황제가 얻어지게 된다.
원주상 파단물 형태의 압출물을 필요에 따라서는 더욱 분쇄하거나 미세 입자를 제거한 후 증기 양생한 다음 건조 처리하여 본 발명의 탈황제를 얻는다.
사용된 탈황제를 사용할 경우, 수화 경화 속도가 현저기 증가하는 이유는 다음과 같이 생각된다.
즉, Ca(OH)2-CaSO4-석탄회계 수화 경화체 형성에 있어서 석탄회의 역할은 Al2O3및/또는 SiO를 공급하여 Ca(OH)2-CaSO4-M-H2O계 화합물을 형성시키는데 있다고 생각된다. 여기서, M은 Al2O3및/또는 SiO2다.
Ca(OH)2-CaSO4-M-H2O계 화합물이 SO2를 흡수하여 산화하면, 다음 식의 반응과 같이 CaSO4가 형성되며, 이와 동시에 M이 유리(재생)된다.
Ca(OH)2-CaSO4-M-H2O+SO2+O2→CaSO4+M+H2O
사용된 탈황제를 CaSO4원으로서 사용하면, 이미 이중에 M이 함유되고 새롭게 석탄회로부터 M이 용출하지 않아도 Ca(OH)2-CaSO4혼합물의 수화 경화 반응은 용이하게 진행하게 된다.
이에 반하여, CaSO4원으로서 2수 석고(CaSO4·2H2O), 반수 석고(CaSO4·1/2H2O), 무수 석고(CaSO4)등을 사용한 경우에는 석탄회로부터 M이 용출하지 않는 한, Ca(OH)2-CaSO4-M-H2O계 화합물의 형성반응은 진행하지 않게 되므로 반응 속도는 사용한 탈황제를 CaSO4원으로 한 경우 보다도 현저하게 작아진다. 이와 같이, 사용된 탈황제를 CaSO4원으로서 사용한 경우에는 수화 경화체의 형성 기구가 기타 CaSO4원을 사용한 경우와 본질적으로 상이한 것이 된다. 앞서 나온 바와 같이, 종래의 방법으로 조립(造粒) 조작을 할 경우에는 입자 표면에 물이 스며나오는 현상이 있다. 이 수분중에는 가용성 염을 함유하기 때문에 양생(수화 경화)이 진행함에 따라 표면에 가용성 염을 함유하는 치밀층이 형성되므로 얻어진 탈황제의 내부로의 SO4확산이 억제된다. 더욱이, 사용된 탈황제중에는 Na, K, Mg, Mn 등과 같은 일단 석탄회로부터 용출된 성분이 함유되어 있기 때문에, 조립 조작을 하였을 때 입자 표면에 스며나오는 물중의 가용성 염의 농도는 석고를 CaSO4원으로 한 때 보다 높고, 따라서 얻어진 탈황제의 입자 표면은 보다 치밀하게 되며, 탈황성능 저하가 현저해지는 결과과 된다.
또한, 본 발명의 압출 성형을 할 경우 입자 표면이 앞서 말한대로 비늘 모양이 되는 한편, 조립 성형 조작을 하면 표면이 평활한 상태가 될 뿐만 아니라, 치밀층이 형성되기 때문에 SO2흡수 성능은 저하된다.
본 발명의 석회-석고-석탄회계 수화 경화체 제조 방법에 있어서, 가스 정화제의 성능에 영향을 미치는 인자로서는 원료 혼합물의 조성을 비롯하여 첨가하는 물의 양, 압출기 노즐판의 형상, 양생시의 증기압, 온도, 시간 등이 있다. 이들중에서 성능이 높은 가스 정화제를 제조하는 조건으로서, 양생 시간은 24시간 이내인데, 9∼15시간이 더욱 바람직하다.
압출 성형물의 양생은 증기 방법으로 양생 장치를 써서 진행되며, 양생 장치내에 피양생물을 쌓아 올리는, 즉 적층 높이를 낮게 하여 양생하면 장치가 대다히 커지게 된다. 피양생물의 적층 높이를 높게 하면 양생도중 적층물의 하부에서 서로 부착하는 일이 있다. 이러한 문제점을 방지하기 위하여, 쌓아 올린 피양생물의 높이를 양생 과정에 따라 증가함이 바람직하고, 예를들어서, 양생 개시 1시간 후 까지는 적층 높이를 25∼50㎜로 하여 양생을 하고, 수화 경화를 진행시킨 후, 다음에 그 적층 높이를 200㎜이상으로 증대시켜서 양생을 함으로써 성형물 사이의 상호 부착을 없게 하고, 양생 장치의 소형(compact)화를 도모할 수가 있다.
이하, 본 발명을 실시예에 따라 더욱 상세하게 설명하겠는데, 본 발명은 이들 실시예에 한정된 것은 아니다.
[실시예 1-5]
소석회(Ca(OH)2) 30중량부, 2수 석고(CaSO4기준) 12중량부, 석탄회 58중량부로 된 혼합물에 물 45중량부를 첨가하여 2분간 혼합한 후, 100℃에서 2시간 증기 양생하였다. 수득한 경화물을 체눈 크기(mesh opening)가 6.7㎜인 체를 통과시켜 조립(造粒)을 위한 종자로한 후, 접시형 조립기에서 조립하였다. 이 조립물을 또 다시 100℃에서 12시간 증기 양생하여 얻어진 양생물은 130℃에서 2시간 가열 건조하여 탈황제를 제조하였다.
이러한 탈황제 64㎏을 내용적이 100ℓ인 원통상 반응 용기에 충전하고, 여기에 SO2460ppm, NOx 250ppm, O29%, CO211%, H2O 8%, N2나머지로 된 석탄 연소 발전용 보일러로부터의 배출 가스를 탈황제중의 유리 알카리가 거의 소비될 때까지 통하여 주어 본 발명에서 "사용된 탈황제"라고 하는 물질을 얻었다. 이러한 사용된 탈황제의 조성은 다음과 같다.
중량 %로 하여, SiO2: 30.2%, Al2O3: 12.0%, CaO : 21.0%, MgO : 1.13%, Na2O : 0.46%, K2O : 1.17%, Fe2O3: 2.32%, SO3: 23.0%, 그리고, CO2: 0.97%이다.
다음에, 이러한 사용된 탈황제 38중량부(CaSO4로서 16중량부, 단, SO3는 모두가 CaSO4형태로 존재하는 것으로 생각함), 소석회 30중량부, 석탄회 32중량부로 된 혼합물에 물을 30, 35, 40, 42 및 45중량부 각각 첨가하여 혼련하였다. 원료 페이스트(paste)의 경도가 침입도로서 100이 되었을 때 혼련을 중지하고, 혼련물을 구멍 직경 6㎜, 판두께 2.2㎜인 금형(노즐판)으로부터 압출하여 원주상 파단물 형태의 압출물을 얻었다. 이 압출물을 밑면이 금속망인 용기중에 넣어 100℃의 수증기중에서 15시간 가열, 양생하고, 그 후에 130℃에서 2시간 가열 건조하여 탈황제를 제조하였다. 이러한 탈황제중에서 입자 직경이 3.36∼4.73㎜인 것을 골라내어 그의 4g을 직경 30㎜의 반응관중의 천공된 접시위에 놓고, 온도 130℃에서 다음 조성을 가진 가스를 유량(flow rate) 2ℓ/min으로 통과시켰다.
SO2: 1, 000ppm, NO : 200ppm, CO2: 12%, O2: 6%, H2O : 10%, 그리고 나머지는 N2
소정 시간 마다 탈황제 시료의 일부를 빼내어 잔존하는 알칼리량을 분석함으로써 CaO의 이용율을 구한 결과, CaO 이용율은 아래와 같았다.
Figure kpo00002
또한, 물 첨가량을 40%로 하고 제조한 탈황제에 대하여 반응 시간과 CaO 이용율의 관계를 구한 결과는 다음과 같았다.
Figure kpo00003
또한, SO2흡수 성능 이외의 탈황제의 특성과 제조시의 물 첨가량의 관계는 제1표에 있는 바와 같다.
[제1표]
Figure kpo00004
[실시예 6-9]
실시예 1-5에서와 같이 동일한 사용된 탈황제 38중량부(CaSO4로서 16중량부), 소석회 30중량부, 석탄회 32중량부로 된 혼합물에 물 40중량부를 첨가하고, 실시예 1-5와 같이 조작함으로써 탈황제를 제조하였다. 이 경우에 있어서, 증기 양생 시간을 각각 9, 15, 20 및 24시간으로 하였는데 탈황 반응 시간 50시간에서의 CaO 이용율은 다음과 같다.
Figure kpo00005
[실시예 10-12]
실시예 1-15에서와 같이 동일한 사용된 탈황제 38중량부(CaSO4로서 16중량부), 소석회 30중량부, 석탄회 32중량부로 된 혼합물에 끓인 물 40중량부를 첨가하여 실시예 1-5와 같은 조작에 의하여 탈황제를 제조하였다. 이 경우에 있어서, 압출기의 금형(노즐판)의 판두께를 각각 2.2, 3.2 및 8.5㎜로 하였는데, 탈황 반응 시간 50시간에서의 CaO 이용율은 각각 92.9, 91.5 및 90.3%였다.
한편으로, SO2흡수 성능 이외의 탈황제의 특성과 제조 조건과의 관계는 제2표와 같다. 표에서 알 수 있는 바와 같이, 사용하는 금형(노즐판)의 판두께가 엷으면 엷을수록 얻어지는 탈황제의 초기 SO2흡수 성능은 향상하나, 강도는 반대로 다소 저하하고 있다.
[제2표]
Figure kpo00006
[비교 실시예 1]
소석회 30중량부, 2수 석고(CaSO4, 페이스트) 16중량부, 석탄회 54중량부로 된 혼합물에 끓인 물 40중량부를 첨가하여 2분간 혼련 하였는데 혼련물 페이스트의 침입도는 200이었다. 이것을 다시 10분간 계속 혼련하였는데 침입도는 170이었고, 그대로는 압출 등의 성형 조작이 불가능하였다. 합계하여 12분간 혼련한 원료 페이스트를 평판위에 약 25㎜의 두께로 확산하고, 100℃의 포화 수증기중에서 4시간 두어 수화 경화시켰다. 이어서, 이 경화물을 구멍 직경 6㎜, 판두께 2.2㎜인 금형(노즐판)으로부터 압출하여, 얻어진 압출 성형물을 밑면이 금망인 용기중에 두께 약 25㎜로 넣어 100℃의 수증기중에서 12시간 가열 양생한 후, 130℃에서 2시간 가열 건조하였는 바, 탈황 반응 50시간에서의 CaO 이용율은 86.8%였다.
[비교 실시예 2]
실시예 1-5에서와 같이 동일한 사용된 탈황제 38중량부(CaSO4로서 16중량부), 소석회 30중량부, 석탄회 32중량부로 된 혼합물에 끓인 물 40중량부를 첨가하여 원료 페이스트의 경도가 침입도로 100이 될 때까지 혼련하였다. 이 혼련 경화물을 눈 구멍 크기가 6.7㎜의 체를 통과시켜 조립하기 위한 종자로 한 뒤, 접시형 조립기로 대부분의 입자 직경이 3∼10㎜가 되게 조립하였다. 이 조립물을 온도 100℃에서 15시간 증기 양생하여 얻어진 양생품을 130℃에서 2시간 가열 건조하여 탈황제를 제조하였다. 이 탈황제를 실시예 1-6과 같이 하여 탈황 성능을 조사하여 보니, 탈황 방응 시간 50시간에서의 CaO 이용율은 82.2%였다. 또한, 본 제조법을 사용했을때의 제품 수율(입자 직경 3㎜ 이상)은 95%이었고, 탈황제의 강도는 8.0㎏, 세공 용적은 0.21㎖/g, 비표면적은 38.0㎡/g이었으며, 조립 조작을 함으로써 탈황제의 제품 수율, 강도는 증대하는데, 세공 용적 및 비표면적은 조립 조작의 유무에 따라 거의 변화하지 않는 한편, 탈황 성능은 조립 조작을 함으로써 저하된다는 것을 알 수 있다.
[실시예 13]
Ca(OH)230중량부, 실시예 1-5에서와 동일한 사용된 탈황제 38중량부(CaSO4로서 16중량부), 석탄회 32중량부로 된 혼합물에 물 40중량부를 첨가하여 혼련하였다. 이러한 혼련물을 구멍 직경 6㎜, 판두께 2.2㎜인 금형(노즐판)으로부터 압출한 압출 성형물을 밑면이 금망으로 된 용기에 쌓아 올린 높이 50, 150, 250㎜로 각각 변화시켜 양생실의 온도를 95℃로 하여 15시간 양생하였다.
그 결과, 쌓아 올린, 즉 적층 높이를 150㎜ 또는 250㎜로 높게 하면 금망의 바닥부분에 성형물 사이의 상호 부착이 발생하는 것을 알았다.
따라서, 성형물의 쌓아 올린 적층 높이를 50㎜로 하고, 0.5, 1 또는 2시간 양생한 후, 적층 높이를 250㎜로 하여 양생을 하였을 때 어느 경우도 부착을 볼 수 없었다. 따라서, 압출 성형물을 0.5시간, 바람직하게는 1시간 동안 50㎜의 적층 높이에서 양생하여 어느 정도 수화 경화시킨 다음, 적층 높이를 250㎜까지 하여 양생시에 성형물간의 부착이 되지 아니하여 완전한 수화 경화체를 제조할 수 있다.
제4도는 실시예 13의 결과에 의거하여 발명된 증기 양생 장치의 구조의 한가지 실시예를 보여준다. 양생장치(1)는 제1벨트 콘베이어(2)와 제2벨트 콘베이어(3)를 가지며, 압출된 성형물은 공급부(5)로부터 제1벨트 콘베이어(2)에 정량적으로 공급된다. 제1벨트 콘베이어(2)에서는 피양생물의 적층 높이를 25∼50㎜로 유지되도록 벨트의 이동 속도를 조절하여 1시간 수증기 양생을 한다. 다음에, 양생된 것을 가이드 플레이트(10) 위를 이동하는 제2벨트 콘베이어(3)상에 공급하고, 적층 높이를 200∼300㎜가 되도록 벨트의 이동 속도를 조절하여 수증기 양생을 한다. 또한, 수증기 공급구(6)부터 장치 바닥에 설치한 배관을 통해 수증기를 공급하여 압출물을 양생하고, 장치(1) 윗쪽에 설치한 배기구(7)를 통해 수증기를 배출한다. 양생을 끝낸 압출 성형물은 빼내는 배출구(8)로부터 배출하여 건조 공정에 공급함으로써 탈황제를 얻는다. 또한, 양생 장치로서 회전 원판식인 양생 장치를 상기한 장치 대신에 사용할 수도 있다.
본 발명에 따르면, 종래에 기본적으로 2단계로 시행되어 온 증기 양생 조작이 한 단계로 되고, 또한 조립조작 없이 높은 생산 수율로 Ca(OH)2-CaSO4-석탄회계 수화 경화체를 제조할 수가 있다. 또한, 얻어지는 수화 경화체의 탈황제로서의 성능도 종래의 방법으로 얻어지는 것 보다 우수한 것이 된다.

Claims (9)

  1. 석회-석고-석탄회 혼합물의 수화 경화체를 황산화물 함유 가스와 접촉시켜 수득한 사용된 탈황제와 석회 및 석탄회로 된 혼합물에 물을 첨가하여 혼련한 후, 수득한 혼련물을 노즐판을 통하여 압출하여 원주상 파단물 형태의 압출물을 얻은 다음, 상기한 원주상 파단물 형태의 압출물을 수화 경화시킨 후 건조시킴을 특징으로 하는 석회-석고-석탄회계 수화 경화체의 제조 방법.
  2. 제1항에 있어서, 상기한 혼합물중의 석회, CaSO4로 계산된 사용된 탈황제 및 석탄회의 각각의 비율은 15∼70중량부, 5∼40중량부 및 10∼80중량부의 범위인 제조 방법.
  3. 제1항에 있어서, 상기한 노즐판은 2∼10㎜ 직경의 구멍을 가진 제조 방법.
  4. 제1항에 있어서, 상기한 석회-석고-석탄회의 혼합물에 첨가하는 물의 양이 상기한 혼합물의 100중량부에 대하여 30∼45중량부인 제조 방법.
  5. 제1항에 있어서, 상기한 혼련 후의 혼합물이 50∼150범위내의 침입도로 정의되는 경도를 가진 제조방법.
  6. 제1항에 있어서, 상기한 원주상 파단물 형태의 압출물이 1∼15㎜범위의 직경을 가지고, 길이가 5∼30㎜ 범위내인 제조 방법.
  7. 제1항에 있어서, 상기한 노즐판이 2∼10㎜ 범위내의 두께를 가진 제조 방법.
  8. 제1항에 있어서, 상기한 압출물이 24시간 이내에 수증기중에서 양생처리되는 제조 방법.
  9. 제8항에 있어서, 상기한 양생 처리에 있어서 양생되는 상기한 압출물을 양생 장치안에 적층하고, 최종 적층 높이를 양생 처리가 진행됨에 따라 증대되게 함으로써 압출물들이 서로 부착되지 않도록 한 제조방법.
KR1019890015274A 1988-10-24 1989-10-24 석회-석고-석탄회계 수화경화체의 제조 방법 KR920007015B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63267487A JP2686292B2 (ja) 1988-10-24 1988-10-24 石灰−石膏−石炭灰系水和硬化体の製造方法
JP63-267487 1988-10-24

Publications (2)

Publication Number Publication Date
KR900006018A KR900006018A (ko) 1990-05-07
KR920007015B1 true KR920007015B1 (ko) 1992-08-24

Family

ID=17445532

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890015274A KR920007015B1 (ko) 1988-10-24 1989-10-24 석회-석고-석탄회계 수화경화체의 제조 방법

Country Status (9)

Country Link
US (1) US5037796A (ko)
EP (1) EP0370623B1 (ko)
JP (1) JP2686292B2 (ko)
KR (1) KR920007015B1 (ko)
CN (1) CN1023075C (ko)
AT (1) ATE99187T1 (ko)
CA (1) CA2001350C (ko)
DE (1) DE68911878T2 (ko)
ES (1) ES2062030T3 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716574B2 (ja) * 1990-06-21 1998-02-18 北海道電力株式会社 排ガス処理用乾式脱硫剤の製造法
CA2068392A1 (en) * 1991-08-26 1993-02-27 Wen-Ching Yang Separation of pollutants from flue gas of fossil fuel combustion and gasification
US5653181A (en) * 1991-08-26 1997-08-05 Westinghouse Electric Corporation Separation of particulate from flue gas of fossil fuel combustion and gasification
US6054074A (en) * 1998-09-22 2000-04-25 Consol, Inc. Method for making manufactured aggregates from coal combustion by-products
CN106045348B (zh) * 2016-05-27 2018-02-02 成都金池塘科技有限公司 一种脱硫富剂的处置方法
CN108697978B (zh) * 2017-02-02 2021-10-26 北海道电力株式会社 脱硫系统的运行方法
WO2021124564A1 (ja) * 2019-12-20 2021-06-24 北海道電力株式会社 蒸気養生装置及び脱硫剤製造装置
CN113856450A (zh) * 2021-09-14 2021-12-31 中国辐射防护研究院 一种用于脱除烟气中酸性气体的碱性材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204945A (en) * 1976-03-11 1980-05-27 Chevron Research Company Removing pollutants from flue gas in nonzeolitic catalytic cracking
US4178349A (en) * 1976-06-28 1979-12-11 Wienert Fritz Otto Process for dry removal of sulfur dioxide from combustion gases
JPS5969145A (ja) * 1982-10-12 1984-04-19 Onoda Cement Co Ltd 排ガス中の酸性物質除去剤の製造法
AT380406B (de) * 1983-08-16 1986-05-26 Staudinger Gernot Verfahren zum entschwefeln von verbrennungsabgasen
BE902935A (fr) * 1984-07-27 1985-11-18 Hitachi Shipbuilding Eng Co Procede et dispositif d'epuration de gaz d'echappement.
JPS61209038A (ja) * 1985-03-13 1986-09-17 Hokkaido Electric Power Co Inc:The 脱硫、脱硝用吸収剤
JPH0620538B2 (ja) * 1986-07-29 1994-03-23 新日本製鐵株式会社 乾式脱硫剤
JPH0649130B2 (ja) * 1986-12-19 1994-06-29 大建工業株式会社 吸放湿板の製造方法

Also Published As

Publication number Publication date
EP0370623A2 (en) 1990-05-30
KR900006018A (ko) 1990-05-07
JPH02113904A (ja) 1990-04-26
DE68911878T2 (de) 1994-05-19
CN1042088A (zh) 1990-05-16
CN1023075C (zh) 1993-12-15
ATE99187T1 (de) 1994-01-15
JP2686292B2 (ja) 1997-12-08
DE68911878D1 (de) 1994-02-10
US5037796A (en) 1991-08-06
EP0370623A3 (en) 1990-07-25
EP0370623B1 (en) 1993-12-29
ES2062030T3 (es) 1994-12-16
CA2001350C (en) 1999-04-06
CA2001350A1 (en) 1990-04-24

Similar Documents

Publication Publication Date Title
EP0059214B1 (en) Shaped cementitious products
US4780144A (en) Method for producing a building element from a fly ash comprising material and building element formed
DE102007052815B4 (de) Verfahren zur Herstellung feuerfester Leichtgranalien sowie nach dem Verfahren hergestellte Leichtgranalien
EP2276714B1 (en) Method of producing a mainly carbonate bonded article by carbonation of alkaline materials
US4772330A (en) Process for producing low water-absorption artificial lightweight aggregate
US3149986A (en) Process for the manufacture of artificial stone articles
US4919722A (en) Method of manufacturing a granular building material from refuse
KR920007015B1 (ko) 석회-석고-석탄회계 수화경화체의 제조 방법
US5177050A (en) Sulfur absorbents
JPH0829964B2 (ja) 石炭灰含有硬化性混合物と硬化石炭灰含有粒状物の製造法および石炭灰含有建築部材
CA1131431A (en) Process for compacting under pressure plaster-based mixtures
JP2007054732A (ja) 汚水処理材及びその製造方法
JPS61120612A (ja) セラミツクフイルタ−の製造法
JPH02194833A (ja) 排ガス用乾式脱硫剤の製造方法
US2429759A (en) Preparation of reagents for the purification of gases
JPH03242226A (ja) 脱硫剤の製造方法
JPH03183669A (ja) 石炭灰を主原料とする多孔質焼成硬化体の製造方法
JPH0459044A (ja) 排ガス処理用乾式脱硫剤の製造法
JP2003071241A (ja) 酸性ガス吸収材、その製造方法及びガス処理方法
SU1263679A1 (ru) Способ изготовлени безобжиговых строительных изделий
JPH1033979A (ja) 調湿材の製造方法
JPH02115039A (ja) 脱硫剤の製造方法
PL426345A1 (pl) Sposób wytwarzania granulowanego nawozu gipsowego
JP3187460B2 (ja) 軽量非焼成骨材の製法
JPH0543284A (ja) 軽量非焼成骨材の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030710

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee