KR890002614B1 - Process for manufacturing of high tension wire rod for pc steel wire - Google Patents

Process for manufacturing of high tension wire rod for pc steel wire Download PDF

Info

Publication number
KR890002614B1
KR890002614B1 KR1019850010076A KR850010076A KR890002614B1 KR 890002614 B1 KR890002614 B1 KR 890002614B1 KR 1019850010076 A KR1019850010076 A KR 1019850010076A KR 850010076 A KR850010076 A KR 850010076A KR 890002614 B1 KR890002614 B1 KR 890002614B1
Authority
KR
South Korea
Prior art keywords
cooling
strength
manufacturing
temperature
ductility
Prior art date
Application number
KR1019850010076A
Other languages
Korean (ko)
Other versions
KR870006227A (en
Inventor
유선준
이중복
강신왕
장경영
Original Assignee
포항종합제철주식회사
정명식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 정명식 filed Critical 포항종합제철주식회사
Priority to KR1019850010076A priority Critical patent/KR890002614B1/en
Publication of KR870006227A publication Critical patent/KR870006227A/en
Application granted granted Critical
Publication of KR890002614B1 publication Critical patent/KR890002614B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Abstract

The high tension wire rod is manufactured by (i) heating a billet comprising (in wt.%) 0.72-0.98% C, 0.12-0.35% Si, 0.77-0.82% Mn, not more than 0.023% P, not more than 0.01% S, 0.10-0.30% Cr, 0.005-0.02% Ni, not more than 0.024% Al, balance Fe and unavoidable impurities to 1,150-1,200 deg.C; (ii) hot rolling; (iii) rapid-cooling to 800±10 deg.C; (iv) coiling; (v) cooling to room temperature at a rate of 5- 10 deg.C/sec. without heat treatment.

Description

열처리 생략형 PC 강선용 고장력선재의 제조방법Manufacturing method of high tensile wire for PC steel wire

제1도는 본 발명에 이용한 제어냉각설비의 평면개략도.1 is a schematic plan view of a control cooling system used in the present invention.

제2도는 본 발명강과 비교강의 전자현미경 조직사진.2 is an electron micrograph of the present invention and comparative steel.

본 발명은 강도 및 연성이 우수한 납욕처리(Pb patenting) 생략형 PC 용 고장력선재의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing high tensile wire for Pb patenting omitted PC having excellent strength and ductility.

일반적으로 PC 강선 및 대경와이야 로프(wire rope)등의 소재로 사용되는 고탄소대경선재는 빌레트(billet)를 가열하고 열간압연한 후 권취 및 상온꺄지 냉각하여 신선가공에 의해 성품화 되지만 실제로 이러한 공정을 거쳐 생산된 제품은 조직의 조대화로 인해 신선가공성이 불량하므로 열 유지력이 우수한 납욕(Pb bath)에서 소입처리를 하여, 미세펄라이트(pearlite) 조직을 형성시켜 냉간신선성 및 강도가 높은 소재를 제조하여 왔다. 그러나 이러한 납욕처리에 의해 생산된 강도와 연성은 증가하지만 낮은 생산성, 납욕에서 발생한 납가스(gas)로 인한공해, 납욕설치를 위한 설비비의 증가등이 문제점으로 대두됨으로서 납욕처리의 대체방법인 인라인(in-line)열처리 방법이 개발되었다.In general, high-carbon large-size wire rods, which are used as PC steel wires and large diameter wire ropes, are heated and hot rolled, then wound and cooled at room temperature. The product produced through is poor in fresh processing due to the coarsening of the tissue, so it is hardened in a Pb bath with excellent heat retention, and forms fine pearlite tissue to form a material with high cold freshness and strength. Has been manufactured. However, although the strength and ductility produced by lead bath treatment increase, low productivity, pollution due to lead gas generated from lead bath, and increase of equipment cost for installation of lead bath have emerged as problems. in-line heat treatment methods have been developed.

이러한 인 라인 열처리 방법은 오스레나이트(austenite)를 펄라이트와 훼라이트(ferrite)로 변태시킬때 변태시간을 지연시켜 신선가공성 및 연성이 우수한 미세 펄라이트 조직이 형성되는 소재를 생산하는 것이며, 냉각속도를 높이거나 합금원소를 첨가시켜 연속 냉각변태곡선(continuous cooling transformation curve)를 좌측으로 이동시켜 빠른 변태를 유도함으로서 펄라이트 층상간격을 미세화시켜 품질개선에 노력하였으나 납욕처리에 의해 생산한 제품보다 미흡한 품질수준을 보이고 있다. 따라서 본 발명에서는 납욕처리를 생략하여 납욕처리의 제품과 동일한 품질을 가지는 신선 가공성 및 연성이 우수한 미세펄라이트 조직을 얻기 위한 것으로, 중량 %로 C : 0.72-0.98%, 상한선을 0.35wt%로 하였다. 망간은 소입성(hardenability)를 향상시켜 제품의 강도 보증에 필요하고 오스테나이트에서 펄라이트와 휄라이트로 변태시 펄라이트 층상간격을 미세화시켜 강도와 연성의 확보에 필요한 원소이므로 하한선을 0.77wt%로 하였으며, 망간량이 많아지면 냉각시 연속냉각 변태곡선을 우측으로 이동시켜 신선가공성에 악영향을 미치는 베이나이트(bainite)와 마르텐사이트(martensite)의 생성이 쉬우므로 상한선을 0.82wt%로 하였다. 인은 첨가량이 많아지면 연성을 저하시키고 편석(segregation)이 많아서 신선가공성에 악영향을 미치므로 0.023wt% 이하로 규제하였으며, 황은 연성을 저하시키고 유화물계의 비금속개재물의 형성하여 신선가공성에 악영향을 미치므로 0.01wt% 이하로 규제하였다.This in-line heat treatment method delays the transformation time when the austenite is transformed into pearlite and ferrite to produce a material in which a fine pearlite structure with excellent freshness and ductility is formed, and the cooling rate is increased. Increasing or adding alloying elements moves the continuous cooling transformation curve to the left to induce rapid transformation, minimizing the perlite layer spacing and improving quality, but the quality level is lower than that produced by lead bath treatment. It is showing. Therefore, in the present invention to omit the lead bath treatment to obtain a fine pearlite structure excellent in drawing processability and ductility having the same quality as the product of the lead bath treatment, C: 0.72-0.98%, the upper limit was 0.35wt%. Manganese is required to guarantee the strength of the product by improving hardenability, and the lower limit is 0.77wt% because it is an element necessary to secure the strength and ductility by miniaturizing the pearlite layer spacing when transforming from austenite to pearlite and fumlite. As the amount of manganese increased, the upper limit was set to 0.82 wt% because the continuous cooling transformation curve was shifted to the right to easily generate bainite and martensite, which adversely affect freshness. Phosphorus is regulated to less than 0.023wt% because the addition amount decreases ductility and segregation has a bad effect on fresh workability. Therefore, it was regulated to 0.01wt% or less.

또한 크롬은 열간압연시 오스테나이트상에 고용되어 변태시 펄라이트석출을 억제함으로서 석출펄라이트의 층상간격을 미세화시켜 강도와 연성을 증가시키고 크롬카바이드를 펄라이트 훼라이트내에 석출시켜 입계를 제어하여 기계적 성질을 향상시키는 효과가 있으므로 하한선을 0.10wt%로 하였고, 크롬이 0.3%이상 첨가되면 냉각시 Si : 0.12-0.35%, Mn : 0.77-0.82%, P : 0.023% 이하, S : 0.01%이하, Cr : 0.10-0.30%, Ni : 0.005-0.02%, Total Al : 0.024%이하 및 나머지는 철과분순물의 함유된 빌레트를 1150℃-1200℃ 의 온도로 가열, 열간압연한 후 그강의 열간압연시 압연소재의 온도를 이용하여 직접 800±10℃의 온도까지 급냉, 권취한후 강제공냉구역에서 공기를 주입하여 상온까지 냉각속도 5-10℃/sec 의 온도를 냉각하는 공정에 의해 상온 조직을 미세펄라이트로 형성시켜 강도와 연성을 증가시키는 열처리 생략형 PC 강선용 고장력선재의 제조방법에 관한 것이다. 이하 본 발명에 대하여 상세히 설명하기로 한다.In addition, chromium is dissolved in austenite phase during hot rolling to suppress pearlite precipitation during transformation, thereby minimizing the lamella spacing of precipitated pearlite, increasing strength and ductility, and chromium carbide precipitated in pearlite ferrite to control grain boundaries, thereby improving mechanical properties. The lower limit is 0.10wt%, so when chromium is added more than 0.3%, Si: 0.12-0.35%, Mn: 0.77-0.82%, P: 0.023% or less, S: 0.01% or less, Cr: 0.10 -0.30%, Ni: 0.005-0.02%, Total Al: 0.024% or less and the rest of the billet containing iron and fines were heated and hot-rolled to a temperature of 1150 ℃ -1200 ℃, and then rolled Cooling and winding up to 800 ± 10 ℃ directly by using temperature, injecting air in forced air cooling zone, and cooling the temperature of 5-10 ℃ / sec. Let the strength and Type heat treatment is omitted to increase the sex PC relates to a method for producing a high-strength wire rod gangseonyong. Hereinafter, the present invention will be described in detail.

머저 화학성분범위에 대하여 설명하면, 탄소는 0.98wt%이상이 되면 초석 세멘타이트(cementite)가 입계에 석출하여 신선성과 연성을 저하시키므로 상한선을 0.98%로 하였으며 PC 강선용으로 사용되는 소재의 적정강도를 확보하기 위해 하한선을 0.72wt%로 하였다. 규소는 소재 및 신선가공후 제품의 강도를 확보하기위해 하한선을 0.12wt%로 하였으며 규소량이 많아지면 최종제품의 연성이 저하되고 비금속개재물이 많아 신선 가공성에 악형향을 미치므로 연속냉각 변태곡선을 우측으로 이동시켜 신선가공과 연성을 악화시키는 베이나이트와 마르텐사이트가 형성되므로 상한선을 0.30%로 하였다.In the description of the chemical composition range, when carbon is more than 0.98 wt%, cementite cementite precipitates at the grain boundary and degrades freshness and ductility, so the upper limit is 0.98% and the appropriate strength of the material used for PC steel wire is determined. The lower limit was 0.72 wt% in order to ensure. Silicon has a lower limit of 0.12wt% in order to secure the strength of the product after material and fresh processing.Since the amount of silicon increases, the ductility of the final product decreases and there are many non-metallic inclusions, which adversely affects the workability. The upper limit was set to 0.30% because bainite and martensite were formed to deteriorate the freshness and ductility.

또한, Al 은 탈산효과를 부여하기위하여 첨가되는 원소로서 Total Al 이 0.024%이상 첨가되는 경우에는 많은 산화물계통 개재물을 형성하여 열간압연 및 신성공정등에서 크랙 및 단선의 발생 원인이 되므로 가능한한 낮은 것이 바림직하며 적어도 0.024%이하로 제한하여야 한다.In addition, Al is an element added to give a deoxidation effect, and when total Al is added in an amount of 0.024% or more, it forms a large number of oxide-based inclusions, which is a cause of cracking and disconnection during hot rolling and new process. Should be limited to at least 0.024%.

상기 Total Al 은 AlN 상태로 존재하는 Souble Al 과 Al2O3등의 산화물상태로 존재하는 Al 을 의미하는 것이다.The total Al means Al existing in an oxide state such as Souble Al and Al 2 O 3 present in the AlN state.

Ni은 강도개선효과를 부여하는 성분으로서 0.005%이하 첨가되는 경우에는 강도부여효과가 미약하고 0.02%이상 첨가 되는 경우에는 강도부여 효과는 있으나 가공경화가 심하여 신선시 단선등이 일어나 신선성을 해치므로 그 함량은 0.005%-0.02%가 바람직하다.Ni is a component that gives strength improvement effect. If it is added below 0.005%, the strength imparting effect is insignificant. If it is added more than 0.02%, Ni has strength effect. The content is preferably 0.005% -0.02%.

다음은 본 발명에서 소재의 제조방법에 대하여 설명한다.Next, a method of manufacturing a material in the present invention will be described.

빌레트를 1150-1200℃의 온도로 가열하고 연속압연기를 이용하여 압연을 실시하며 압연된 소재의 오스테나이트 결정립성장을 억제하기위해 물 분사에 의해 0.6-1.0초 이내로 800±10℃의 온도까지 급속냉각을 한다. 또한 급속냉각된 제품을 코일(coil)의 형태로 권취한후 연속적으로 움직이는 콘베어(conveyor)상에서 냉각속도 5-10℃/sec의 범위로 상온까지 냉각하여 제품을 생산한다.The billet is heated to a temperature of 1150-1200 ℃, rolled using a continuous rolling mill, and rapidly cooled to a temperature of 800 ± 10 ℃ within 0.6-1.0 seconds by water spraying to suppress the austenite grain growth of the rolled material. Do it. In addition, after winding the product rapidly cooled in the form of a coil (coil) to produce a product by cooling to a room temperature in the range of 5-10 ℃ / sec cooling rate on a continuously moving conveyor (conveyor).

본 발명에서 제조공정상 가장 중요한 의미를 가지는 급속냉각온도와 궈취후의 냉각속도범위설정 이유는 아래와 같다. 810℃이상의 온도로 냉각하며, 압연된 소재의 단면내에 오스테나이트(austenite)결정립이 부분적으로 불균일하고 결정립이 켜져 신선가공과 연성을 악화시키는 베이타이트와 말텐사이트가 생성되므로 상한의 온도를 810℃로 정하였고, 790℃이하의 온도로 냉각하면 오스테나이트 결정립이 작아져 경화능이 감소하여 사용 용도에 알맞은 강도를 얻을 수 없기 때문에 하한의 냉각온도를 790℃로 정하였다.In the present invention, the reason for the rapid cooling temperature having the most important meaning in the manufacturing process and the setting range of the cooling rate after agitation are as follows. It is cooled to a temperature above 810 ℃, and the upper limit temperature is increased to 810 ℃ because austenite grains are partially uneven in the cross section of the rolled material, and the grains are turned on, thereby producing badite and maltensite which deteriorate fresh processing and ductility. When cooling to a temperature of 790 ℃ or less, the austenite crystal grains are small, hardenability is reduced to obtain a strength suitable for the intended use, the cooling temperature of the lower limit was set to 790 ℃.

한편, 냉각속도 범위 설정이유는 냉각속도를 5℃/sec 이하로 하면 오스테나이트에서 펄라이트로 변태시 탄소의 확산이 어느 정도 일어나기 때문에 펄라이트 층상간격이 넓어져 강도와 연성이 저하되어 사용용도에 부적합하므로 하한의 냉각속도를 5℃/sec 를 정하였으며, 상온까지의 냉각속도가 10℃/sec 이상이되면 연속냉각곡선이 좌측으로 이동되어 신선가공과 연성을 악화시키는 저온 변태상인 베이나이트와 말텐사이트가 형성되므로 상한의 냉각속도를 10℃/sec 로 정하였다.On the other hand, the reason for setting the cooling rate range is that when the cooling rate is 5 ° C / sec or less, the diffusion of carbon occurs to some extent when the transformation from austenite to pearlite causes the pearlite layer spacing to be widened, leading to poor strength and ductility, which is not suitable for use. The cooling rate of the lower limit was set at 5 ℃ / sec, and when the cooling rate to room temperature is more than 10 ℃ / sec, the continuous cooling curve is shifted to the left to form bainite and maltensite, which are low-temperature transformations that deteriorate fresh processing and ductility. Therefore, the upper limit cooling rate was set to 10 ° C / sec.

다음에는 실시예를 기초로하여 본 발명의 작용효과를 구체적으로 설명한다.Next, the effects of the present invention will be described in detail with reference to Examples.

[실시예 1]Example 1

하기 표 1에 표시한 조성으로 비교강과 본 발명강을 지름 8mmø의 선제로 제조하였다.The comparative steel and the inventive steel were prepared with a wire of 8 mm diameter in the composition shown in Table 1 below.

이때의 사상 압연속도는 37m/sec 이고, 압연열에 의한 오스테나이트 결정립의 성장을 억제하기위해 800℃에서 권취하였으며 그 직후에 제1도에 나타난 스텔모아 (stelmor)설비를 이용하여 인라인 열처리를 행하였다. 이때 강의 냉각속도는 8℃/sec 로 하였다.At this time, the finishing rolling speed was 37 m / sec, and wound at 800 ° C. in order to suppress the growth of the austenite grains due to the heat of rolling. Immediately afterwards, inline heat treatment was performed using the Stelmor facility shown in FIG. . At this time, the cooling rate of the steel was 8 ° C / sec.

[표 1]TABLE 1

(단위 : wt%)(Unit: wt%)

Figure kpo00001
Figure kpo00001

표 2에 인라인 열처리에 의해 생산된 제품의 기계적성질과 광학현미경 및 전자현미경 조직 분석결과를 표시하였다.Table 2 shows the mechanical properties of the product produced by the in-line heat treatment and the results of the optical microscope and electron microscope structure analysis.

여기서 A, B, C 및 D는 표 1에 나타나있는 각각의 조성을 갖고, 인라인 열처리 한것이며, A', B,', C' 및 D'는 A, B, C 및 D의 각각의 조성을 갖고 550℃로 유지된 납욕에서 3분간 납욕처리한것이다.Where A, B, C and D have respective compositions shown in Table 1 and are inline heat treated, and A ', B,', C 'and D' have respective compositions of A, B, C and D and 550 The bath was treated for 3 minutes in a lead bath kept at ℃.

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

표 2에서 명백함과 같이, 인라인 열처리에 의해 생산한 본 발명 강 B, C, D의 경우는 납욕처리에 의해 생산된 비교강 (A'B'C'D')과 동일한 강도와 단면감면율을 보이고 있으며, 이러한 인장강도와 단면 감면율의 상승요인은 크롬첨가의 효과에 의해 오스테나이트에서 펄라이트와 페라이트로 변태시 변태시간을 지연하여 펄라이트 석출을 억제하여 그림 2의 전자현미경 사진에서 알 수 있듯이 펄라이트 충상간격의 미세화에 기인한다.As is apparent from Table 2, the steels B, C, and D of the present invention produced by in-line heat treatment have the same strength and sectional reduction ratio as those of the comparative steel (A'B'C'D ') produced by lead bath treatment. The increase in tensile strength and cross-sectional reduction rate is due to the effect of chromium addition, which delays the transformation time when transforming from austenite to pearlite and ferrite, thereby inhibiting pearlite precipitation. It is due to the miniaturization of the gap.

표 3은 본 발명강의 성품화 공정된 신선가공시 단선의 유무와 가공경화의 측정도인 인장강도변화를 나타낸 것으로 실험은 텅스텐 카바이트(WC)가 설치된 연속신선기를 이용하여 신선속도 40m/min 및 평균 감면량 20.3%로 냉간 신선하였으며 도표 3에서 알수 있는 바와같이 본 발명강은 통상적인 성품의 제조공정인 신선량 60%까지는 단선없이 가공되었고 성품의 인장강도는 비교재와 비교하여 10.9-16.5㎏/㎟상승하였고 이때의 가공경화율도 5.0-6.3㎏/㎟로서 양호한 결과를 보이고 있다.Table 3 shows the change in tensile strength, which is the measurement of the presence of disconnection and the degree of work hardening during the characterization process of the inventive steel. The experiment was performed using a continuous drawing machine equipped with tungsten carbide (WC) and the drawing speed was 40m / min. Cold drawn with 20.3% exemption. As can be seen from Table 3, the steel of the present invention was processed without disconnection up to 60% of the freshness, which is the manufacturing process of a typical product, and the tensile strength of the product was 10.9-16.5㎏ / 2 mm2 was increased and the work hardening rate was 5.0-6.3 kg / mm2, showing good results.

[1표 3]Table 1

Figure kpo00003
Figure kpo00003

Claims (1)

중량%, C : 0.72-0.98%, Si : 0.12-0.35%, Mn : 0.77-0.82%, P : 0.023%이하, S : 0.01%이하, Cr : 0.10-0.30%, Ni : 0.005-0.02%, Total Al : 0.024% 이하 및 나머지는 철과 분순물이 함유된 빌레트를 통상의 온도인 1150℃-1200℃로 가열 압연후 800±10℃의 온도까지 급냉, 권취한 후 냉각속도 5-10℃/sec로 상온까지 냉각하는 것을 특징으로 하는 열처리 생략형 PC 강선용 고장력선재의 제조방법.Weight%, C: 0.72-0.98%, Si: 0.12-0.35%, Mn: 0.77-0.82%, P: 0.023% or less, S: 0.01% or less, Cr: 0.10-0.30%, Ni: 0.005-0.02%, Total Al: 0.024% or less and the remainder of the billet containing iron and fines are heated and rolled to a temperature of 800 ± 10 ℃ after rolling and rolling to a normal temperature of 1150 ℃ -1200 ℃, and then the cooling rate is 5-10 ℃ / Method for producing a high-strength wire for heat treatment omitted PC steel wire, characterized in that cooling to room temperature in sec.
KR1019850010076A 1985-12-31 1985-12-31 Process for manufacturing of high tension wire rod for pc steel wire KR890002614B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019850010076A KR890002614B1 (en) 1985-12-31 1985-12-31 Process for manufacturing of high tension wire rod for pc steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019850010076A KR890002614B1 (en) 1985-12-31 1985-12-31 Process for manufacturing of high tension wire rod for pc steel wire

Publications (2)

Publication Number Publication Date
KR870006227A KR870006227A (en) 1987-07-10
KR890002614B1 true KR890002614B1 (en) 1989-07-20

Family

ID=19244592

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850010076A KR890002614B1 (en) 1985-12-31 1985-12-31 Process for manufacturing of high tension wire rod for pc steel wire

Country Status (1)

Country Link
KR (1) KR890002614B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238230A (en) * 2019-04-28 2019-09-17 江苏省沙钢钢铁研究院有限公司 A kind of production method of superhigh intensity diamond wire wire rod

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340498B1 (en) * 1997-09-18 2002-09-18 주식회사 포스코 A Method for Manufracturing a High Carbon Hard Steel Wire Rode Having Superior Anti-rust on its Surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238230A (en) * 2019-04-28 2019-09-17 江苏省沙钢钢铁研究院有限公司 A kind of production method of superhigh intensity diamond wire wire rod

Also Published As

Publication number Publication date
KR870006227A (en) 1987-07-10

Similar Documents

Publication Publication Date Title
US8168011B2 (en) High-strength steel wire excellent in ductility and method of manufacturing the same
CA1076463A (en) Producing rolled steel products
EP1069199B1 (en) High-fatigue-strength steel wire and production method therefor
JP3153618B2 (en) Manufacturing method of hypereutectoid steel wire
KR20010102307A (en) Direct patenting high strength wire rod and method for producing the same
JP2000119805A (en) Steel wire rod excellent in wire drawability
KR890002614B1 (en) Process for manufacturing of high tension wire rod for pc steel wire
JP2544867B2 (en) Manufacturing method of hyper-eutectoid steel wire
JP2004011002A (en) Element wire for drawing and wire
JPS5921369B2 (en) Manufacturing method for high-tensile, high-carbon steel wire with excellent wire drawability
JP2939770B2 (en) Method of manufacturing high strength bead wire
JPH03271329A (en) Manufacture of high strength steel wire
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
KR890002613B1 (en) Process for manufacturing of high tension wire rod
JP3043176B2 (en) Manufacturing method of high strength and high ductility wire
KR100256346B1 (en) The manufacturing method for wire drawing hypereutectoid wire rod
KR100435460B1 (en) A method for manufacturing steel wire for steel cord
KR100544644B1 (en) Method for manufacturing high carbon wire rod having superior strength
JPH08260046A (en) Production of high-carbon low alloy steel wire rod excellent in wiredrawability
JPH0233768B2 (en)
KR20010060758A (en) Method for manufacturing medium carbon wire rod containing high silicon without low tempreature structure
JP3176465B2 (en) Manufacturing method of hypereutectoid steel wire
JPH04289127A (en) Production of wire rod having high strength and high ductility
JPS6196030A (en) Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking
JPH11302743A (en) Production of high strength steel wire

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19990629

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee