KR100347575B1 - Step cooling method of high carbon wire rod for inhibiting generation of martensite - Google Patents

Step cooling method of high carbon wire rod for inhibiting generation of martensite Download PDF

Info

Publication number
KR100347575B1
KR100347575B1 KR1019970075014A KR19970075014A KR100347575B1 KR 100347575 B1 KR100347575 B1 KR 100347575B1 KR 1019970075014 A KR1019970075014 A KR 1019970075014A KR 19970075014 A KR19970075014 A KR 19970075014A KR 100347575 B1 KR100347575 B1 KR 100347575B1
Authority
KR
South Korea
Prior art keywords
cooling
martensite
high carbon
wire rod
wire
Prior art date
Application number
KR1019970075014A
Other languages
Korean (ko)
Other versions
KR19990055107A (en
Inventor
김종필
송영준
이경수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019970075014A priority Critical patent/KR100347575B1/en
Publication of KR19990055107A publication Critical patent/KR19990055107A/en
Application granted granted Critical
Publication of KR100347575B1 publication Critical patent/KR100347575B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: Provided is a step cooling method of high carbon wire rod for inhibiting the generation of martensite irrespective of the amount of segregation in central part of wire rod by controlling cooling rate according to temperature. CONSTITUTION: In a manufacture method of high carbon steel comprising C 0.4 to 0.9 wt.%, Si 0.01 to 1.0 wt.%, Mn 0.1 to 1.0 wt.%, 0.03 wt.% or less of P, 0.03 wt.% or less of S, Al 0.01 to 1.0 wt.%, a balance of Fe and incidental impurities, the method is characterized in that the high carbon wire rod steel undergoes hot rolling after heating at higher than 1000 deg.C; cold rolling at a cooling rate of 15 to 25 deg.C/sec over the temperature range of 900 to 550°C and at a cooling rate of 5 to 10 deg.C/sec over the temperature range of 550 to 300°C for improving elongation and reducing martensite.

Description

마르텐사이트 발생을 억제하기 위한 고탄소선재의 단계냉각법Step cooling method of high carbon wire rod to suppress martensite generation

본 발명은 마르텐사이트 발생을 억제하기 위한 고탄소선재의 단계냉각법에 관한 것으로, 보다 상세하게는 냉각온도에 따라 냉각속도를 조절함으로써 압연용 선재의 중심부편석량에 관계없이 마르텐사이트의 발생을 효과적으로 방지할 수 있는 단계냉각법에 관한 것이다.The present invention relates to a step cooling method of a high carbon wire rod for suppressing the generation of martensite, and more particularly, by controlling the cooling rate according to the cooling temperature effectively prevents the generation of martensite regardless of the amount of segregation of the center of the wire rod for rolling. It relates to a step cooling method that can be done.

일반적으로 고탄소선재는 와이어로프, 경강선 등으로 가공되어 사용되는 선재로서, 선재의 품질에 있어서 가장 중요한 항목은 선재의 조직을 균일하게 확보하는 것이다.In general, high carbon wire is a wire rod that is processed into a wire rope, hard wire, etc., the most important item in the quality of the wire is to ensure the structure of the wire uniformly.

도 1은 고탄소선재의 열간압연공정을 나타낸 공정도이며 도 2는 고탄소선재의 신선 및 열처리가공공정을 도시한 공정도이다.1 is a process chart showing a hot rolling process of a high carbon wire, and FIG. 2 is a process chart showing a drawing and heat treatment process of a high carbon wire.

고탄소선재의 열간압연공정에서는 열간압연 전 1000-1250℃의 가열로에 선재를 체류시키면서 가열하여 선재의 온도를 높여준 후 선재를 열간압연하고 권취기에서 권취한 후 선재를 냉각하게 된다. 이때 냉각은 권취기를 통과하면서 바로 개시된다.In the hot rolling process of the high carbon wire rod, the wire rod is heated in the heating furnace of 1000-1250 ° C. before hot rolling to increase the temperature of the wire rod, and the wire rod is hot rolled and wound up in a winding machine to cool the wire rod. Cooling then begins immediately while passing through the winder.

열간압연한 후 냉각된 고탄소선재는 신선 및 열처리가공공정을 거치게 되는데, 선재의 신선 및 연선공정은 제조공정에서 가장 중요한 공정이다.After hot rolling, the cooled high carbon wire goes through a drawing and heat treatment process. The drawing and drawing process of the wire is the most important process in the manufacturing process.

고탄소선재의 신선 및 열처리가공공정에서는 열간압연되고 냉각된 선재를 신선하여 열처리한 후 다시 신선한다.In the drawing and heat treatment process of high carbon wire, hot rolled and cooled wire is drawn and heat treated and fresh again.

종래에도 열간압연후 선재를 냉각하기 위하여 단계냉각법을 사용하였다.Conventionally, step cooling is also used to cool the wire rod after hot rolling.

종래의 단계냉각법에서는 권취기를 통과한 선재가 진행하는 하부에 8개의 냉각기가 설치되어 냉풍을 송풍함으로써 상부를 통과하는 선재를 단계적으로 냉각시키게 된다.In the conventional step cooling method, eight coolers are installed at a lower portion of the wire rod passing through the winding machine to cool the wire rod passing through the upper stage by blowing cold air.

종래에는 고탄소선재의 제조시 코일상태의 선재를 냉각할 때 신선후 제품상태의 최대인장강도를 확보하기 위해 미세한 펄라이트 조직의 확보가 요구되므로 최대한 강냉을 적용한다.Conventionally, when cooling a wire in a coil state when manufacturing a high carbon wire, it is required to secure a fine pearlite structure in order to secure a maximum tensile strength of the product state after drawing, so that cold cooling is applied as much as possible.

일반적으로 권취온도 즉 냉각개시온도가 800-900℃일 때 900-550℃까지는 18℃/sec의 냉각속도로 냉각을 하고 550-300℃에서는 15℃/sec의 냉각속도로 냉각을 한다.In general, when the winding temperature, that is, the cooling start temperature is 800-900 ℃ to 900-550 ℃ to cool at a cooling rate of 18 ℃ / sec, and at 550-300 ℃ to cool at a cooling rate of 15 ℃ / sec.

종래의 방법에서와 같이 강냉을 적용할 때에는 중심부 편석대의 불순원소함량이 기지조직(matrix)보다 높아 편석 및 변태지연이 일어나고 잔류오스테나이트(austenite)가 저온에서 변태하여 난신선조직인 마르텐사이트(martensite)로 변화하게 된다.As in the conventional method, when the cooling is applied, the impurity element content of the central segregation zone is higher than that of the matrix, so segregation and transformation delay occur, and the residual austenite is transformed at low temperature, thereby causing martensite, which is an inferior renal tissue. )

냉각공정에서 경조직인 마르텐사이트가 발생하게 되면 신선공정에서 단선이 빈번하게 발생되는 문제점이 있다.When martensite, which is a hard tissue, is generated in the cooling process, disconnection occurs frequently in the drawing process.

상기의 문제점을 해결하기 위한 본 발명은 열간압연 후에 행하는 냉각조건을 제어함으로써 철강의 내부조직을 균일하게 하여 선재압연용 선재의 중심부 편석량에 관계없이 마르텐사이트의 발생을 방지할 수 있는 냉각법을 제공하는 것을 목적으로 한다.The present invention for solving the above problems is to provide a cooling method that can prevent the generation of martensite regardless of the amount of segregation of the center of the wire rod for wire uniformity by controlling the cooling conditions performed after hot rolling. It aims to do it.

도 1은 고탄소선재의 열연공정을 도시한 공정도,1 is a process chart showing a hot rolling process of a high carbon wire rod,

도 2는 고탄소선재의 신선 및 열처리가공공정을 도시한 공정도,2 is a process chart showing the drawing and heat treatment process of high carbon wire;

도 3은 선재의 단면위치별 항온변태곡선을 나타낸 그래프,3 is a graph showing the constant temperature transformation curve for each cross-sectional position of the wire rod,

도 4a는 열간압연한 발명강의 선재조직사진,Figure 4a is a wire rod texture picture of the invention steel hot rolled,

도 4b는 열간압연한 비교강의 선재조직사진.Figure 4b is a photograph of the wire structure of the hot rolled comparative steel.

상기의 목적을 달성하기 위한 본 발명은, 중량%로 C:0.4-0.9%, Si:0.01-1.0%, Mn:0.1-1.0%, P:0.03%이하, S:0.03%이하, Al:0.01-1.0%를 함유하고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된 고탄소강을 가공함에 있어서, 상기 고탄소강을 1000℃이상으로 가열한 후 열간선재압연을 실시하고, 압연 후 냉각시 900-550℃에서는 15-25℃/sec의 속도로 냉각하고, 550-300℃에서는 5-10℃/sec의 속도로 냉각함으로써, 신선가공성을 향상시키고 중심부의 마르텐사이트 발생을 최소화하는 것을 특징으로 한다.The present invention for achieving the above object, by weight% C: 0.4-0.9%, Si: 0.01-1.0%, Mn: 0.1-1.0%, P: 0.03% or less, S: 0.03% or less, Al: 0.01 In processing high carbon steels containing -1.0% and consisting of residual Fe and other inevitable impurities, the high carbon steels are heated to 1000 ° C. or higher, followed by hot wire re-rolling, and cooling after rolling to 900-550 By cooling at a rate of 15-25 ℃ / sec at ℃, and at a rate of 5-10 ℃ / sec at 550-300 ℃, it is characterized in that it improves the fresh workability and minimize the generation of martensite in the center.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 중량%로 C:0.4-0.9%, Si:0.01-1.0%, Mn:0.1-1.0%, P:0.03%이하,S:0.03%이하, Al:0.01-1.0%를 함유하고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된 공지의 고탄소강을 가공하는 방법에 관한 것이다.The present invention contains C: 0.4-0.9% by weight, Si: 0.01-1.0%, Mn: 0.1-1.0%, P: 0.03% or less, S: 0.03% or less, Al: 0.01-1.0% and the balance Fe And a known high carbon steel composed of other inevitably contained impurities.

즉, 상기와 같은 성분으로 된 고탄소강을 열간압연 후 선재의 냉각시 냉각개시온도인 권취온도를 800-900℃범위로 유지하고, 선재냉각시 펄라이트(pearlite)변태온도구역인 900-550℃까지는 15-25℃/sec의 속도로 냉각하고, 펄라이트변태온도구역 이후인 550-300℃까지는 5-10℃/sec의 냉각속도를 적용하는데, 그 이유는 다음과 같다.That is, after hot-rolling high carbon steel composed of the above components, the winding temperature, which is the cooling start temperature when the wire is cooled, is maintained in the range of 800-900 ° C., and the temperature of the pearlite transformation temperature zone is 900-550 ° C. when the wire is cooled. Cooling is performed at a rate of 15-25 ° C./sec, and a cooling rate of 5-10 ° C./sec is applied to 550-300 ° C. after the pearlite transformation temperature zone, for the following reasons.

선재의 냉각개시온도를 900℃가 넘는 고온으로 하는 경우에는 입계 시멘타이트(cementite)가 발생할 우려가 있고, 800℃미만의 저온에서 냉각을 개시할 때에는 과다한 변태구동력으로 인해 마르텐사이트 조직이 발생하는 문제점이 있다.If the cooling start temperature of the wire is set to a high temperature of more than 900 ℃, there is a fear of grain boundary cementite, and when starting cooling at a low temperature below 800 ℃, martensite structure occurs due to excessive transformation driving force have.

따라서 선재의 냉각개시온도는 800-900℃범위로 유지하는 것이 입계 시멘타이트의 발생을 최대한 방지하고 마르텐사이트 조직의 발생을 방지하는데 있어서 바람직하다.Therefore, it is preferable to maintain the cooling start temperature of the wire rod in the range of 800-900 ° C. to prevent the generation of grain boundary cementite and to prevent the formation of martensite structure.

냉각속도에 있어서 변태전 온도영역인 900-550℃에서 25℃/sec보다 높은 냉각속도로 냉각하는 경우에는 후공정에서 신선이 불가능한 마르텐사이트 경조직이 기지 조직까지 발생하는 문제점이 있다. 반면, 15℃/sec보다 낮은 냉각속도로 냉각하는 경우에는, 시멘타이트 두께가 두꺼은 펄라이트가 발생되어 신선성을 저해하는 요인이 된다.When cooling at a cooling rate higher than 25 ℃ / sec in the temperature range of 900-550 ℃ before transformation in the cooling rate there is a problem that the martensite hard tissue, which cannot be drawn in the post-process to the base structure. On the other hand, in the case of cooling at a cooling rate lower than 15 ° C / sec, pearlite having a thick cementite thickness is generated, which is a factor that hinders freshness.

한편, 변태후 온도영역인 550~300℃에서 10℃/sec보다 높은 냉각속도로 냉각하는 경우에는, 급속냉각이 되어 마르텐사이트 또는 베이나이트 등의 경조적이 발생하는 문제점이 있다. 반면, 5℃/sec미만의 냉각속도로 선재를 냉각하는 경우 펄라이트 조직내 시멘타이트의 두께가 과도하게 두꺼워져 신선성을 해치게 되며 단선이 발생하게 되는 문제점이 있다.On the other hand, in the case of cooling at a cooling rate higher than 10 ° C / sec in the temperature range of 550 ~ 300 ° C after transformation, there is a problem that the high cooling occurs, such as martensite or bainite. On the other hand, when the wire is cooled at a cooling rate of less than 5 ° C / sec, the thickness of cementite in the pearlite structure is excessively thick, which impairs the freshness and causes disconnection.

따라서 900-550℃에서는 15-25℃/sec의 냉각속도로 냉각하고 550-300℃에서는 5-10℃/sec의 냉각속도로 냉각하는 것이 마르텐사이트의 발생 및 펄라이트 조직내 시멘타이트의 두께가 과도하게 두꺼워지는 문제점을 해결할 수 있으므로 바람직하다.Therefore, cooling at 15-25 ° C / sec at 900-550 ° C and 5-10 ° C / sec at 550-300 ° C results in excessive martensite generation and excessive cementite thickness in the pearlite tissue. It is preferable because the problem of thickening can be solved.

또한 강의 펄라이트변태온도영역까지는 15-25℃/sec의 냉각속도로 급냉을 실시함으로써 펄라이트 조직내 라멜라의 간격을 좁혀 경강선재에 적정한 인장강도를 확보하고, 펄라이트변태온도영역이후에는 5-10℃/sec의 서냉을 실시하여 중심부의 미변태오스테나이트가 펄라이트화하도록 유도한다.In addition, by quenching at the cooling rate of 15-25 ℃ / sec to the pearlite transformation temperature region of steel, the gap between lamellae in the pearlite structure is narrowed to secure the tensile strength suitable for hard steel wire, and 5-10 ℃ / after the pearlite transformation temperature region. The slow cooling of sec is performed to induce untransformed austenite in the center to perlite.

도 3은 종래의 냉각법으로 냉각한 경우와 본 발명의 냉각법으로 냉각한 경우의 선재의 단면위치별 항온변태곡선을비교하여 나타낸 것이다.3 shows a comparison of the constant temperature transformation curves of the cross sections of wire rods when they are cooled by the conventional cooling method and when they are cooled by the cooling method of the present invention.

종래의 냉각법으로 냉각한 경우에는 전체 냉각과정동안 거의 동일한 냉각속도로 냉각됨으로써 마르텐사이트 조직이 많이 발생하였고, 특히 중심 편석부에서 강냉에 의한 마르텐사이트 조직의 발생이 많았다.In the case of cooling by the conventional cooling method, the martensite structure is generated by cooling at almost the same cooling rate during the entire cooling process, and in particular, martensite structure is generated by the strong cooling in the central segregation part.

반면 본 발명의 냉각법에서는 초기에는 급냉을 함으로써 마르텐사이트의 발생을 억제하였고, 중심 편석부가 냉각되는 단계에서는 서냉을 함으로써 중심 편석부에서의 마르텐사이트 조직의 발생을 억제하여 중심부에 펄라이트 조직이 많이 발생하였다.On the other hand, in the cooling method of the present invention, the occurrence of martensite is suppressed by quenching in the early stage, and the martensite structure is suppressed in the central segregation portion by slow cooling in the step of cooling the central segregation portion, so that a large number of pearlite structures are generated in the center portion. It was.

따라서 종래의 냉각법에 비하여 본 발명의 냉각법이 마르텐사이트의 발생억제에 효과적임을 알 수 있다.Therefore, it can be seen that the cooling method of the present invention is more effective in suppressing the generation of martensite than the conventional cooling method.

이하 실시예를 통해 본발명을 보다 구체적으로 설명한다.The present invention will be described in more detail with reference to the following Examples.

< 실시예 ><Example>

하기 표 1과 같은 조성을 갖는 강을 단면부 치수가 160mm×160mm인 강편으로 제조하였다.Steel having a composition as shown in Table 1 was prepared as steel sections having a cross-sectional dimension of 160 mm × 160 mm.

Figure pat00001
Figure pat00001

상기 표 1과 같은 조성을 갖는 비교강 1 내지 비교강 2와 발명강 1 내지 발명강 2를 제조한 후 하기 표 2와 같은 조건으로 강을 가열한 후 선재압연을 실시하고 냉각하였다.After preparing Comparative Steel 1 to Comparative Steel 2 and Invented Steel 1 to Invented Steel 2 having the composition shown in Table 1, the steel was heated under the conditions as shown in Table 2, followed by wire rod rolling and cooling.

Figure pat00002
Figure pat00002

상기 표 2와 같은 조건으로 선재압연을 실시한 후 비교강과 발명강의 조직 및 기계적 성질을 측정하여 그 결과를 하기 표 3에 나타내었다.After the wire was rolled under the conditions as shown in Table 2, the structure and mechanical properties of the comparative steel and the inventive steel were measured, and the results are shown in Table 3 below.

Figure pat00003
Figure pat00003

상기 표 3의 결과에서 알 수 있듯이 비교강 1의 경우 난신선조직인 마르텐사이트 발생면적비가 5%임에 비해 발명강 1내지 발명강 2와 비교강 2의 경우는 0%로 마르텐사이트가 발생하지 않았다.As can be seen from the results of Table 3, in the case of Comparative Steel 1, the martensite generation area ratio, which is an inferior renal tissue, was 5%, whereas in the Inventive Steel 1 to Inventive Steel 2 and Comparative Steel 2, 0% of martensite did not occur. .

인장강도에 있어서는 비교강 1 내지 비교강 2의 인장강도가 114kg/mm2임에 비해 발명강 1 내지 발명강 2의 인장강도는 115-117kg/mm2로, 발명강들의 인장강도는 비교강들의 인장강도보다 높았다.In terms of tensile strength, the tensile strength of the inventive steels 1 to 2 is 115-117 kg / mm 2 , whereas the tensile strength of the comparative steels 1 to 2 is 114 kg / mm 2 . Higher than tensile strength.

펄라이트 발생면적비의 경우는 비교강 1과 비교강 2가 10%임에 비해 발명강 1이 5%, 발명강 2가 8%로 낮았다.In the case of pearlite generation area ratio, Comparative Steel 1 and Comparative Steel 2 were 10%, while Inventive Steel 1 was 5% and Inventive Steel 2 was 8%.

도 4a와 도 4b는 열간압연한 비교강과 발명강의 선재조직사진을 나타낸 것이다.Figures 4a and 4b shows a picture of the wire structure of the hot rolled comparative steel and the inventive steel.

발명강의 경우 경조직인 마르텐사이트가 발생하지 않아 조직이 균일하나 비교강의 경우에는 면적의 5%에 마르텐사이트가 발생하여 조직이 균일하지 않음을 알 수 있다.In the case of the inventive steel, the martensite, which is a hard tissue, does not occur, but the structure is uniform, but in the case of the comparative steel, martensite is generated in 5% of the area, and thus the tissue is not uniform.

상기와 같은 본 발명의 방법으로 냉각하여 제조한 고탄소선재는 난신선조직인 마르텐사이트가 발생하지 않고 선재냉각시 펄라이트 조직내 시멘타이트의 두께가 두꺼워지는 것을 방지하여 마르텐사이트 및 펄라이트 조직내 두꺼운 시멘타이트에 의해 신선시 단선이 발생하는 문제점을 해결할 수 있었다.The high carbon wire produced by cooling according to the method of the present invention does not generate martensite, which is an insulated wire structure, and prevents thickening of cementite in the pearlite tissue during cooling of the wire. It was able to solve the problem of disconnection when drawing.

또한 펄라이트 조직내 라멜라 간격을 좁혀 경강선재에 적정한 인장강도를 확보하는 효과가 있다.In addition, the lamellar spacing in the pearlite structure is narrowed to secure an appropriate tensile strength for hard wire.

Claims (1)

중량%로 C:0.4-0.9%, Si:0.01-1.0%, Mn:0.1-1.0%, P:0.03%이하, S:0.03%이하, Al:0.01-1.0%를 함유하고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된 고탄소강을 가공함에 있어서, 상기 고탄소강을 1000℃이상으로 가열한 후 열간선재압연을 실시하고, 압연 후 냉각시 900-550℃에서는 15-25℃/sec의 속도로 냉각하고, 550-300℃에서는 5-10℃/sec의 속도로 냉각함으로써, 신선가공성을 향상시키고 중심부의 마르텐사이트 발생을 최소화하는 것을 특징으로 하는 마르텐사이트 발생을 억제하기 위한 고탄소선재의 단계냉각법.% By weight C: 0.4-0.9%, Si: 0.01-1.0%, Mn: 0.1-1.0%, P: 0.03% or less, S: 0.03% or less, Al: 0.01-1.0%, balance Fe and other unavoidable In processing high carbon steel composed of impurity, the hot carbon steel is heated to 1000 ° C or higher, and hot wire rolling is carried out, and after rolling, cooling is performed at a speed of 15-25 ° C / sec at 900-550 ° C. By cooling and cooling at a rate of 5-10 ° C./sec at 550-300 ° C., stepwise cooling method of high carbon wire rod to suppress martensite generation, which improves fresh workability and minimizes martensite generation at the center. .
KR1019970075014A 1997-12-27 1997-12-27 Step cooling method of high carbon wire rod for inhibiting generation of martensite KR100347575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970075014A KR100347575B1 (en) 1997-12-27 1997-12-27 Step cooling method of high carbon wire rod for inhibiting generation of martensite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970075014A KR100347575B1 (en) 1997-12-27 1997-12-27 Step cooling method of high carbon wire rod for inhibiting generation of martensite

Publications (2)

Publication Number Publication Date
KR19990055107A KR19990055107A (en) 1999-07-15
KR100347575B1 true KR100347575B1 (en) 2002-10-25

Family

ID=37488775

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970075014A KR100347575B1 (en) 1997-12-27 1997-12-27 Step cooling method of high carbon wire rod for inhibiting generation of martensite

Country Status (1)

Country Link
KR (1) KR100347575B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102125275B1 (en) * 2018-10-15 2020-06-23 주식회사 포스코 High cabon steel wire having excellent mechanical descaling property and method for manufacturing the same
KR102223272B1 (en) * 2018-12-19 2021-03-08 주식회사 포스코 High strength flexible steel wire with excellent fatigue properties and manufacturing method thereof, manufacturing method of high carbon steel wire rod for flexible steel wire
KR102415307B1 (en) * 2020-12-15 2022-07-01 주식회사 포스코 High Strength Hypoeutectoid Steel Wire and method for Manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860008812A (en) * 1985-05-14 1986-12-18 가부시끼가이샤 고오베 세이꼬오쇼 High strength, high toughness steel bars, rods and wires and manufacturing method thereof
JPS6362823A (en) * 1986-09-01 1988-03-19 Kobe Steel Ltd Production of directly heat-treated high-carbon steel wire rod
JPH08260046A (en) * 1995-03-22 1996-10-08 Nippon Steel Corp Production of high-carbon low alloy steel wire rod excellent in wiredrawability
KR100256346B1 (en) * 1995-12-19 2000-05-15 이구택 The manufacturing method for wire drawing hypereutectoid wire rod

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860008812A (en) * 1985-05-14 1986-12-18 가부시끼가이샤 고오베 세이꼬오쇼 High strength, high toughness steel bars, rods and wires and manufacturing method thereof
JPS6362823A (en) * 1986-09-01 1988-03-19 Kobe Steel Ltd Production of directly heat-treated high-carbon steel wire rod
JPH08260046A (en) * 1995-03-22 1996-10-08 Nippon Steel Corp Production of high-carbon low alloy steel wire rod excellent in wiredrawability
KR100256346B1 (en) * 1995-12-19 2000-05-15 이구택 The manufacturing method for wire drawing hypereutectoid wire rod

Also Published As

Publication number Publication date
KR19990055107A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
CA1076463A (en) Producing rolled steel products
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JPH0713257B2 (en) Method for manufacturing soft wire without as-rolled surface abnormal phase
US4981531A (en) Process for producing cold rolled steel sheets having excellent press formability and ageing property
KR100347575B1 (en) Step cooling method of high carbon wire rod for inhibiting generation of martensite
KR101342759B1 (en) Method for manufacturing steel sheet for flux cord wire using batch annealing furnace heat treatment
US4116729A (en) Method for treating continuously cast steel slabs
JPS60114517A (en) Production of steel wire rod which permits omission of soft annealing treatment
JP3950682B2 (en) Manufacturing method of hot rolled wire rod for bearing
JP3516747B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing at room temperature with excellent material uniformity and surface quality in the coil longitudinal direction
KR100478088B1 (en) A method for manufacturing spring steel without ferrite decaburization
US5658399A (en) Bainite wire rod and wire for drawing and methods of producing the same
KR20000031083A (en) Process for producing low carbon wire rod for cold rolling which has excellent scale property
EP3553197A1 (en) High strength steel wire having excellent corrosion resistance and method for manufacturing same
KR100544644B1 (en) Method for manufacturing high carbon wire rod having superior strength
JPH058256B2 (en)
KR100340546B1 (en) A method of manufacturing wire rods for preventing martensite formation in segregation zone
KR100276306B1 (en) The manufacturing method for high carbon steel with excellent cold rolling workability
KR940007371B1 (en) Method of manufacturing steel rod with automobil spring
JP2804278B2 (en) Direct softening wire rod manufacturing method
KR100328079B1 (en) A method of manufacturing mild steel wire rods
JPH0617192A (en) Bainitic wire rod or steel wire for wire drawing and manufacture therefor
JP2579863B2 (en) Manufacturing method of ultra-high silicon electrical steel sheet
KR100554748B1 (en) Method for manufacturing wire rods having superior strength for drawing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080701

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee