KR100340498B1 - A Method for Manufracturing a High Carbon Hard Steel Wire Rode Having Superior Anti-rust on its Surface - Google Patents

A Method for Manufracturing a High Carbon Hard Steel Wire Rode Having Superior Anti-rust on its Surface Download PDF

Info

Publication number
KR100340498B1
KR100340498B1 KR1019970047592A KR19970047592A KR100340498B1 KR 100340498 B1 KR100340498 B1 KR 100340498B1 KR 1019970047592 A KR1019970047592 A KR 1019970047592A KR 19970047592 A KR19970047592 A KR 19970047592A KR 100340498 B1 KR100340498 B1 KR 100340498B1
Authority
KR
South Korea
Prior art keywords
wire rod
high carbon
wire
rust
scale
Prior art date
Application number
KR1019970047592A
Other languages
Korean (ko)
Other versions
KR19990025808A (en
Inventor
김기철
서일권
정효안
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019970047592A priority Critical patent/KR100340498B1/en
Publication of KR19990025808A publication Critical patent/KR19990025808A/en
Application granted granted Critical
Publication of KR100340498B1 publication Critical patent/KR100340498B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE: A manufacture method of a high carbon hard steel wire rod having superior anti-rust on its surface is provided to prevent exfoliation of secondary scale, thus prevent high carbon hard steel wire rod from rust. CONSTITUTION: The method for manufacturing a high carbon hard steel wire rod having superior anti-rust on its surface includes the steps of continuous casting a billet comprising C 0.60 to 0.90 wt.%, Si 0.10 to 0.40 wt.%, Mn 0.30 to 0.80 wt.%, sol Al 0.005 to 0.060 wt.%, a balance of Fe and incidental impurities; reheating the billet followed by wire rod rolling; and starting quenching process of the hot rolled wire rod from the temperature range of 750 to 800°C at a cooling rate of 10 to 15°C/sec.

Description

표면 녹발생이 저감되는 고탄소 경강 선재의 제조방법{A Method for Manufracturing a High Carbon Hard Steel Wire Rode Having Superior Anti-rust on its Surface}A method for manufracturing a high carbon hard steel wire rod having superior anti-rust on its surface

본 발명은 고탄소 경강선재의 제조방법에 관한 것으로서, 보다 상세하게는 고탄소 경강선재의 스케일비산을 억제하여 선재코일 이송 혹은 적치시 발생되는 표면의 재산화에 의한 녹발생을 저감하기 위한 고탄소 경강선재의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a high carbon steel wire rod, and more particularly, to suppress the scale scattering of the high carbon steel wire rod to reduce rust caused by reoxidation of the surface generated during wire transfer or loading. It relates to a manufacturing method.

일반적으로 고탄소 경강선재는 주조 또는 강편압연에 의해서 제조된 강편(billet)을 1000-1300℃로 재가열하여 열간 상태에서 롤에 의해 압연하고 물분사에 의해 냉각된후 코일 권취기에 의해 700-880℃로 권취된 코일이 콘베아(conveyer)에 의해 이동되면서 공기 송풍기가 가동되는 강제 냉각대를 거치며 급냉되는 선재제조공정을 통해 제조되며, 제조된 선재는 각각의 용도에서 필요로 하는 강도와 조직을 확보하게 된다.In general, high carbon steel wire rods are reheated to 1000-1300 ° C by heating or rolling the billet manufactured by casting or slab rolling, and then rolled by a roll in a hot state, cooled by water spray, and then heated to 700-880 ° C by a coil winder. The wound coil is moved by a conveyor and is manufactured through a wire rod manufacturing process where it is quenched through a forced cooling stand that is operated by an air blower. The manufactured wire is made to secure the strength and texture required for each application. do.

보통 선재제조공정 가운데 재가열 또는 선재압연시 발생되는 선재표면의 1차 산화스케일은 대부분 선재압연 과정에서 제거되지만, 공기 송풍기가 가동되는 냉각대에서 코일 부착되어 있던 2차스케일은 상기 냉각대에서의 현열에 의해 비산되어 환경공해는 물론 압연기기의 마모와 작업자들의 작업성이 저하되는 단점이 있다. 무엇보다도 상기 2차 스케일이 비산된 후 스케일이 탈락된 부위는 선재코일 운송중 혹은 적치시에 재산화에 의해 선재표면의 녹발생을 일으키는 원인이 된다. 선재표면의 재산화로 녹이 발생하게 되면, 최종수요가에서는 녹발생된 스케일을 제거하기 위해 기계적인 스케일 박리나 혹은 산세처리에 의한 스케일 박리를 실시하고는 있지만 기계적 스케일 박리는 상기 스케일 제거가 거의 불가능하고, 산세처리에 의한 스케일 박리 역시 제조비용 증가뿐만 아니라 환경공해를 유발하게 되는 단점이 있다. 또 상기 녹발생에 의한 선재의 표면은 그 거침정도가 불량하여 세선의 신선가공에 문제가 있다. 따라서, 세선을 위한 선재제조시 선재표면에 발생된 녹은 최종수요가에서 용이하게 제거되어야 함은 물론 근본적으로 선재 표면의 녹발생방지가 필요하다.Usually, the primary oxidation scale of the wire rod surface generated during reheating or wire rolling during wire rod manufacturing process is mostly removed during the wire rod rolling process, but the secondary scales that are coiled in the cooling zone where the air blower is operated are sensible heat in the cooling zone. It is scattered by the environmental pollution, as well as the disadvantages of wear of the rolling equipment and the workability of the workers is reduced. Above all, the site where the scale is dropped after the secondary scale is scattered may cause rusting of the wire surface by reoxidation during transport or loading of the wire. When rust occurs due to the reoxidation of the wire surface, mechanical scale peeling or mechanical peeling is performed to remove rusted scale at the final demand, but mechanical scale peeling is almost impossible to remove the scale. In addition, scale peeling by pickling treatment may also cause environmental pollution as well as an increase in manufacturing cost. In addition, the surface of the wire rod due to the rust generation is poor in the degree of roughness, there is a problem in the drawing processing of fine wire. Therefore, when manufacturing wire rods for thin wire, the rust generated on the wire rod surface should be easily removed from the final demand, and fundamentally, it is necessary to prevent rust generation on the wire rod surface.

이에 본 발명은 2차스케일 비산이 심한 고탄소 경강선재의 제조시 강성분 및 냉각조건을 적절히 제어하여 선재표면의 2차스케일의 비산을 방지하므로써 종래의 선재와 유사한 기계적 특성을 유지하면서도 표면 녹발생이 극히 저감되는 고탄소 경강선재의 제조방법을 제공함에 그 목적이 있다.Therefore, the present invention prevents the secondary scale from scattering on the surface of the wire rod by appropriately controlling the steel components and cooling conditions in the manufacture of high carbon hard wire rods with high secondary scale scattering, while maintaining surface mechanical properties similar to those of conventional wire rods. It is an object of the present invention to provide a method for manufacturing a high carbon hard steel wire which is extremely reduced.

도 1은 선재표면의 스케일 두께와 그 발생정도와의 상관성을 보이는 그래프1 is a graph showing the correlation between the thickness of the wire surface and the degree of occurrence thereof

도 2는 선재표면 스케일의 비산정도의 측정법을 설명하기 위한 모식도2 is a schematic diagram for explaining a method for measuring the degree of scattering of a wire rod surface scale.

상기 목적달성을 위한 본 발명은 고탄소 경강선재의 제조방법에 있어서, 중량%로, C:0.60-0.90%, Si: 0.10-0.40%, Mn: 0.30-0.80%, 가용성 Al: 0.005-0.060%, 및 잔부 Fe와 기타불가피한 불순물로 조성되는 강편을 연속주조한 다음, 상기 강편을 재가열하여 선재압연후, 압연선재를 750-800℃의 온도범위에서 냉각개시하여 초당 10-15℃의 속도로 급냉하여 구성되는 표면 녹발생이 저감되는 고탄소 경강선재의 제조방법에 관한 것이다.The present invention for achieving the above object in the manufacturing method of high carbon hard steel wire, in weight%, C: 0.60-0.90%, Si: 0.10-0.40%, Mn: 0.30-0.80%, Soluble Al: 0.005-0.060%, And continuously cast the steel pieces composed of the balance Fe and other unavoidable impurities, and then reheat the steel pieces to roll the wire rods, and then start cooling the rolled wire at a temperature range of 750-800 ° C. to quench them at a rate of 10-15 ° C. per second. The present invention relates to a method for producing a high carbon light steel wire rod is reduced surface rust generation.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

우선, 본 발명에 부합되는 대상강종은 인장강도가 약 90-120Kg/㎟ 범위인 고탄소 선재이다. 바람직한 예로서, 중량%로, 탄소 : 0.60-0.90%, Si: 0.10-0.40%, Mn: 0.30-0.80%, 가용성 Al: 0.005-0.006%를 포함한 강종을 들 수 있다.First, the subject steel grade in accordance with the present invention is a high carbon wire having a tensile strength in the range of about 90-120 Kg / mm 2. Preferred examples include steel grades including carbon: 0.60-0.90%, Si: 0.10-0.40%, Mn: 0.30-0.80%, and soluble Al: 0.005-0.006%.

상기 강중 탄소성분이 0.6%미만 또는, Si성분이 0.10%미만이거나 Mn성분이 0.3%미만의 경우 본 발명에서 요구하는 강도를 얻기 힘들고, 또한 탄소성분이 0.9%초과 또는 Si성분이 0.4%초과이거나 Mn성분이 0.8%초과의 경우 후술하는 본 발명의 핵심 구성요소가 되는 냉각개시온도로 적용시 본 발명에 적합치 않은 이상조직이 발생하고, 이에따라 선재로서 적합한 기계적 특성치를 얻기가 어렵다. 또한, 가용성 Al 성분은 강의 변태전후 온도변화에 따라 최종 조직의 크기를 조절하는 원소이며, 하한치 이하로 첨가시는 오스테나이트 크기를 증가시켜 잔류오스테나이트의 마르텐사이트 변태화 우려가 있으며, 상한치를 초과시에는 비금속개재물등이 강내부에 존재하여 신선가공성을 해치게된다.When the carbon component in the steel is less than 0.6%, the Si component is less than 0.10%, or the Mn component is less than 0.3%, it is difficult to obtain the strength required by the present invention, and the carbon component is more than 0.9% or the Si component is more than 0.4% When the Mn component is more than 0.8%, an abnormal structure that is not suitable for the present invention occurs when applied at a cooling start temperature, which is a key component of the present invention, which will be described later. Thus, it is difficult to obtain suitable mechanical properties as a wire rod. In addition, the soluble Al component is an element that controls the size of the final structure according to the temperature change before and after the transformation of the steel, and when added below the lower limit, there is a fear of martensite transformation of residual austenite by increasing the austenite size. Non-metallic inclusions are present in the steel to impair freshness.

한편, 상기한 조성을 갖는 고탄소강을 강편으로 연속주조된 다음, 재가열하여 선재압연이 이루어지며, 압연된 선재는 공냉을 위한 냉각대를 거치게 된다. 본 발명은 냉각대에서 형성된 2차스케일을 적절한 수준에서 잔존시키므로서 최종 선재의 표면 녹발생을 방지함에 특징이 있다. 이를 위해 본 발명자들은 2차스케일의 비산정도를 살펴보았다. 즉, 본 발명자들은 2차스케일의 비산은 스케일 자체의 균열(crack)과 관련이 있으며, 이때 2차스케일의 비산정도를 나타내는 2차스케일 균열의 분포는 2차스케일 두께별로 균열발생 분포가 도 1과 같이 다름을 발견하고 이에 착안하여 고탄소강의 2차스케일 두께분포를 조사하여 균열발생이 최저가 되는 2차 스케일두께 분포구간을 찾아 적정한 두께의 2차스케일 형성을 위한 최적 냉각조건을 도출하였다. 먼저, 도 1에 표시된 바와 같이, 2차스케일이 얇게 형성되는 구간에서 스케일 생성에 의한 열적팽창계수가 작아서 스케일내부에 균열의 발생이 작지만 점차 두께가 증가함에 따라 2차 스케일 두께에 따른 열팽창계수는 커져서 2차 스케일의 균열은 많아지고 냉각대에서의 현열로 2차스케일이 비산됨을 알 수 있다. 그러나, 2차스케일이 임계 두께이상으로 커지면 열적팽창에 의한 2차스케일 자체의 인성이 작게되어 그 균열은 감소하게되는 현상을 보이고 있다.On the other hand, the high carbon steel having the above composition is continuously cast into steel pieces, and then reheated to form a wire rod, and the rolled wire is subjected to a cooling stand for air cooling. The present invention is characterized by preventing the surface rust of the final wire rod while remaining in the secondary scale formed in the cooling zone at an appropriate level. To this end, the inventors looked at the degree of scattering of the secondary scale. That is, the inventors of the present invention, the scattering of the secondary scale is related to the crack of the scale itself, wherein the distribution of the secondary scale cracks indicating the degree of scattering of the secondary scale has a crack occurrence distribution according to the secondary scale thickness. As a result of the difference, the second scale thickness distribution of high carbon steel was investigated by finding the second scale thickness distribution section with the lowest crack occurrence to derive the optimum cooling condition for the formation of the second scale with the proper thickness. First, as shown in FIG. 1, in the section where the secondary scale is thin, the thermal expansion coefficient due to scale generation is small, so that the occurrence of cracks is small in the scale, but as the thickness gradually increases, the thermal expansion coefficient according to the secondary scale thickness is increased. It can be seen that the secondary scale cracks are increased and the secondary scale is scattered by the sensible heat in the cooling zone. However, when the secondary scale becomes larger than the critical thickness, the toughness of the secondary scale itself due to thermal expansion becomes small, and the crack is reduced.

따라서, 2차스케일에 균열이 최소로되는 두께는 약 5㎛이하로 유지함이 바람직하다는 것을 알 수 있다. 여기서, 종래의 선재를 비교해보면, 종래에는 압연된 선재를 약 830-850℃의 온도구간에서 냉각을 개시하였는데, 이때 종래 고탄소선재에 발생되는 2차 스케일의 두께는 약 8-12㎛정도였다.Therefore, it can be seen that the minimum thickness of the crack on the secondary scale is preferably kept below about 5㎛. Here, in comparison with the conventional wire rod, conventionally, the rolled wire rod was started to be cooled at a temperature range of about 830-850 ° C., where the thickness of the secondary scale generated in the conventional high carbon wire rod was about 8-12 μm. .

결국, 도 1에 근거하면 종래의 고탄소 선재의 경우 선재표면의 2차스케일은약 75% 이상의 균열이 생겨 매우 심하게 비산되었음을 짐작할 수 있다.As a result, based on FIG. 1, in the case of the conventional high carbon wire rod, the secondary scale of the wire rod surface may be estimated to be about 75% or more, resulting in very severe scattering.

그러나, 본 발명에서는 고탄소강의 제조시 압연된 선재의 2차스케일의 두께를 약 5㎛이하로 유지하기 위해 압연된 선재를 약 750-800℃로 하향하여 냉각을 개시하므로써 적정 2차스케일 두께를 얻고 냉각속도를 10-15℃/ sec로 제한하여 2차스케일의 비산량을 크게 억제하는 한편 선재에 적합한 퍼얼라이트(pearlite) 조직을 확보하였다. 이때, 도 1에 도시된 바와같이 본 발명에서 2차스케일의 두께가 큰쪽으로 유도하여 2차스케일의 균열을 저감하는 방법을 쓰지않은 이유는 결국 2차스케일 두께의 조절인자인 냉각개시온도를 높게하면 고탄소강의 특성상 세멘타이트(cementite) 변태영역에 선재가 장시간 체류하게 됨으로써 신선에 치명적인 조직인 입계세멘타이트가 발생하여 바람직하지 못하기 때문이다.However, in the present invention, in order to maintain the thickness of the secondary scale of the rolled wire rod in the manufacture of high carbon steel to about 5 μm or less, the rolled wire rod is lowered to about 750-800 ° C. to start cooling to obtain the appropriate secondary scale thickness. In addition, the cooling rate was limited to 10-15 ° C./sec to greatly suppress the scattering of the secondary scale and to obtain a pearlite structure suitable for the wire rod. At this time, the reason for not using the method of reducing the crack of the secondary scale by inducing the thickness of the secondary scale in the present invention as shown in FIG. 1 is to eventually increase the cooling start temperature, which is a control factor of the secondary scale thickness. If the wire rod stays in the cementite transformation region for a long time due to the characteristics of the high carbon steel, grain boundary cementite, which is a fatal structure of the fresh wire, is generated, which is undesirable.

본 발명에서 냉각개시온도를 750~800℃로 하는데, 그 이유는 냉각개시온도가 800℃이하가 되어야 목표로 하는 2차스케일 두께를 얻을 수 있으나 750℃미만의 경우에는 저온조직이 발생하여 신선이 어렵다.In the present invention, the cooling start temperature is 750 ~ 800 ℃, the reason is that the cooling start temperature should be less than 800 ℃ to obtain the target secondary thickness thickness, but less than 750 ℃ low temperature tissue is generated fresh it's difficult.

또한 냉각속도를 10-15℃/sec로 한정한 이유는 상기 냉각속도가 하한치로 벗어나면 세멘타이트가 발생하고 목표강도를 얻기가 어렵고 상한치를 벗어나면 마르텐사이트(martensite)가 발생하기 때문이다.In addition, the reason why the cooling rate is limited to 10-15 ° C./sec is because cementite is generated when the cooling rate is out of the lower limit, and it is difficult to obtain a target strength, and martensite is generated when it is out of the upper limit.

이와같은 냉각조건을 적용하면 고탄소 선재의 제조시 2차스케일의 비산량이 적어도 20% 이하로 유지되어 최종선재의 표면에는 녹발생이 약 10% 미만으로 유지될 수 있기 때문에 표면 녹제거를 위해 특별한 스케일 박리공정없이도 세선의 신선가공에 유효하다는 장점이 있다.When such cooling conditions are applied, the secondary scale scattering during the manufacture of high carbon wires is maintained at least 20%, so that rust generation on the surface of the final wire can be maintained at less than about 10%. There is an advantage that it is effective for the drawing processing of thin wire without the scale peeling process.

이하, 본 발명을 실시예를 통해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

강 성분 범위가 중량%로, C:0.60-0.90%, Si: 0.10-0.40%, Mn:0.30-0.80%, 및 가용성 Al:0.005-0.060%를 포함하여 조성되는 강을 전로에서 정련하고, 연속주조기를 통해 주조속도를 1.5-2.0m/min으로 주조하여 단면이 160mm인 직사각형의 강편을 제조하고, 이를 다시 1000-1300℃정도로 재가열한 다음, 직경 5.5-12.0mm 로 선재압연후 권취하고 냉각개시온도와 냉각속도를 표 1과 같이 달리하여 2차스케일의 비산정도를 측정하고, 2차스케일의 두께와 균열발생 정도를 비교하였다. 이때, 2차스케일의 측정법은 도 2와 같이 선재(1)를 제조직후, 일정길이 만큼 절취하고, 단위표면적에 잔존한 2차스케일(2)의 량을 측정하고, 비산된 표면(3)에 대한 비율을 조사하였다. 또한, 기계적인 특성치와 조직이 종래재와 유사한 수요가 가공특성이 있는지를 알기위해 각각 인장시험과 현미경조직시험을 거쳐 표1과 같은 품질특성치를 얻었다.The steel composition ranges in weight percent, including: C: 0.60-0.90%, Si: 0.10-0.40%, Mn: 0.30-0.80%, and soluble Al: 0.005-0.060% in the converter, and continuously By casting the casting speed to 1.5-2.0m / min through a casting machine to manufacture a rectangular steel piece with a cross section of 160mm, reheat it to about 1000-1300 ℃, and then wound up after rolling the wire to a diameter of 5.5-12.0mm to start cooling By varying the temperature and cooling rate as shown in Table 1, the scattering degree of the secondary scale was measured, and the thickness of the secondary scale and the degree of cracking were compared. At this time, the measurement method of the secondary scale, as shown in Fig. 2, immediately after manufacturing the wire rod 1 is cut by a predetermined length, the amount of the secondary scale (2) remaining in the unit surface area, and the scattered surface (3) The ratio was investigated. In addition, the mechanical characteristics and textures were similar to those of conventional materials, and the quality characteristics shown in Table 1 were obtained through the tensile test and the microscopic structure test, respectively, to see if they had the processing characteristics.

구분division 냉각개시온도(℃)Cooling start temperature (℃) 냉각속도(℃/sec)Cooling rate (℃ / sec) 인장강도(kg/㎟)Tensile Strength (kg / ㎡) 현미경조직Tissue 단위표면적당 스케일비산량(%)Scale scattering amount per unit surface area (%) 단위표면적당 녹발생율 (%)Rust generation rate per unit surface area (%) 종래재AConventional material A 850850 1515 95-11595-115 퍼얼라이트Pearlite 7575 3535 종래재BConventional material B 830830 1515 95-11595-115 퍼얼라이트Pearlite 7070 2525 발명재1Invention 1 750750 1010 94-11094-110 퍼얼라이트Pearlite 1010 22 발명재2Invention 2 750750 1515 98-12098-120 퍼얼라이트Pearlite 88 44 발명재3Invention 3 800800 1010 96-10096-100 퍼얼라이트Pearlite 22 00 종래재CConventional material C 810810 1717 97-10597-105 마르텐사이트Martensite 66 33

표 1에서 보는 바와같이, 2차 스케일의 비산을 감소하기 위한 본 발명조건으로 선재 제조결과 발명재(1-3)의 경우 수요가 가공 품질특성치는 종래재(A-C)와 유사하면서 선재제조시 2차스케일 비산이 크게 방지되고, 표면 녹발생이 효과적으로 가소되어 표면 품질특성치가 우수한 고탄소 경강선재를 제조할 수 있었다.As shown in Table 1, as a result of the present invention for reducing the scattering of the secondary scale, in the case of the wire rod manufacturing result invention material (1-3), the demand quality characteristics similar to the conventional material (AC), It was possible to manufacture high-carbon hard wire rods with excellent surface quality characteristics by preventing large scale scattering and effectively plasticizing surface rust.

상술한 바와같이, 본 발명은 고탄소 선재의 강성분 및 냉각조건을 적절히 제어하므로써, 2차스케일 비산이 심한 고탄소 경강 선재의 표면 녹 발생을 크게 저감시킬 수 있고, 이에 따라 선재의 표면 스케일 박리처리 없이도 신선가공정도가 향상되어 특히 세선의 신선가공에 매우 유용한 효과가 있다.As described above, the present invention can significantly reduce the surface rust generation of the high carbon light steel wire with high secondary scale scattering by appropriately controlling the steel component and cooling conditions of the high carbon wire rod, thereby peeling off the surface scale of the wire rod. The drawing processability is improved even without treatment, and thus, it is very useful for the drawing processing of thin wires.

Claims (2)

고탄소 경강선재의 제조방법에 있어서,In the manufacturing method of high carbon light steel wire, 중량%로, C: 0.60-0.90%, Si:0.10-0.40%, Mn:0.30-0.80%, 가용성 Al:0.005-0.060%, 및 잔부 Fe와 기타 불가피한 불순물로 조성되는 강편을 연속주조한 다음, 상기 강편을 재가열하여 선재압연후, 압연선재를 750-800℃의 온도범위에서 냉각개시하여 초당 10-15℃의 속도로 급냉하여 구성됨을 특징으로 하는 표면 녹발생이 저감되는 고탄소 경강선재의 제조방법.In weight percent, continuously cast steel pieces composed of C: 0.60-0.90%, Si: 0.10-0.40%, Mn: 0.30-0.80%, soluble Al: 0.005-0.060%, and balance Fe and other unavoidable impurities, After reheating the steel strip and rolling the wire, the rolled wire is started to cool in a temperature range of 750-800 ° C. and rapidly cooled at a speed of 10-15 ° C. to produce rust-reduced high carbon steel wire. . 제 1항에 있어서, 상기 급냉된 선재의 표면 녹 발생은 10% 미만으로 유지됨을 특징으로 하는 표면 녹발생이 저감되는 고탄소 경강선재의 제조방법.The method of claim 1, wherein the surface rust generation of the quenched wire is maintained at less than 10%.
KR1019970047592A 1997-09-18 1997-09-18 A Method for Manufracturing a High Carbon Hard Steel Wire Rode Having Superior Anti-rust on its Surface KR100340498B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970047592A KR100340498B1 (en) 1997-09-18 1997-09-18 A Method for Manufracturing a High Carbon Hard Steel Wire Rode Having Superior Anti-rust on its Surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970047592A KR100340498B1 (en) 1997-09-18 1997-09-18 A Method for Manufracturing a High Carbon Hard Steel Wire Rode Having Superior Anti-rust on its Surface

Publications (2)

Publication Number Publication Date
KR19990025808A KR19990025808A (en) 1999-04-06
KR100340498B1 true KR100340498B1 (en) 2002-09-18

Family

ID=37480260

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970047592A KR100340498B1 (en) 1997-09-18 1997-09-18 A Method for Manufracturing a High Carbon Hard Steel Wire Rode Having Superior Anti-rust on its Surface

Country Status (1)

Country Link
KR (1) KR100340498B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146224A (en) * 1985-12-20 1987-06-30 Kobe Steel Ltd Manufacture of high carbon steel wire having high toughness and tension and less variance in strength
KR870006206A (en) * 1985-12-18 1987-07-10 안병화 Manufacturing method of vanadium-added high tension wire of vacancy composition by controlled cooling
KR870006227A (en) * 1985-12-31 1987-07-10 안병화 Manufacturing method of high strength wire rod for PC without heat treatment with excellent mechanical properties

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870006206A (en) * 1985-12-18 1987-07-10 안병화 Manufacturing method of vanadium-added high tension wire of vacancy composition by controlled cooling
JPS62146224A (en) * 1985-12-20 1987-06-30 Kobe Steel Ltd Manufacture of high carbon steel wire having high toughness and tension and less variance in strength
KR870006227A (en) * 1985-12-31 1987-07-10 안병화 Manufacturing method of high strength wire rod for PC without heat treatment with excellent mechanical properties

Also Published As

Publication number Publication date
KR19990025808A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
KR100709846B1 (en) High carbon steel wire material having excellent wire drawability and manufacturing process thereof
KR101797383B1 (en) High strength hot rolled steel sheet having low deviation of mechanical property and excellent surface quality and method for manufacturing the same
JP4621133B2 (en) High carbon steel wire rod excellent in drawability and production method thereof
EP0723026B1 (en) Method of cold rolling grain-oriented silicon steel sheet having excellent and uniform magnetic characteristics along rolling direction of coil
JPS59140333A (en) Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability
TWI395822B (en) Cold rolled steel sheet and manufacturing method thereof
JP7258619B2 (en) Steel plate continuous annealing equipment and method for manufacturing annealed steel plate
KR100340498B1 (en) A Method for Manufracturing a High Carbon Hard Steel Wire Rode Having Superior Anti-rust on its Surface
US20220090223A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing the same
US11207721B2 (en) Roll for hot rolling process and method for manufacturing same
JP2016216809A (en) Low carbon steel sheet excellent in cold moldability and toughness after heat treatment and manufacturing method therefor
US11365460B2 (en) High-carbon cold rolled steel sheet and method for manufacturing same
KR102020387B1 (en) High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
KR100306138B1 (en) METHOD FOR MANUFACTURING Bi-S FREE CUTTING STEEL ROD WIRE WITH NO SURFACE DEFECTS
KR100340642B1 (en) Method for manufacturing the medium carbon steel rod with preventing scale scattering
KR100336852B1 (en) Method for manufacturing high strength hyper-eutectoid steel for elongation
JP4331646B2 (en) Rolled steel bar and manufacturing method thereof
KR100328024B1 (en) A manufacturing methof of 316 stainless wire rod
KR100435483B1 (en) A method for manufacturing wire rod for train rail creep with no surface defect and superior surface decarborization
KR100347575B1 (en) Step cooling method of high carbon wire rod for inhibiting generation of martensite
KR100285651B1 (en) Method for manufacturing bismuth-sulfur free cutting steel wire rods with beautiful appearance
WO2023132342A1 (en) Hot-rolled steel sheet and method for producing same
JP2000042604A (en) Manufacture of steel plate having excellent surface property
KR19990053146A (en) Manufacturing method of hot rolled steel sheet for high-strength steel pipe by thin slab direct rolling
KR100276306B1 (en) The manufacturing method for high carbon steel with excellent cold rolling workability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140528

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee