KR900000904B1 - 스텐레스강의 산세척폐액의 회수 및 처리공정 - Google Patents

스텐레스강의 산세척폐액의 회수 및 처리공정 Download PDF

Info

Publication number
KR900000904B1
KR900000904B1 KR1019850002119A KR850002119A KR900000904B1 KR 900000904 B1 KR900000904 B1 KR 900000904B1 KR 1019850002119 A KR1019850002119 A KR 1019850002119A KR 850002119 A KR850002119 A KR 850002119A KR 900000904 B1 KR900000904 B1 KR 900000904B1
Authority
KR
South Korea
Prior art keywords
acid
nitrogen
hydrofluoric acid
waste
waste liquid
Prior art date
Application number
KR1019850002119A
Other languages
English (en)
Other versions
KR850006682A (ko
Inventor
가즈히로 우찌노
도시오 와따나베
미노루 호시노
요시오 나까자또
노보루 이시하라
Original Assignee
가와사끼 세이데쓰 가부시끼가이샤
야기 야스 히로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가와사끼 세이데쓰 가부시끼가이샤, 야기 야스 히로 filed Critical 가와사끼 세이데쓰 가부시끼가이샤
Publication of KR850006682A publication Critical patent/KR850006682A/ko
Application granted granted Critical
Publication of KR900000904B1 publication Critical patent/KR900000904B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0009Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/01Waste acid containing iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/01Waste acid containing iron
    • Y10S423/02Sulfuric acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Compounds Of Iron (AREA)

Abstract

내용 없음.

Description

스텐레스강의 산세척폐액의 회수 및 처리공정
제1도는 본 발명에 따른 산세척폐액의 회수 및 처리공정에 대한 흐름도.
* 도면의 주요부분에 대한 부호의 설명
100 : 용매 추출단계 200 : 페리이트생성단계
A, B : 유기용매 C : 염산
D : 스트립핑용액 E : 분해가스
F : 페라이트 G : 석고
H : 철산화물 I : 금속철
J : 염화칼슘 K : 수산화나트륨
L : 수산화물슬러리 P : 암모니아수
Q : 공기 T : 폐수처리장치
W : 물 X : (NH4)3FeF6결정
Mo : 질소-플루오르화 수소산폐액
M1: 무철산 No : 질산폐액
Co : 염산폐액 So : 황산폐액
본 발명은 스텐레스강의 산세척폐액, 특히 스텐레스강판의 산세척에 사용된 Fe, Cr, Ni이온을 함유하고 있는 질소-플루오르화 수소산, 질산, 황산 또는 염산폐액을 회수 및 처리하기 위한 공정에 관한것이다.
스텐레스제강의 산세척 단계에는 통상적으로 질소-플루오르화 수소산, 질산, 황산, 염산등과 같은 광산(mineral acid)용액이 사용된다. 상기 단계에서 Fe, Cr 및 Ni이온을 함유한 여러 가지 산세척폐액이 생성된다.
지금까지 질소-플루오르화 수소산 또는 질산폐액의 처리는 유일하게 알카리 중화법으로서 수행하였다. 이 경우에 금속수산화물 및 금속불화물과 같은 찌꺼기가 대량으로 생성되며, 상수지역의 부영양화 원인이되는 질소함량(NO3 -)이 방출된다. 따라서 폐액으로부터 질소-플루오르화 수소산 및 금속을 회수하기 위한 기술개발이 촉진되어 왔다.
이와 관련하여 용매 추출공정이 회수기술로서 주목되고 있고, 이러한 기술은 일본국 특허공보 제56-42,674호에 게재되어 있으며, 알킬인산을 함유한 유기용매를 사용하여 질소-플루오르화 수소산으로부터 Fe+3를 선택으로 추출하는 방법이다. 상기 추출된 Fe+3은 일본국 특허공보 제57-42,545호에 게재된 불화물계열의 수용액을 이용하는 공정으로서 스트립핑하고, 일본국 특허공보 제58-15,039호 또는 일본국 특허출원 공보 제58-12,323호에 게재된 공정을 이용하여 철산화물 또는 금속철로서 회수한다. 한편 Fe추출후 폐액에 함유된 금속이온과 적어도 같은 양의 황산 또는 염산을 첨가한 다음, 중성 포스페이트 에스테르를 함유한 유기용매로서 질소-플루오르화 수소산을 회수한다. 상기 공정에 따르면 질소-플루오르화 수소산을 고수득율로서 재사용할 수 있지만, 질소-플루오르화 수소산의 추출후 잔여 액체에 포함된 Ni 및 Cr이온을 처리하는 문제가 남는다. 예를 들면 용매 추출법등으로서 Ni과 Cr을 회수하기 위해서는 회수단계가 복잡하게된다.
또한 황산 또는 염산폐액의 처리는 지금까지 알카리 중화공정으로서 수행되었다. 그러나 이 경우 Fe+2산화에 필요한 단가가 높아지고, 많은 양의 수산화물 찌꺼기가 생성되어 효과적으로 사용하기 곤란하다. 따라서 황산 또는 염산폐액에 Fe+2를 존재시키기 위해, 일본국 특허출원 공고 제51-22,307호에 게재된 페라이트 생성법으로서 Cr 및 Ni이온과 함께 상자성산화물로서 상기 금속이온을 회수하는 것이 제외되었다. 상기 회수된 페라이트는 전파흡수기 및 진동감쇠기에 유용하게 사용되며, 부가적인 가치가 높다. 그러나 이러한 페라이트 생성법은 질소-플루오르화 수소산의 처리에 사용할 수 없고, 황산폐액의 처리에 사용될 경우 황산나트륨 농축용액을 생성한다. 후자의 경우, 폐수가 통상적인 석회중화용 처리장치에 이르게 되면 석고가 생성되는 문제점을 야기시킨다.
상술한 바와 같이 용매 추출법은 질산 또는 질소-플루오르화 수소산 폐액을 처리할 수 있는 반면에 페라이트 생성법은 황산 또는 염산폐액을 처리할 수 있다. 그러나 스텐레스강의 산세척단계에서 질산 또는 질소-플루오르화 수소산 및 황산 또는 염산을 동시에 사용하여 상기 폐액을 합성적으로 처리할 것이 요망된다.
본 발명은 종래 기술의 단점을 제거하며, 그 장점은 그대로 존속시키고, 스텐레스강의 산세척에 사용된 폐액을 합성적으로 처리하여 효과적으로 재사용할 수 있으며 수질오염을 방지할 수 있는 형태로서 질소-플루오르화 수소산과 금속이온등을 회수하기 위한 공정을 그 목적으로 한다.
본 발명에 따라 스텐레스강의 세척에 사용된 질소-플루오르화 수소산, 질산 및 염산폐액을 처리 및 회수하기 위한 공정에서는, 용매 추출법으로서 질소-플루오르화 수소산 및 질산폐액으로부터 Fe+3를 제거하여 철산화물 또는 금속철로서 회수하며, 다른 용매 추출법으로서 질산 및 플루오르화 수소산을 회수하고, 알칼리를 첨가하여 나머지 Cr 및 Ni이온을 수산화물로 전환시키며, 수산화물을 용해시키기 위한 산과 Fe+2이온원으로서 염산폐액을 사용하는 페라이트 생성법으로서 상자성산화물로 금속이온을 회수한다.
또한 본 발명의 다른 일면에 따라 스텐레스강의 산세척에 사용된 질소-플루오르화 수소산, 질산 및 염산폐액을 처리 및 회수하기 위한 공정에서는, 용매 추출법으로서 질소-플루오르화 수소산 및 질산폐액으로부터 Fe+3을 제거하여 철산화물 또는 금속철로서 회수하며, 다른 용매 추출법으로서 질산 및 플루오르화 수소산을 회수하고, 알칼리를 첨가하여 나머지 Cr 및 Ni이온을 수산화물로 전환시키며, 수산화물을 용해시키기 위한 산과 Fe+2이온원으로서 염산폐액을 사용하는 페라이트 생성법으로서 상자성산화물로 금속이온을 회수하고, 페라이트 생성법에 의한 처리후 여과액에 포함된 황산염군을 석고로서 회수한다.
첨부도면을 참조하여 본 발명을 더욱 상세히 설명하면 다음과같다.
제1도는 본 발명에 따른 공정의 흐름도로서, 용매 추출단계(100)가 페라이트 생성단계(200)로 구분되어있으나 전체가 하나의 흐름을 구성한다.
질소-플루오르화 수소산폐액 Mo와 질산폐액 No는 주로 용매 추출단계에서 처리된다. Mo 또는 Mo와 No의 혼합물은 주로 FeF2 +형으로서 Fe+3를 함유하고 있으며, 추출제로서 알킬인산(차후는 HR로 약칭)을 함유한 유기용매 A와의 이온교환반응에 의해 (1)에서 이온이 제거된다. 알킬인산의 대표적인 것으로 di-(2-에틸헥실) 인산(D2EHPA)이 있다.
Figure kpo00001
Figure kpo00002
추출된 Fe+3을 함유한 용액 A는 (2)에서 주로 NH4HF2로 구성된 스트립핑 용액 D와 반응하여 (NH4)3로 FeF6로 결정 X를 생성한다.
Figure kpo00003
Figure kpo00004
Figure kpo00005
철의 스트립핑 후 추출제의 일부가 식(5)에서와 같이 암모니아형(NH4R) 임으로(3)에서 염산을 함유한 수용액과 접촉하여 전환된다. 수소형(HR)로 전환한 추출제를 함유하고 있는 용매 A는 (1)에서으 철추출을 위해 다시 사용된다.
결정 X를 함유한 스트립핑 용액은 (4)에서 액상-고상 분리공정을 거쳐 결정 X는(5)에서 공기 또는 수소기류속에서 철산화물 H 또는 금속철 I로 분해된다.
Figure kpo00006
Figure kpo00007
(5)에서 생성된 분해가스 E는 NH4F, HF등을 함유하고 있기 때문에 스트립핑 용액 D에 흡착시켜 재사용한다. (2)에서 생성된 결정 X는 고순도의 (NH4)3FeF6이기 때문에 결과적 이 생성물 H 또는 I도 높은 순도를 갖는다.
반면에 철추출후 폐산의 일부는 무철산 M1으로서 질소-플루오르화 수소산 세척탱크에 회수되어 재사용한다. 반면에 그 나머지는 질소-플루오르화 수소산 회수용으로 시스템에 공급되며, 상기 비율은 폐산에 포함된 Cr 및 Ni량이 질소-플루오르화 수소산 세척 탱크에 용해된 Cr 및 Ni량과 균형을 이루도록 결정한다. 우선 (6)에서 염산 C를 첨가하여 금속질화물을 염화물로 전환시킨 다음, (7)에서 추출제로서 중성 포스페이트 에스테르를 함유한 유기용매 B와 접촉시켜 질산 및 플루오르화 수소산을 추출한다. 중성포스페이트 에스테르로서는 트리부틸 포스페이트(TBP)가 대표적인것이다.
Figure kpo00008
Figure kpo00009
용매 B에 추출된 질산 및 플루오르화 수소산은 (8)에서 물 W로서 스트립핑 되어 질소-플루오르화 수소산 세척탱크에서 재사용된다.
(7)에서 질소-플루오르화 수소산의 추출후, 수용액은 염산을 함유하기 때문에 (3)에서 용매 A의 전환 (NH4R→ HR)에 사용되어 결과적으로 NH4 +를 함유하게 된다. 상기 수용액은 (9)에서 염화칼슘 J와 수산화나트륨 K의 수용액으로 중화시켜 주로 Cr과 Ni로 구성된 수산화물 슬러리 L을 얻는다. (10)에서 암모니아수 P의 회수후, 위에 또는 액체는 폐수처리 장치 T에 공급된다. 암모니아수 P는 스트립핑용액등의 농도조정에 재사용한다.
상기 과정은 용매 추출단계(100)에 포함되는 것들이다.
(9)에서 생성된 수산화물 슬러리 L은 주로 Cr과 Ni로 구성되어 있으며, 다음의 페라이트 생성단계(200)에 공급되어 황산폐액 So 또는 염산폐액 Co와 함께 처리된다.
L, So 또는 Co는 (11)에서 수산화나트륨의 수용액 K와 혼합됨으로서 Cr 및 Ni의 수산화물은 산함량에 의해 재용해 및 Fe+2와 함께 중화되어 혼성수산화물을 생성한다. 반응식은 다음과 같다.
Figure kpo00010
상기식에서 0
Figure kpo00011
y
Figure kpo00012
2 및 0
Figure kpo00013
Figure kpo00014
1이다. 그리고 수산화나트륨의 수용액 K는 60∼80℃의 액체온도로서 (12)에 첨가되고, pH 9∼11를 유지하면서 공기 Q를 불어 넣음으로서 혼성 수산화물의 일부 Fe+2가 Fe+3으로 산화되어 상자성 스피넬(spinel) 화합물(페라이트)을 생성한다.
Figure kpo00015
(13)에서 상기 반응액을 침강 및 자력 선별하여 페라이트 F를 얻는다. 폐산이 염산폐액 Co일 때, 위에 뜨는 액체는 폐수처리장치 T에 공급된다. 반면에 폐산이 황산폐액 So일 경우는 위에 뜨는 액체가 SO4 -2를 함유하기 때문에 염화칼슘 J와 함께 (14)에 첨가되어 석고 G를 형성하고, (15)에서 석고 G가 분리되며, 그 결과 여과액은 폐수처리장치 T에 공급된다.
Figure kpo00016
상기 석고 G는 Ca이외에 어떠한 금속도 함유하지 않기 때문에 대단히 희다.
상술한 바와 같이 본 발명의 특징은 두가지 용매 추출법과 페라이트 생성법을 이용하여 스텐레스강의 산세척단계에서 생성된 여러 가지 폐산을 합성처리 및 효과적으로 회수하는 데에 있다. 즉 질소-플루오르화 수소산 및 질산폐액으로부터 질소-플루오르화 수소산 및 고순도의 철산화물 또는 금속철을 회수할 수 있는 동시에 황산 및 염산폐액으로부터 페라이트를 함유하는 Cr 및 Ni를 얻을 수 있으며, 특히 황산폐액인 경우에 고순도의 석회를 얻을 수 있다. 부가적으로 질소함량(NO3 -) 및 불소함량 (F-)의 방출에 기인한 수질오염을 방지할 수 있기 때문에 환경 보호적 견지에서 우수한 폐산처리기술이라 할 수 있다.
[실시예 1]
1㎥/hr의 질소-플루오르화 수소산 폐액의 처리용량을 갖는 회수장치에서 1㎥/hr의 속도로 폐액을 처리하였다. 폐액의 조성은 다음과 같다.
Fe+3=39.0g/l, Cr+3=9.9g/l, Ni+2=4.5g/l, HNO3=180g/l, HF=44g/l.
4단계 혼합기-침강기에서 수용액에 대한 유기상의 유량비(O/A) 2.2로서 30V/V% D2EHPA과 70V/V%의 n-파라핀으로 구성되는 유기용매 A를 사용하여 상기 폐액으로부터 철을 추출하였다. 철 추출후 유기상의 Fe+3농도는 17.6g/l, 수용액에서 Fe+3및 HF농도는 각각 0.02g/l(Fe+3의 추출속도 99.9%) 및 35g/l이었다.
한달에 45ton의 결정 생산용량을 갖는 결정석출기에 17.6g/l의 추출된 Fe+3을 함유한 유기용매 A를 공급하고, 유량비(O/A)=1/1.75로서 125g/l의 NH4HF2용액과 혼합하여 Fe+3을 스트립핑함으로서 백색의 (NH4)3FeF6결정을 얻었다. 한달에 45ton의 철산화물 제조용량을 갖는 로타리킬론에서 450∼550℃로 상기 결정을 가열하였다.
상기에서 얻어진 철산화물은 0.30% 인과 10.0%의 불소를 함유하고 있었다. 800℃에서 철산화물을 재가열시킴으로서 인 및 불소함량은 각각 0.21%로 감소 및 0.02%를 넘지 않았으며, Fe2O3의 순도는 99.5%이상이었다.
철추출후 폐산(Fe+3=0.02g/l, Cr+3=9.9g/l, Ni+2=4.5g/l, HNO3=180g/l, HF=35g/l)으로부터 0.3㎥/hr의 속도로 질소-플루오르화 수소산을 추출하였다. 유기용매 B는 70V/V% TBP와 30V/V%의 n-파라핀으로 구성하였다. O/A=3에서 질소-플루오르화 수소산의 추출과 O/A=2.7에서 그 스트립핑을 수행하여 회수산으로서 153g/1의 HNO3(회수율 93.5%)와 25g/l의 HF(회수율 78.6%)를 얻었다.
질소-플루오르화 수소산의 추출 후 수용액(라피네이트)을 35% CaCl2및 24% NaOH용액으로 중화시켜 물 함량이 78%인 수산화물 슬러리를 얻었다.
[실시예 2]
실시예 1에서 얻은 수산화물 슬러리를 건조하여 Cr함량이 23.2% 그리고 Ni함량이 10.6%인 케이크(Cake)를 얻었다. 25g의 케이크를 1l용량의 4목 둥근 플래스크에 넣고, 스텐레스강에 대한 황산액(H2SO4=310g/l, Fe+2=54g/l, Cr+3=9g/l, Ni+2=1g/l)500㎖를 첨가하여 70℃로 가열하면서 교반시켜서 수산화물을 용해시켰다. 다음에 상기 생성물을 24% NaOH용액으로 중화시키고, 이어서 21/min유량으로 3.5시간 동안 공기를 불어 넣었다. 그리고 70℃에서 pH=10.8을 유지시켰다. 상기 반응 생성물을 여과하여 포화자기가 39emu/g인 검은 분말을 얻었다. 상기 분말의 X선 회절시험 결과, 스피낼(spinel)형 상자성산화물인 것으로 밝혀졌다.
상기 여과액은 무색 투명하였고, 20% CaCl2용액을 첨가하여 수분함량이 6.2%인 순수한 백석고를 얻었다.

Claims (2)

  1. 스텐레스강의 산세척에 사용된 질소-플루오르화 수소산, 질산 및 염산폐액을 처리 및 회수하기 위한것으로서, 용매 추출법으로서 질소-플루오르화 수소산 및 질산폐액으로부터 Fe+3를 제거하여 철산화물 또는 금속철로서 회수하며, 다른 용매 추출법으로서 질산 및 플루오르화 수소산을 회수하고, 알칼리를 첨가하여 나머지 Cr 및 Ni이온을 수산화물로 전환시키며, 수산화물을 용해시키기 위한 산과 Fe+2이온원으로서 염산폐액을 사용하는 페라이트 생성법으로서 상자성산화물로 금속이온을 회수하는것이 특징인 산세척폐액 처리 및 회수공정.
  2. 스텐레스강의 산세척에 사용된 질소-플루오르화 수소산, 질산 및 염산폐액을 처리 및 회수하기 위한것으로서, 용매 추출법으로서 질소-플루오르화 수소산 및 질산폐액으로부터 Fe+3를 제거하여 철산화물 또는 금속철로서 회수하며, 다른 용매 추출법으로서 질산 및 플루오르화 수소산을 회수하고, 알칼리를 첨가하여 나머지 Cr 및 Ni이온을 수산화물로 전환시키며, 수산화물을 용해시키기위한 산과 Fe+2이온원으로서 염산폐액을 사용하는 페라이트 생성법으로서 상자성산화물로 금속이온을 회수하고, 페라이트 생성법에 의한 처리후 여과액에 포함된 황산염군을 석고로서 회수하는것이 특징인 산세척폐액 처리 및 회수공정.
KR1019850002119A 1984-03-30 1985-03-29 스텐레스강의 산세척폐액의 회수 및 처리공정 KR900000904B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59062435A JPS60206481A (ja) 1984-03-30 1984-03-30 ステンレス鋼酸洗廃液の回収処理方法
JP62435 1989-03-15

Publications (2)

Publication Number Publication Date
KR850006682A KR850006682A (ko) 1985-10-16
KR900000904B1 true KR900000904B1 (ko) 1990-02-19

Family

ID=13200101

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850002119A KR900000904B1 (ko) 1984-03-30 1985-03-29 스텐레스강의 산세척폐액의 회수 및 처리공정

Country Status (6)

Country Link
US (1) US4565675A (ko)
EP (1) EP0161050B1 (ko)
JP (1) JPS60206481A (ko)
KR (1) KR900000904B1 (ko)
CA (1) CA1237644A (ko)
DE (1) DE3561387D1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830836A (en) * 1984-03-30 1989-05-16 Kawasaki Steel Corporation Metal stripping system and an operation process therefor
US4894170A (en) * 1989-02-27 1990-01-16 Billmyre Richard D Liquid recovery system and method
US5037545A (en) * 1989-02-27 1991-08-06 Billmyre Richard D Liquid recovery system and method
ATA116789A (de) * 1989-05-17 1992-06-15 Boehler Gmbh Verfahren zur rueckgewinnung von metallen bzw. metalloxiden und saeuren aus salzloesungen, insbesondere aus beizsaeuren oder beizsaeuregemischen
JPH0467583U (ko) * 1990-10-20 1992-06-16
US5401485A (en) * 1994-03-15 1995-03-28 Shell Oil Company Reduction of residual chloride in iron oxides
JP4765373B2 (ja) * 2005-03-31 2011-09-07 栗田工業株式会社 フッ素含有排水の処理方法及び処理装置
US8795620B2 (en) 2011-02-15 2014-08-05 Ati Properties, Inc. Systems and methods for recovering nitric acid from pickling solutions
US8784762B2 (en) 2011-02-15 2014-07-22 Ati Properties, Inc. Treatment of NOx-containing gas streams
CN102660751B (zh) * 2012-04-28 2014-05-21 浙江大学 金属酸洗废液的资源化处理方法及装置
FI127664B (en) 2017-10-20 2018-11-30 Crisolteq Ltd Process for recovery of components from a pickle acid regeneration residue
CN108503010B (zh) * 2018-03-26 2021-01-01 中国科学院生态环境研究中心 含聚乙烯醇的废水的处理方法
CN109553152B (zh) * 2018-11-30 2021-09-10 中冶南方工程技术有限公司 一种不锈钢混酸废液再生酸工艺
FI129345B (en) 2019-12-19 2021-12-15 Crisolteq Ltd A method for treating a pickling acid regeneration precipitate
KR20240044262A (ko) 2022-09-28 2024-04-04 주식회사 리텍 스테인레스 원료용 니켈 페라이트 제조방법 및 그 방법에 의해 제조된 스테인레스 원료용 니켈 페라이트

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3931007A (en) * 1972-12-19 1976-01-06 Nippon Electric Company Limited Method of extracting heavy metals from industrial waste waters
US3927173A (en) * 1974-02-22 1975-12-16 Armco Steel Corp Treatment of acid waste waters to produce ferromagnetic sludges
JPS5411210B2 (ko) * 1974-08-20 1979-05-12
AU501823B2 (en) * 1975-03-14 1979-06-28 Solex Research Corporation Of Japan Removing heavy metals froman acid waste liquid
JPS537972A (en) * 1976-07-09 1978-01-24 Nec Corp Process for treating heavy metals in drain water
JPS565182A (en) * 1979-06-25 1981-01-20 Nec Corp Treatment of waste water containing heavy metal
JPS5642674A (en) * 1979-09-13 1981-04-20 Ricoh Co Ltd Discharging method for sheet

Also Published As

Publication number Publication date
EP0161050A1 (en) 1985-11-13
CA1237644A (en) 1988-06-07
EP0161050B1 (en) 1988-01-13
JPS60206481A (ja) 1985-10-18
US4565675A (en) 1986-01-21
KR850006682A (ko) 1985-10-16
DE3561387D1 (en) 1988-02-18
JPS641196B2 (ko) 1989-01-10

Similar Documents

Publication Publication Date Title
KR900000904B1 (ko) 스텐레스강의 산세척폐액의 회수 및 처리공정
US4105741A (en) Process for recovery of uranium from wet process phosphoric acid
US3937783A (en) Recovery of fluorine, uranium and rare earth metal values from phosphoric acid by-product brine raffinate
EP2964794B1 (en) A method for re-extraction of rare-earth metals from organic solutions and preparing concentrate of rare-earth metals
US3104950A (en) Process for the separation of iron and titanium values by extraction and the subsequent preparation of anhydrous titanium dopxode
US4412861A (en) Method for the recovery of uranium values from uranium tetrafluoride
US3880980A (en) Recovery of uranium from HCl digested phosphate rock solution
US4247522A (en) Method of purifying uranium tetrafluoride hydrate and preparing uranium (VI) peroxide hydrate using a fluoride precipitating agent
CN117327930B (zh) 一种原生型页岩石煤中回收钒的方法
US5034201A (en) Recovery of rare earth values from gypsum
US4952378A (en) Method for neutralization treatment of sulfuric acid containing iron ions
US4230677A (en) Recovery of Cr2 O3 from a chromium bearing solution
US3146063A (en) Process for separating scandium from mixtures containing scandium and thorium values
CA2222639C (en) Metal and fluorine values recovery from fluoride salt matrices
US3131994A (en) Recovery of beryllium values
US5516496A (en) Metal and fluorine values recovery from fluoride salt matrices
CN114686706B (zh) 一种从钼铅矿中回收钼、铅的方法
US4744960A (en) Process for the separation of rare earths and uranium of a UF4 concentrate and for putting them into useful form
US3044848A (en) Method of uranium recovery
US3259456A (en) Process for producing basic beryllium material of high purity
JPH0254729A (ja) Znイオンを含有する硫酸の中和方法
CN114686705B (zh) 一种从辉钼矿中回收金属元素的方法
JP3780358B2 (ja) 石油系燃焼灰の処理方法
CA1065122A (en) Recovery of fluorine, uranium and rare earth metal values from phosphoric acid waste liquors
Humelnicu et al. RECOVERY OF SOME INORGANIC COMPOUNDS FROM THE SLUDGES RESULTED AFTER THE LEACHING OF URANYL IONS FROM URANIUM ORES.

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19980213

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee