KR19990055107A - Step cooling method of high carbon wire to suppress martensite generation - Google Patents

Step cooling method of high carbon wire to suppress martensite generation Download PDF

Info

Publication number
KR19990055107A
KR19990055107A KR1019970075014A KR19970075014A KR19990055107A KR 19990055107 A KR19990055107 A KR 19990055107A KR 1019970075014 A KR1019970075014 A KR 1019970075014A KR 19970075014 A KR19970075014 A KR 19970075014A KR 19990055107 A KR19990055107 A KR 19990055107A
Authority
KR
South Korea
Prior art keywords
cooling
wire
martensite
sec
steel
Prior art date
Application number
KR1019970075014A
Other languages
Korean (ko)
Other versions
KR100347575B1 (en
Inventor
김종필
송영준
이경수
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970075014A priority Critical patent/KR100347575B1/en
Publication of KR19990055107A publication Critical patent/KR19990055107A/en
Application granted granted Critical
Publication of KR100347575B1 publication Critical patent/KR100347575B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 중량%로 C:0.4-0.9%, Si:0.01-1.0%, Mn:0.1-1.0%, P:0.03%이하, S:0.03%이하, Al:0.01-1.0%를 함유하고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된 고탄소강을 1000℃이상으로 가열한 후 열간선재압연을 실시하고 압연후 900-550℃에서는 15-25℃/sec의 속도로 냉각하고 550-300℃에서는 5-10℃/sec의 속도로 냉각함으로써 신선가공성을 향상시키고 중심부의 마르텐사이트발생을 최소화하는 것을 특징으로 하는 마르텐사이트발생을 억제하기 위한 고탄소선재의 단계냉각법에 관한 것으로, 난신선조직인 마르텐사이트가 발생하지 않고 선재냉각시 펄라이트조직내 시멘타이트의 두께가 두꺼워지는 것을 방지하여 마르텐사이트 및 펄라이트조직내 두꺼운 시멘타이트에 의해 신선시 단선이 발생하는 문제점을 해결할 수 있고 펄라이트조직내 라멜라간격을 좁혀 경강선재에 적정한 인장강도를 확보하는 효과가 있다.The present invention contains C: 0.4-0.9%, Si: 0.01-1.0%, Mn: 0.1-1.0%, P: 0.03% or less, S: 0.03% or less, Al: 0.01-1.0% by weight, and the balance Fe And high-carbon steels composed of impurities, which are inevitably contained, to be heated to at least 1000 ° C, followed by hot wire rolling. After rolling, cooling is performed at a speed of 15-25 ° C / sec at 900-550 ° C and 5 at 550-300 ° C. The cooling step of -10 ℃ / sec to improve the workability and minimize the martensite generation in the center of the high-carbon wire step cooling method for suppressing the martensite generation, martensite is an inferior wire structure It can prevent the thickening of cementite in pearlite tissue during wire rod cooling without occurrence, and it can solve the problem of disconnection when drawing by martensite and thick cementite in pearlite tissue and narrow the lamellar spacing in pearlite tissue. It is effective to secure a proper tensile strength for steel wire.

Description

마르텐사이트발생을 억제하기 위한 고탄소선재의 단계냉각법Step cooling method of high carbon wire to suppress martensite generation

본 발명은 마르텐사이트발생을 억제하기 위한 고탄소선재의 단계냉각법에 관한 것으로, 보다 상세하게는 냉각온도에 따라 냉각속도를 조절함으로써 압연용 선재의 중심부편석량에 관계없이 마르텐사이트의 발생을 효과적으로 방지할 수 있는 단계냉각법에 관한 것이다.The present invention relates to a step cooling method of a high carbon wire rod for suppressing the generation of martensite, more specifically, by controlling the cooling rate according to the cooling temperature effectively prevents the generation of martensite regardless of the amount of segregation of the center of the wire rod for rolling It relates to a step cooling method that can be done.

일반적으로 고탄소선재는 와이어로프, 경강선 등으로 가공되어 사용되는 선재로서, 선재의 품질에 있어서 가장 중요한 항목은 선재의 조직을 균일하게 확보하는 것이다.In general, high carbon wire is a wire rod that is processed into a wire rope, hard wire, etc., the most important item in the quality of the wire is to ensure the structure of the wire uniformly.

도 1은 고탄소선재의 열간압연공정을 나타낸 공정도이며 도 2는 고탄소선재의 신선 및 열처리가공공정을 도시한 공정도이다.1 is a process chart showing a hot rolling process of a high carbon wire, and FIG. 2 is a process chart showing a drawing and heat treatment process of a high carbon wire.

고탄소선재의 열간압연공정에서는 열간압연전 1000-1250℃의 가열로에 선재를 체류시키면서 가열하여 선재의 온도를 높여준 후 선재를 열간압연하고 권취기에서 권취한 후 선재를 냉각하게 된다. 이때 냉각은 권취기를 통과하면서 바로 개시된다.In the hot rolling process of high carbon wire rods, the wire rods are heated in a heating furnace at 1000-1250 ° C. before hot rolling to increase the temperature of the wire rods. Then, the wire rods are hot rolled and wound in a winding machine to cool the wire rods. Cooling then begins immediately while passing through the winder.

열간압연한 후 냉각된 고탄소선재는 신선 및 열처리가공공정을 거치게 되는데, 선재의 신선 및 연선공정은 제조공정에서 가장 중요한 공정이다.After hot rolling, the cooled high carbon wire goes through a drawing and heat treatment process. The drawing and drawing process of the wire is the most important process in the manufacturing process.

고탄소선재의 신선 및 열처리가공공정에서는 열간압연되고 냉각된 선재를 신선하여 열처리한 후 다시 신선한다.In the drawing and heat treatment process of high carbon wire, hot rolled and cooled wire is drawn and heat treated and fresh again.

종래에도 열간압연후 선재를 냉각하기 위하여 단계냉각법을 사용하였다.Conventionally, step cooling is also used to cool the wire rod after hot rolling.

종래의 단계냉각법에서는 권취기를 통과한 선재가 진행하는 하부에 8개의 냉각기가 설치되어 냉풍을 송풍함으로써 상부를 통과하는 선재를 단계적으로 냉각시키게 된다.In the conventional step cooling method, eight coolers are installed at a lower portion of the wire rod passing through the winding machine to cool the wire rod passing through the upper stage by blowing cold air.

종래에는 고탄소선재의 제조시 코일상태의 선재를 냉각할 때 신선후 제품상태의 최대인장강도를 확보하기 위해 미세한 펄라이트조직의 확보가 요구되므로 최대한 강냉을 적용한다.Conventionally, when cooling a wire in a coil state when manufacturing a high carbon wire, it is required to secure a fine pearlite structure in order to secure a maximum tensile strength of the product state after drawing, so that cold cooling is applied as much as possible.

일반적으로 권취온도 즉 냉각개시온도가 800-900℃일 때 900-550℃까지는 18℃/sec의 냉각속도로 냉각을 하고 550-300℃에서는 15℃/sec의 냉각속도로 냉각을 한다.In general, when the winding temperature, that is, the cooling start temperature is 800-900 ℃ to 900-550 ℃ to cool at a cooling rate of 18 ℃ / sec, and at 550-300 ℃ to cool at a cooling rate of 15 ℃ / sec.

종래의 방법에서와 같이 강냉을 적용할 때에는 중심부편석대의 불순원소함량이 기지조직(matrix)보다 높아 편석 및 변태지연이 일어나고 잔류오스테나이트(austenite)가 저온에서 변태하여 난신선조직인 마르텐사이트(martensite)로 변화하게 된다.As in the conventional method, when cold cooling is applied, the impurity element content of the central segregation zone is higher than that of the matrix, resulting in segregation and transformation delay, and residual austenite is transformed at low temperature so that martensite, which is an inferior tissue, is martensite. )

냉각공정에서 경조직인 마르텐사이트가 발생하게 되면 신선공정에서 단선이 빈번하게 발생되는 문제점이 있다.When martensite, which is a hard tissue, is generated in the cooling process, disconnection occurs frequently in the drawing process.

상기의 문제점을 해결하기 위한 본 발명은 열간압연 후에 행하는 냉각조건을 제어함으로써 철강의 내부조직을 균일하게 하여 선재압연용 선재의 중심부편석량에 관계없이 마르텐사이트의 발생을 방지할 수 있는 냉각법을 제공하는 것을 목적으로 한다.The present invention for solving the above problems is to provide a cooling method that can prevent the generation of martensite regardless of the amount of segregation of the center of the wire rod for wire uniformity by controlling the cooling conditions performed after hot rolling. It aims to do it.

도 1은 고탄소선재의 열연공정을 도시한 공정도,1 is a process chart showing a hot rolling process of a high carbon wire rod,

도 2는 고탄소선재의 신선 및 열처리가공공정을 도시한 공정도,2 is a process chart showing the drawing and heat treatment process of high carbon wire;

도 3은 선재의 단면위치별 항온변태곡선을 나타낸 그래프,3 is a graph showing the constant temperature transformation curve for each cross-sectional position of the wire rod,

도 4a는 열간압연한 발명강의 선재조직사진,Figure 4a is a wire rod texture picture of the invention steel hot rolled,

도 4b는 열간압연한 비교강의 선재조직사진.Figure 4b is a photograph of the wire structure of the hot rolled comparative steel.

상기의 목적을 달성하기 위한 본 발명은 중량%로 C:0.4-0.9%, Si:0.01-1.0%, Mn:0.1-1.0%, P:0.03%이하, S:0.03%이하, Al:0.01-1.0%를 함유하고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된 고탄소강을 1000℃이상으로 가열한 후 열간선재압연을 실시하고 압연후 냉각시 900-550℃에서는 15-25℃/sec의 속도로 냉각하고 550-300℃에서는 5-10℃/sec의 속도로 냉각함으로써 신선가공성을 향상시키고 중심부의 마르텐사이트발생을 최소화하는 것을 특징으로 하는 마르텐사이트발생을 억제하기 위한 고탄소선재의 단계냉각법이다.The present invention for achieving the above object by weight% C: 0.4-0.9%, Si: 0.01-1.0%, Mn: 0.1-1.0%, P: 0.03% or less, S: 0.03% or less, Al: 0.01- High carbon steel containing 1.0% and the balance of Fe and other unavoidable impurities are heated to 1000 ℃ or higher, followed by hot wire rolling, and after rolling, the speed is 15-25 ℃ / sec at 900-550 ℃. It is a step cooling method of high carbon wire rod for suppressing martensite generation, which is characterized by improving the workability and minimizing martensite generation by cooling at 550-300 ℃ and cooling at a rate of 5-10 ℃ / sec. .

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 열간압연후 선재의 냉각시 냉각개시온도인 권취온도를 800-900℃범위로 유지하고 선재냉각시 펄라이트(pearlite)변태온도구역인 900-550℃까지는 15-25℃/sec의 속도로 냉각하고 펄라이트변태온도구역 이후인 550-300℃까지는 10℃/sec이하의 냉각속도를 적용하는데 그 이유는 다음과 같다.In the present invention, the coiling temperature, which is the starting point of cooling when the wire is cooled after hot rolling, is maintained in the range of 800-900 ° C., and the temperature of the pearlite transformation temperature range of 900-550 ° C. is 15-25 ° C./sec. Cooling and cooling rate below 10 ℃ / sec is applied to 550-300 ℃ after the pearlite transformation temperature zone for the following reasons.

선재의 냉각개시온도를 900℃가 넘는 고온으로 하는 경우에는 입계 시멘타이트(cementite)가 발생할 우려가 있고, 800℃미만의 저온에서 냉각을 개시할 때에는 과다한 변태구동력으로 인해 마르텐사이트조직이 발생하는 문제점이 있다.When the cooling start temperature of the wire is set to a high temperature of more than 900 ℃, there is a fear of grain boundary cementite, and when starting cooling at a low temperature of less than 800 ℃, martensite structure occurs due to excessive transformation driving force have.

따라서 선재의 냉각개시온도는 800-900℃범위로 유지하는 것이 입계 시멘타이트의 발생을 최대한 방지하고 마르텐사이트조직의 발생을 방지하는데 있어서 바람직하다.Therefore, it is preferable to maintain the cooling start temperature of the wire rod in the range of 800-900 ° C. as much as possible to prevent the generation of grain boundary cementite and to prevent the occurrence of martensite structure.

냉각속도에 있어서 변태전 온도영역인 900-550℃에서 25℃/sec보다 빠른 냉각속도로 냉각하는 경우에는 후공정에서 신선이 불가능한 마르텐사이트 경조직이 기지조직까지 발생하는 문제점이 있다.When cooling at a cooling rate faster than 25 ℃ / sec in the temperature range of 900 to 550 ℃ before the transformation in the cooling rate there is a problem that the martensite hard tissue, which cannot be drawn in the post-process to the base structure.

반면 변태후 온도영역인 550-300℃에서 5℃/sec미만의 냉각속도로 선재를 냉각하는 경우 펄라이트조직내 시멘타이트의 두께가 과도하게 두꺼워져 신선성을 해치게 되며 단선이 발생하게 되는 문제점이 있다.On the other hand, when the wire is cooled at a cooling rate of less than 5 ° C./sec in the temperature range of 550-300 ° C. after transformation, the thickness of cementite in the pearlite structure becomes excessively thick, which impairs the freshness and causes disconnection.

따라서 900-550℃에서는 15-25℃/sec의 냉각속도로 냉각하고 550-300℃에서는 5-10℃/sec의 냉각속도로 냉각하는 것이 마르텐사이트의 발생 및 펄라이트조직내 시멘타이트의 두께가 과도하게 두꺼워지는 문제점을 해결할 수 있으므로 바람직하다.Therefore, cooling at a cooling rate of 15-25 ° C / sec at 900-550 ° C and a cooling rate of 5-10 ° C / sec at 550-300 ° C results in excessive martensite generation and excessive cementite thickness in the pearlite structure. It is preferable because the problem of thickening can be solved.

또한 강의 펄라이트변태온도영역까지는 15-25℃/sec의 냉각속도로 급냉을 실시함으로써 펄라이트조직내 라멜라의 간격을 좁혀 경강선재에 적정한 인장강도를 확보하고, 펄라이트변태온도영역이후에는 5-10℃/sec의 서냉을 실시하여 중심부의 미변태오스테나이트가 펄라이트화하도록 유도한다.In addition, by quenching at the cooling rate of 15-25 ℃ / sec to the pearlite transformation temperature range of steel, the gap between lamellae in the pearlite structure is narrowed to secure the tensile strength suitable for hard steel wire, and 5-10 ℃ / after the pearlite transformation temperature region. The slow cooling of sec is performed to induce untransformed austenite in the center to perlite.

도 3은 종래의 냉각법으로 냉각한 경우와 본 발명의 냉각법으로 냉각한 경우의 선재의 단면위치별 항온변태곡선을 비교하여 나타낸 것이다.Figure 3 shows a comparison of the constant temperature transformation curve for each cross-sectional position of the wire rod when the cooling by the conventional cooling method and the cooling method of the present invention.

종래의 냉각법으로 냉각한 경우에는 전체 냉각과정동안 거의 동일한 냉각속도로 냉각됨으로써 마르텐사이트조직이 많이 발생하였고, 특히 중심편석부에서 강냉에 의한 마르텐사이트조직의 발생이 많았다.In the case of cooling by the conventional cooling method, the martensite structure is generated by cooling at almost the same cooling rate during the entire cooling process, and in particular, the martensite structure is generated by the strong cooling in the central segregation part.

반면 본 발명의 냉각법에서는 초기에는 급냉을 함으로써 마르텐사이트의 발생을 억제하였고, 중심편석부가 냉각되는 단계에서는 서냉을 함으로써 중심편석부에서의 마르텐사이트조직의 발생을 억제하여 중심부에 펄라이트조직이 많이 발생하였다.On the other hand, in the cooling method of the present invention, the occurrence of martensite is suppressed by quenching in the early stage, and the martensite structure is suppressed in the central segregation portion by slow cooling in the step of cooling the central segregation portion, thereby generating a large amount of pearlite structure in the center portion. It was.

따라서 종래의 냉각법에 비하여 본 발명의 냉각법이 마르텐사이트의 발생억제에 효과적임을 알 수 있다.Therefore, it can be seen that the cooling method of the present invention is more effective in suppressing the generation of martensite than the conventional cooling method.

이하 실시예를 통해 본발명을 보다 구체적으로 설명한다.The present invention will be described in more detail with reference to the following Examples.

(실시예)(Example)

하기 표 1과 같은 조성을 갖는 강을 단면부치수가 160mm×160mm인 강편으로 제조하였다.Steel having a composition as shown in Table 1 was prepared as steel pieces having a cross-sectional dimension of 160 mm × 160 mm.

구분division CC SiSi MnMn PP SS CrCr NiNi CuCu AlAl 비교강Comparative steel 0.710.71 0.230.23 0.780.78 0.0200.020 0.0180.018 0.100.10 0.040.04 0.100.10 0.0250.025 발명강 1Inventive Steel 1 0.710.71 0.250.25 0.800.80 0.0180.018 0.0140.014 0.080.08 0.070.07 0.110.11 0.0150.015 발명강 2Inventive Steel 2 0.700.70 0.230.23 0.770.77 0.0190.019 0.0160.016 0.050.05 0.060.06 0.130.13 0.0100.010 발명강 3Inventive Steel 3 0.720.72 0.270.27 0.790.79 0.0210.021 0.0150.015 0.120.12 0.060.06 0.110.11 0.0050.005

상기 표 1과 같은 조성을 갖는 비교강과 발명강 1 내지 발명강 3을 제조한 후 하기 표 2와 같은 조건으로 강을 가열한 후 선재압연을 실시하고 냉각하였다.After preparing the comparative steel and the invention steel 1 to the invention steel 3 having the composition shown in Table 1, the steel was heated under the conditions as shown in Table 2, and then subjected to wire rolling and cooled.

구분division 가열온도(℃)Heating temperature (℃) 공냉개시온도(℃)Air cooling start temperature (℃) 변태전 냉각속도(℃/sec)Cooling speed before transformation (℃ / sec) 변태후 냉각속도(℃/sec)Cooling rate after transformation (℃ / sec) 비교강Comparative steel 10501050 830830 1818 1616 발명강 1Inventive Steel 1 10501050 830830 2121 55 발명강 2Inventive Steel 2 11001100 830830 1818 55 발명강 3Inventive Steel 3 11501150 830830 1818 44

상기 표 2와 같은 조건으로 선재압연을 실시한 후 비교강과 발명강의 조직 및 기계적 성질을 측정하여 그 결과를 하기 표 3에 나타내었다.After the wire was rolled under the conditions as shown in Table 2, the structure and mechanical properties of the comparative steel and the inventive steel were measured, and the results are shown in Table 3 below.

구분division 마르텐사이트발생면적비(%)Martensite generation area ratio (%) 인장강도(kg중/mm2)Tensile Strength (kg / mm 2 ) 펄라이트발생면적비(%)Perlite generation area ratio (%) 비교강Comparative steel 55 114114 1010 발명강 1Inventive Steel 1 00 117117 55 발명강 2Inventive Steel 2 00 115115 88 발명강 3Inventive Steel 3 00 114114 1010

상기 표 3의 결과에서 알 수 있듯이 비교강의 경우 난신선조직인 마르텐사이트발생면적비가 5%임에 비해 발명강 1 내지 발명강 3의 경우는 0%로 마르텐사이트가 발생하지 않았다.As can be seen from the results of Table 3, martensite was not generated as 0% in the case of the inventive steels 1 to 3, while the ratio of martensite generation area, which is an inferior tissue, was 5%.

인장강도에 있어서는 비교강의 인장강도가 114kg/mm2임에 비해 발명강 1 내지 발명강 3의 인장강도는 114-117kg/mm2로, 발명강들의 인장강도는 비교강의 인장강도와보다 높거나 동일하였다.The tensile strength of the tensile strength In Comparative Steel Tensile strength 114kg / mm 2 being the inventive steels 1 to 3 compared with the invention steel as 114-117kg / mm 2, a tensile strength of higher than the invention, the same as Comparative Steel Tensile strength of steel or It was.

펄라이트발생면적비의 경우는 비교강이 10%임에 비해 발명강 1이 5%, 발명강 2가 8%로 낮았으나 발명강 3의 경우 10%로 동일하였다.In the case of the pearlite generation area ratio, the comparative steel was 10%, whereas the invention steel 1 was 5% and the invention steel 2 was 8%, but the invention steel 3 was the same as 10%.

도 4a와 도 4b는 열간압연한 비교강과 발명강의 선재조직사진을 나타낸 것이다.Figures 4a and 4b shows a picture of the wire structure of the hot rolled comparative steel and the inventive steel.

발명강의 경우 경조직인 마르텐사이트가 발생하지 않아 조직이 균일하나 비교강의 경우에는 면적의 5%에 마르텐사이트가 발생하여 조직이 균일하지 않음을 알 수 있다.In the case of the inventive steel, the martensite, which is a hard tissue, does not occur, but the structure is uniform, but in the case of the comparative steel, martensite is generated in 5% of the area, and thus the tissue is not uniform.

상기와 같은 본 발명의 방법으로 냉각하여 제조한 고탄소선재는 난신선조직인 마르텐사이트가 발생하지 않고 선재냉각시 펄라이트조직내 시멘타이트의 두께가 두꺼워지는 것을 방지하여 마르텐사이트 및 펄라이트조직내 두꺼운 시멘타이트에 의해 신선시 단선이 발생하는 문제점을 해결할 수 있었다.The high carbon wire produced by cooling according to the method of the present invention does not generate martensite, which is an insulated wire structure, and prevents the thickness of cementite in the pearlite structure from being thickened by the wire martensite and pearlite. It was able to solve the problem of disconnection when drawing.

또한 펄라이트조직내 라멜라간격을 좁혀 경강선재에 적정한 인장강도를 확보하는 효과가 있다.In addition, there is an effect of narrowing the lamellar spacing in the pearlite structure to secure an appropriate tensile strength for light steel wire.

Claims (1)

중량%로 C:0.4-0.9%, Si:0.01-1.0%, Mn:0.1-1.0%, P:0.03%이하, S:0.03%이하, Al:0.01-1.0%를 함유하고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된 고탄소강을 1000℃이상으로 가열한 후 열간선재압연을 실시하고 압연후 냉각시900-550℃에서는 15-25℃/sec의 속도로 냉각하고 550-300℃에서는 5-10℃/sec의 속도로 냉각함으로써 신선가공성을 향상시키고 중심부의 마르텐사이트발생을 최소화하는 것을 특징으로 하는 마르텐사이트발생을 억제하기 위한 고탄소선재의 단계냉각법.% By weight C: 0.4-0.9%, Si: 0.01-1.0%, Mn: 0.1-1.0%, P: 0.03% or less, S: 0.03% or less, Al: 0.01-1.0%, balance Fe and other unavoidable After heating the high carbon steel composed of impurity contained above 1000 ℃ and performing hot wire rolling, it is cooled after rolling and cooled at a speed of 15-25 ℃ / sec at 900-550 ℃ and 5- at 550-300 ℃. Step cooling method of high carbon wire rod for suppressing martensite generation, characterized by improving the fresh workability and minimizing martensite generation by cooling at a rate of 10 ℃ / sec.
KR1019970075014A 1997-12-27 1997-12-27 Step cooling method of high carbon wire rod for inhibiting generation of martensite KR100347575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970075014A KR100347575B1 (en) 1997-12-27 1997-12-27 Step cooling method of high carbon wire rod for inhibiting generation of martensite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970075014A KR100347575B1 (en) 1997-12-27 1997-12-27 Step cooling method of high carbon wire rod for inhibiting generation of martensite

Publications (2)

Publication Number Publication Date
KR19990055107A true KR19990055107A (en) 1999-07-15
KR100347575B1 KR100347575B1 (en) 2002-10-25

Family

ID=37488775

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970075014A KR100347575B1 (en) 1997-12-27 1997-12-27 Step cooling method of high carbon wire rod for inhibiting generation of martensite

Country Status (1)

Country Link
KR (1) KR100347575B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200042117A (en) * 2018-10-15 2020-04-23 주식회사 포스코 High cabon steel wire having excellent mechanical descaling property and method for manufacturing the same
KR20200076046A (en) * 2018-12-19 2020-06-29 주식회사 포스코 High strength flexible steel wire with excellent fatigue properties and manufacturing method thereof, manufacturing method of high carbon steel wire rod for flexible steel wire
KR20220085334A (en) * 2020-12-15 2022-06-22 주식회사 포스코 High Strength Hypoeutectoid Steel Wire and method for Manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261430A (en) * 1985-05-14 1986-11-19 Shinko Kosen Kogyo Kk Manufacture of high strength and toughness steel wire
JPS6362823A (en) * 1986-09-01 1988-03-19 Kobe Steel Ltd Production of directly heat-treated high-carbon steel wire rod
JPH08260046A (en) * 1995-03-22 1996-10-08 Nippon Steel Corp Production of high-carbon low alloy steel wire rod excellent in wiredrawability
KR100256346B1 (en) * 1995-12-19 2000-05-15 이구택 The manufacturing method for wire drawing hypereutectoid wire rod

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200042117A (en) * 2018-10-15 2020-04-23 주식회사 포스코 High cabon steel wire having excellent mechanical descaling property and method for manufacturing the same
KR20200076046A (en) * 2018-12-19 2020-06-29 주식회사 포스코 High strength flexible steel wire with excellent fatigue properties and manufacturing method thereof, manufacturing method of high carbon steel wire rod for flexible steel wire
KR20220085334A (en) * 2020-12-15 2022-06-22 주식회사 포스코 High Strength Hypoeutectoid Steel Wire and method for Manufacturing the same

Also Published As

Publication number Publication date
KR100347575B1 (en) 2002-10-25

Similar Documents

Publication Publication Date Title
CA1076463A (en) Producing rolled steel products
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
US4981531A (en) Process for producing cold rolled steel sheets having excellent press formability and ageing property
US4116729A (en) Method for treating continuously cast steel slabs
KR100347575B1 (en) Step cooling method of high carbon wire rod for inhibiting generation of martensite
JPS60114517A (en) Production of steel wire rod which permits omission of soft annealing treatment
JPH0576524B2 (en)
KR100478088B1 (en) A method for manufacturing spring steel without ferrite decaburization
JP3516747B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing at room temperature with excellent material uniformity and surface quality in the coil longitudinal direction
KR100985242B1 (en) Method for manufacturing wire rod of medium carbon capable of omitting softening heat treatment and equipment of the same
JPH0673502A (en) High carbon steel wire rod or high carbon steel wire excellent in wire drawability and its production
JP2804278B2 (en) Direct softening wire rod manufacturing method
KR100544644B1 (en) Method for manufacturing high carbon wire rod having superior strength
KR100340546B1 (en) A method of manufacturing wire rods for preventing martensite formation in segregation zone
JPH058256B2 (en)
JPS6343445B2 (en)
KR940007371B1 (en) Method of manufacturing steel rod with automobil spring
KR100328069B1 (en) A method of manufacturing wire rods for spring
JPH0617192A (en) Bainitic wire rod or steel wire for wire drawing and manufacture therefor
JPH05117762A (en) Manufacture of bainite wire rod
JPS6056017A (en) Production of thick steel plate having excellent low- temperature toughness
KR100340542B1 (en) A method of manufacturing wire rods for ball bearing with superior fatigue life
JPH0160532B2 (en)
JPH0530884B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080701

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee