JPH0530884B2 - - Google Patents

Info

Publication number
JPH0530884B2
JPH0530884B2 JP62243890A JP24389087A JPH0530884B2 JP H0530884 B2 JPH0530884 B2 JP H0530884B2 JP 62243890 A JP62243890 A JP 62243890A JP 24389087 A JP24389087 A JP 24389087A JP H0530884 B2 JPH0530884 B2 JP H0530884B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
hot water
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62243890A
Other languages
Japanese (ja)
Other versions
JPS6487717A (en
Inventor
Hideo Kanisawa
Toshimichi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24389087A priority Critical patent/JPS6487717A/en
Publication of JPS6487717A publication Critical patent/JPS6487717A/en
Publication of JPH0530884B2 publication Critical patent/JPH0530884B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、自動車や産業機械用の高張力非調質
ボルトの製造方法に関するものである。 [従来の技術] 近年における冷間鍛造をはじめとする冷間加工
用機械の進歩ならびに冷間加工用鉄鋼材料の改良
はめざましく、大型部品や極一部の高張力ボルト
を除き、大部分は冷間でボルト成形がなされてい
る。これらに使用される鉄鋼材料は冷間変形能を
高め、工具寿命を向上させるため、冷間鍛造前に
軟化または球状化焼鈍し、冷間成形後焼入れ・焼
戻しを施して所定の強度を出すのが普通である。
しかしながら、前記冷間鍛造前に軟化または球状
化焼鈍を行い、冷間成形後焼入れ・焼戻しを行う
場合は、二次加工工程が長く、製造コストも高く
なるという欠点がある。 そこでこれらの球状化焼鈍や焼入れ・焼戻しを
省略するために、低炭素鋼にTi、B、Nb、V等
の析出強化元素を添加するなどして、線材圧延後
の強制風冷(ステルモア)によつて、強度を高め
ボルト成形後の焼入れ・焼戻しを省略するボルト
用非調質線材(特開昭53−51121号公報、特開昭
53−56121号公報)や、低、中炭素マンガン鋼線
材を熱間圧延後に恒温変態し、さらに伸線法を制
御することにより強度と靭性を高め、ボルト成形
後の焼入れ・焼戻しを省略するボルト用非調質線
材(特公昭60−406号公報、特開昭60−15622号公
報)の開発も行われている。しかし、これらの方
法では線材強度を増加した分だけ冷間鍛造時の変
形抵抗が高くなるという問題がある。このため一
部の方法では、冷間鍛造前に伸線を行うことによ
つて一種のバウシンガー効果を利用し、変形抵抗
の低減を図つているものの、伸線法の制御のみで
はその低減効果は希少で、現状の球状化焼鈍線材
なみの変形抵抗は達成できていないのが現状であ
る。 またコイル内の強度ばらつきが熱処理を行つた
調質鋼に比べ3から5倍程度大きくなるために、
規格の下限強度を満足するには平均強度をさらに
高めておかなければならない。そのためこれらの
線材よりボルトを製造する場合、冷間加工用工具
の寿命が著しく低下するという問題があり、普及
が進まなかつた。 [発明が解決しようとする問題点] 本発明は従来球状化焼鈍後冷間加工し、その後
の焼入れ・焼戻し処理により製造されていた高張
力ボルトについて、球状化焼鈍を省略してもボル
トの冷間加工変形抵抗が十分に低い線材を製造す
る方法を提供するものである。 [問題点を解決するための手段] 非調質線材から冷間伸線後ボルトを製造する工
程においては、引抜き後逆向きの圧縮方向の変形
によりボルト成形されるため、この間に一種のバ
ウシンガー効果が作用し、変形抵抗が下がること
が知られている。本発明者等は従来の伸線法の制
御のみならず、成分、組織あるいは熱延後の調整
冷却等の種々の冶金要因について実験研究の結
果、このバウシンガー効果を最大限に引出すに
は、前述の高価な析出強化元素を使用するよりむ
しろC量を増し、低炭ベーナイト組織よりも熱湯
浴冷却のような急速冷却によりフエライト分率が
少ない微細なフエライト・パーライト組織にする
ことが最適であり、またこれらの成分系の線材に
おいても、引抜きの減面率は高いほどバウシンガ
ー効果が増大することも確認できた。したがつ
て、これらの因子を効果的に組合せることによつ
て、ボルト成形加工時の変形抵抗を大幅に低減で
きることを見出した。 また熱間圧延後の低炭素鋼線材を熱湯浴中で冷
却することにより、従来のステルモア冷却材やオ
フライン恒温変態処理線材に比べ、コイル内強度
ばらつきを大幅に低減できることを見出した。 本発明はこれらの知見をもとになされたもので
あつて、重量%で、C:0.15%以上0.30%以下、
Si:0.03%以上0.55%以下、Mn:1.1%以上2.0%
以下を含有し、残部Feおよび不可避的不純物よ
りなる鋼材を、線材に熱間圧延後コイルに捲取
り、3〜10秒間徐冷または放冷してオーステナイ
ト粒径を均一にした後、熱湯浴中で冷却してフエ
ライト・パーライト組織とした線材に、減面率20
%以上50%以下の引抜き加工を施すことを特徴と
する引張強さ70Kgf/mm2以上の高張力非調質ボル
トの製造法である。以下に本発明における化学成
分および製造条件の限定理由について説明する。 Cは鋼材の強度および延性にきわめて重要な影
響をもつことは周知の通りであるが、従来の引抜
き率20%以上で70Kgf/mm2以上の強度を得るに
は、引張強度で最低55Kgf/mm2が必要である。フ
エライト・パーライト組織鋼ではC含有量を増加
することによりバウシンガー効果を大きくするこ
とができることを見出した。この理由はバウシン
ガー効果はフエライト中の可動転位密度の影響を
受けており、C含有量を高めることによりフエラ
イト分率が低減され、導入される転位密度が増加
するためである。従つて、バウシンガー効果を高
め変形抵抗を低減するには、C:0.15%未満では
この目的が達成されず、また0.30%を超えるとバ
ウシンガー効果は増加するものの、延性が劣化す
るほか、変形抵抗が過大となり、工具寿命が短く
なるので、0.15%以上0.30%以下とした。 Siは脱酸のために使用される以外に鉄に固溶
し、降伏点および引張強さが増すが、0.03%未満
では脱酸効果が不十分であり、0.55%を超えると
引張強度が増加するものの、Cに比べバウシンガ
ー効果の増加傾向が小さく、また延性が劣化する
他、冷間鍛造性が悪くなるので、0.03%以上0.55
%以下とした。 冷間加工用鋼としてSi脱酸の他に、Al、Al−
Si脱酸も多用されており、Alは脱酸のためなら
びに熱処理時の結晶粒粗大化防止のために、
0.010%〜0.060%添加するのが望ましい。 Mnは強度の上昇に著しく寄与し、かつ線材の
ミクロ組織を改良し冷間鍛造を容易にする。Mn
は1.1%以下では強度の改善が不十分である。し
かしMnはバウシンガー効果を増加させる元素で
はないため、2.0%超の過剰添加は変形抵抗を著
しく増加させるため好ましくない。従つて1.1%
以上2.0%以下と定めた。 その他の不純物は、通常この種の鋼に存在する
範囲内であれば許容し得る。 次に熱間圧延後の冷却について述べる。圧延終
了後3〜10秒間徐冷いまたは放冷するのは、この
間に線材温度を均一化し、圧延によつて不均一に
なつているオーステナイト粒径を均一にし、同時
に剥離性の良いスケールの調整を行うものであ
る。この時間が短かすぎるとその効果は得られ
ず、長すぎると結晶粒が粗大化し、スケールも厚
く強固となつて好ましくない。 線材を熱湯浴中で冷却する第1の目的は、ボル
ト成形時の変形抵抗を低下させるバウシンガー効
果を増大させるために、強制風冷に比べ冷却速度
が速い熱湯浴冷却により、いつそうフエライト分
率の少ないフエライト・パーライト組織に調整す
ることにある。フエライト・パーライト組織にお
いて、バウシンガー効果は圧延後の冷却速度に非
常に影響を受けており、冷却速度が速いほど増加
するために、従来の強制風冷に比べ冷却速度の速
い熱湯冷却でバウシンガー効果が著しく大きくな
ることを見出した。この理由は、前述したように
バウシンガー効果はフエライト中の可動転位密度
の影響を受けており、冷却速度を速めることによ
りフエライト分率が低減され、導入される転位密
度も増加するためである。 第2の目的は強制風冷では線材リングの重なり
部において、風量の差が生じ、強度ばらつきが調
質鋼に比べ著しく大きくなるのに対し、熱湯冷却
では、リング重なり部も蒸気膜におおわれ、安定
的な膜沸騰冷却により冷却速度をほぼ一定とし、
強度ばらつきを非常に小さくするためである。な
お、本発明による熱湯は、95℃以上100℃以下の
温度とする。この理由は、均一粒径としたオース
テナイト組織を熱湯冷却により、結晶粒径の整つ
たフエライト・パーライトの変態組織を得ること
ができることと、線材表面に適度の厚さのスケー
ルを均一に付着させることによつて、温水中での
沸騰膜が安定し、冷却速度の均一性を向上するた
めである。熱湯冷却の開始温度は、フエライト・
パーライト変態が開始する温度より高い900℃か
らでも良いが、パーライト変態開始直上の約700
℃までクーリングトラフで急冷した後でもよい。
3〜10秒間徐冷または放冷後、熱湯冷却するの
は、フエライト量を低減させ、ラメラー間隔を細
かくし、強度を上昇させるほか、スケールも薄く
生成させ、剥離しやすくさせるためである。また
熱湯浴からの引上げ温度を400℃以上パーライト
変態温度以下とすれば、フエライト中に固溶して
いるC、Nの析出が進行し、冷間加工後の歪時効
による延性低下を防止できるという効果が得られ
る。 次にボルト成形前の引抜き加工について述べ
る。この引抜加工は寸法精度を高めるために実施
されるもので、調質材においても10%前後の減面
率で施す。非調質線材の場合、制御冷却により付
与した熱延線材での強度をさらにこの工程で十分
に加工硬化させ、所定の強度に調整するという作
用もある。一般に知られているように、バウシン
ガー効果は引抜き加工率を高めるにつれて増大す
る。この傾向は制御冷却したフエライト・パーラ
イト線材でも同様で、この理由はフエライト中の
逆応力が増大するためである。従つてバウシンガ
ー効果を高め変形抵抗を低減するには、減面率20
%未満ではこの目的が達成されず、また50%を超
えると延性が劣化するとともに引抜き加工コスト
が増大し経済的でないため、20%以上50%以下と
した。 その後剪断、ボルト頭部成形、ねじ転造を行う
が、更にブルーイングあるいはベーキング処理を
行うことにより最終強度および伸び、絞りを改善
できる。この場合は500℃以下の加熱が望ましい。 以下に実施例を挙げて説明する。 [実施例] 第1表は供試材の化学成分を示す。表中B1〜
B5は比較例で、他は全て本発明による鋼材であ
る。これらの鋼は溶解後鍛造または圧延により
162mm角鋼片となし、第2表に示す9、13、15お
よび18mmφ線材に圧延し、97℃〜99℃の熱湯浴中
冷却あるいは通常冷却、強制風冷を行つた。 引張試験結果を第3表に示す。同表に示すとお
り、本発明にかかる材料の引張強度が高く、伸
び、絞りも著しく良好である。またコイル内の強
度ばらつきは非常に小さく、スケールの塩酸酸洗
剥離
[Industrial Field of Application] The present invention relates to a method for manufacturing high-tensile, non-tempered bolts for use in automobiles and industrial machinery. [Conventional technology] In recent years, advances in cold working machines such as cold forging and improvements in cold working steel materials have been remarkable. A bolt is formed in between. In order to increase cold deformability and tool life, the steel materials used in these products are softened or annealed to spheroidize before cold forging, and then quenched and tempered after cold forming to achieve the specified strength. is normal.
However, when softening or spheroidizing annealing is performed before cold forging, and quenching and tempering are performed after cold forming, there is a drawback that the secondary processing step is long and the manufacturing cost is high. Therefore, in order to omit these spheroidizing annealing, quenching, and tempering, precipitation strengthening elements such as Ti, B, Nb, and V are added to low carbon steel, and forced air cooling (Stellmor) after wire rolling is applied. Therefore, a non-thermal wire material for bolts that increases strength and eliminates quenching and tempering after bolt forming (Japanese Patent Application Laid-Open No. 53-51121,
53-56121), and bolts that undergo isothermal transformation after hot rolling of low- and medium-carbon manganese steel wire rods, increase strength and toughness by controlling the wire drawing method, and omit quenching and tempering after bolt forming. Non-thermal tempered wire rods for use (Japanese Patent Publication No. 60-406, Japanese Patent Application Laid-Open No. 60-15622) are also being developed. However, these methods have a problem in that the deformation resistance during cold forging increases as the strength of the wire increases. For this reason, some methods utilize a type of Bauschinger effect by drawing wire before cold forging to reduce deformation resistance, but controlling the wire drawing method alone is not effective in reducing deformation resistance. is rare, and currently it has not been possible to achieve deformation resistance comparable to that of current spheroidized annealed wires. In addition, the strength variation within the coil is about 3 to 5 times larger than that of heat-treated tempered steel.
In order to meet the lower strength limit of the standard, the average strength must be further increased. Therefore, when manufacturing bolts from these wire rods, there is a problem that the life of cold working tools is significantly reduced, and the use of these wires has not progressed. [Problems to be Solved by the Invention] The present invention solves the problem of high-tensile bolts that have conventionally been manufactured by cold working after spheroidizing annealing and subsequent quenching and tempering, even if the spheroidizing annealing is omitted. The present invention provides a method for manufacturing a wire rod having sufficiently low deformation resistance during processing. [Means for solving the problem] In the process of manufacturing a bolt after cold drawing from a non-tempered wire material, the bolt is formed by deformation in the opposite compression direction after drawing, so a kind of Bauschinger occurs during this process. It is known that the deformation resistance is reduced. The present inventors not only controlled conventional wire drawing methods, but also conducted experimental research on various metallurgical factors such as composition, structure, and controlled cooling after hot rolling, and found that in order to maximize the Bauschinger effect, Rather than using the expensive precipitation-strengthening elements mentioned above, it is optimal to increase the amount of C and create a fine ferrite-pearlite structure with a low ferrite fraction by rapid cooling such as hot water bath cooling rather than a low-carbon bainitic structure. It was also confirmed that in wire rods made of these components, the Bauschinger effect increases as the area reduction rate during drawing increases. Therefore, it has been found that by effectively combining these factors, the deformation resistance during bolt forming can be significantly reduced. We also found that by cooling the hot-rolled low-carbon steel wire in a hot water bath, it was possible to significantly reduce strength variations within the coil, compared to conventional Stelmor coolant or off-line isothermal transformation treated wire. The present invention was made based on these findings, and includes, in weight%, C: 0.15% or more and 0.30% or less,
Si: 0.03% or more and 0.55% or less, Mn: 1.1% or more and 2.0%
A steel material containing the following, with the remainder being Fe and unavoidable impurities, is hot-rolled into a wire rod, wound into a coil, slowly cooled or allowed to cool for 3 to 10 seconds to make the austenite grain size uniform, and then placed in a hot water bath. The wire rod is cooled with a ferrite/pearlite structure, and the area reduction rate is 20.
This is a method for manufacturing a high-tensile non-temperature bolt with a tensile strength of 70 Kgf/mm 2 or more, which is characterized by subjecting it to a drawing process of 50% or more. The reasons for limiting the chemical components and manufacturing conditions in the present invention will be explained below. It is well known that C has a very important effect on the strength and ductility of steel materials, but in order to obtain a strength of 70 Kgf/mm 2 or more at a conventional drawing rate of 20% or more, the tensile strength must be at least 55 Kgf/mm 2. 2 is required. It has been found that the Bauschinger effect can be increased by increasing the C content in steel with a ferrite-pearlitic structure. The reason for this is that the Bauschinger effect is influenced by the mobile dislocation density in ferrite, and increasing the C content reduces the ferrite fraction and increases the introduced dislocation density. Therefore, in order to enhance the Bauschinger effect and reduce deformation resistance, if C is less than 0.15%, this objective will not be achieved, and if it exceeds 0.30%, although the Bauschinger effect will increase, ductility will deteriorate and deformation will be reduced. Since the resistance would be excessive and the tool life would be shortened, it was set to 0.15% or more and 0.30% or less. In addition to being used for deoxidation, Si dissolves in iron and increases the yield point and tensile strength, but if it is less than 0.03%, the deoxidation effect is insufficient, and if it exceeds 0.55%, the tensile strength increases. However, compared to C, the Bauschinger effect tends to increase less, ductility deteriorates, and cold forgeability deteriorates, so 0.03% or more 0.55
% or less. In addition to Si deoxidation, Al, Al-
Si deoxidation is also frequently used, and Al is used for deoxidation and to prevent crystal grain coarsening during heat treatment.
It is desirable to add 0.010% to 0.060%. Mn significantly contributes to increasing strength, improves the microstructure of the wire, and facilitates cold forging. Mn
If it is less than 1.1%, the improvement in strength is insufficient. However, since Mn is not an element that increases the Bauschinger effect, excessive addition of more than 2.0% is not preferable because it significantly increases deformation resistance. Therefore 1.1%
It has been set at 2.0% or less. Other impurities are acceptable within the range normally present in this type of steel. Next, cooling after hot rolling will be described. The reason for slow cooling or cooling for 3 to 10 seconds after rolling is to equalize the wire temperature during this time, to equalize the austenite grain size that has become uneven due to rolling, and at the same time to adjust the scale for good peelability. This is what we do. If this time is too short, the effect cannot be obtained, and if it is too long, the crystal grains will become coarse and the scale will become thick and strong, which is not preferable. The first purpose of cooling the wire in a hot water bath is to increase the Bauschinger effect, which reduces deformation resistance during bolt forming. The purpose is to adjust the structure to a ferrite/pearlite structure with a low ratio. In the ferrite-pearlite structure, the Bauschinger effect is greatly affected by the cooling rate after rolling, and increases as the cooling rate increases. We found that the effect was significantly greater. The reason for this is that, as described above, the Bauschinger effect is influenced by the mobile dislocation density in ferrite, and increasing the cooling rate reduces the ferrite fraction and increases the introduced dislocation density. The second purpose is that in forced air cooling, differences in air volume occur at the overlapping parts of the wire rings, resulting in significantly larger strength variations than in tempered steel, whereas in hot water cooling, the overlapping parts of the rings are also covered with a steam film. Stable film boiling cooling keeps the cooling rate almost constant,
This is to make the strength variation extremely small. Note that the hot water according to the present invention has a temperature of 95°C or higher and 100°C or lower. The reason for this is that by cooling an austenite structure with a uniform grain size in hot water, a transformed structure of ferrite/pearlite with a uniform grain size can be obtained, and it is also possible to uniformly adhere a scale of an appropriate thickness to the wire surface. This is because the boiling film in hot water is stabilized and the uniformity of the cooling rate is improved. The starting temperature for hot water cooling is ferrite.
It is possible to start from 900℃, which is higher than the temperature at which pearlite transformation starts, but at about 700℃, which is just above the temperature at which pearlite transformation starts.
It may be used after quenching in a cooling trough to ℃.
The reason for cooling with boiling water after slow cooling or cooling for 3 to 10 seconds is to reduce the amount of ferrite, make the lamellar spacing finer, increase the strength, and also make the scale thinner and easier to peel off. In addition, if the temperature at which the water is withdrawn from the hot water bath is set to 400°C or higher and lower than the pearlite transformation temperature, precipitation of C and N dissolved in ferrite will proceed, thereby preventing a decrease in ductility due to strain aging after cold working. Effects can be obtained. Next, we will discuss the drawing process before bolt forming. This drawing process is performed to improve dimensional accuracy, and even for tempered materials, it is performed with an area reduction rate of around 10%. In the case of non-tempered wire rods, this process also has the effect of sufficiently work-hardening the strength of the hot-rolled wire rods imparted by controlled cooling to adjust the strength to a predetermined level. As is generally known, the Bauschinger effect increases as the drawing rate increases. This tendency is the same for ferrite-pearlite wires subjected to controlled cooling, and the reason for this is that the reverse stress in the ferrite increases. Therefore, in order to enhance the Bauschinger effect and reduce deformation resistance, the area reduction ratio is 20.
If it is less than 50%, this purpose will not be achieved, and if it exceeds 50%, the ductility will deteriorate and the drawing cost will increase, making it uneconomical. After that, shearing, bolt head shaping, and thread rolling are performed, and the final strength, elongation, and reduction can be improved by further performing bluing or baking treatment. In this case, heating at 500°C or less is desirable. Examples will be described below. [Example] Table 1 shows the chemical components of the test materials. B1~ in the table
B5 is a comparative example, and all others are steel materials according to the present invention. These steels are produced by forging or rolling after melting.
A 162 mm square steel billet was prepared and rolled into 9, 13, 15, and 18 mmφ wire rods shown in Table 2, and cooled in a hot water bath at 97°C to 99°C, normal cooling, or forced air cooling. The tensile test results are shown in Table 3. As shown in the table, the tensile strength of the material according to the present invention is high, and the elongation and reduction of area are also extremely good. In addition, the strength variation within the coil is very small, and the scale can be removed by pickling with hydrochloric acid.

【表】【table】

【表】【table】

【表】 性も著しく向上している。特に捲取温度を下げ、
700℃〜400℃の温度域を熱湯浴冷却したA3、A4
は、よりいつそう高強度でスケール剥離時間の短
縮が可能である。しかし本発明の範囲外のB1か
らB3は絞りが低く、強度ばらつきも大きい。ま
たスケール剥離にも長時間を要しており、スケー
ル剥離性が悪い。強制風冷のB4およびB5におい
ても、強度と絞りは高いものの強度ばらつきが大
きい。 第4表は30%前後の引抜きを行つた後の引張特
性を示す。但し、比較例のB3は、現状の製造工
程と同じように、球状化焼鈍した後13mmφから12
mmφに引抜き(14.8%)を施した。ここに示す変
形抵抗は、ボルト成形前の各供試鋼線を用いて測
定したものであり、この数値は低いほど冷間鍛造
時の工具寿命が向上することが分かつている。各
供試鋼線を、旋盤にて突つ切り加工し、据え込み
加工用円柱試験片[但し、据え込み比(高さ/直
径)1.5に調整]を作成して、万能試験の歪速度
を1/秒にて据え込み加工(但し、据え込み圧板
は同心円溝付の拘束型超硬圧板を使用)を行い、
該加工時の変形抵抗を測定した。変形抵抗は、対
数歪[1nH0/H(但しH0およびHはそれぞれ初
期試験片長さおよび据え込み加工後の試験片長さ
を表す)]1.5にて求めたものであり、据え込み荷
重を変形後の試験片の断面積で徐したものであ
る。 これによると、本発明鋼はいずれも球状化焼鈍
後の伸線したB3とほぼ同じ変形抵抗となり、実
際のヘツデング加工には、十分耐える値である。
しかし本発明範囲外のB1、B2、B4およびB5は
変形抵抗が高く、工具寿命が著しく低下するため
実用には適さない。 第5表はこれを六角ボルトに成形後350℃のブ
ルーイング処理した後の引張特性を示す。 但し、B3のみ880℃加熱後焼入れし500℃焼戻
しを実施した。ボルトの引張試験は、角度10°の
くさび引張を用い、強度と頭飛びの有無を調べ
た。この結果、本発明のボルトは、引張強さ80Kg
f/mm2以上で頭飛びもなく、JISB1051(1976年)
の「8.8級」ボルト・こねじとして良好な特性を
持つていることが分かる。比較例のB1、B2は引
張強さ
[Table] Performance has also improved significantly. In particular, by lowering the winding temperature,
A3 and A4 cooled in a hot water bath in the temperature range of 700℃ to 400℃
It is possible to achieve higher strength and shorter scale removal time. However, B1 to B3, which are outside the scope of the present invention, have low apertures and large variations in strength. Moreover, it takes a long time to remove the scale, and the scale removal property is poor. B4 and B5 with forced air cooling also have high strength and narrowing, but the strength variation is large. Table 4 shows the tensile properties after drawing around 30%. However, the comparative example B3 is made from 13mmφ to 12mm after spheroidizing annealing, which is the same as the current manufacturing process.
Drawing was performed on mmφ (14.8%). The deformation resistance shown here was measured using each test steel wire before bolt forming, and it is known that the lower this value is, the longer the tool life during cold forging will be. Each test steel wire was cut off using a lathe to create a cylindrical specimen for upsetting [however, the upsetting ratio (height/diameter) was adjusted to 1.5], and the strain rate for the universal test was Upsetting is performed at 1/sec (however, the upsetting pressure plate is a restrained type carbide pressure plate with concentric grooves).
The deformation resistance during the processing was measured. The deformation resistance was determined at a logarithmic strain [1nH 0 /H (where H 0 and H represent the initial specimen length and the specimen length after upsetting, respectively)] 1.5, and the upsetting load was deformed. It is divided by the cross-sectional area of the subsequent test piece. According to this, all of the steels of the present invention have almost the same deformation resistance as wire-drawn B3 after spheroidizing annealing, which is a value that is sufficient to withstand actual hedding processing.
However, B1, B2, B4, and B5, which are outside the scope of the present invention, have high deformation resistance and significantly shorten tool life, so they are not suitable for practical use. Table 5 shows the tensile properties after forming this into a hexagonal bolt and subjecting it to bluing treatment at 350°C. However, only B3 was heated at 880°C, quenched, and then tempered at 500°C. The bolt tensile test used wedge tension at an angle of 10° to examine the strength and presence or absence of head popping. As a result, the bolt of the present invention has a tensile strength of 80 kg.
No head skipping at f/mm 2 or higher, JISB1051 (1976)
It can be seen that it has good characteristics as an 8.8 class bolt/screw. Comparative examples B1 and B2 are tensile strength

【表】 *:球状化焼鈍後伸線
[Table] *: Wire drawing after spheroidizing annealing

【表】 が低く、従来工程並みに焼入れ・焼戻しを行つた
B3と強制風冷のB4およびB5のみ、引張強さ80Kg
f/mm2以上となつている。 [発明の効果] 以上のように、本発明により製造されるボルト
は、非調質線材を用いながら冷間鍛造時の変形抵
抗は軟化または球状化焼鈍線材に匹敵する。従つ
て、冷間鍛造時の工具寿命を悪化することなし
に、従来実施されている球状化焼鈍、焼入れ・焼
戻し工程を省略でき、大幅な節減効果をもたら
す。一方、従来の非調質ボルトに比べても、工具
寿命延長が実現でき、ボルト製造コストの極めて
大きな部分を占める工具費の大幅節減が可能とな
るほか、工具交換の回数が減つて生産性の向上が
図られ、産業上の効果は極めて顕著なものであ
る。
[Table] is low, and quenching and tempering can be performed at the same level as the conventional process.
B3 and forced air cooling B4 and B5 only, tensile strength 80Kg
f/mm 2 or more. [Effects of the Invention] As described above, the bolt manufactured according to the present invention has deformation resistance during cold forging comparable to that of a softened or spheroidized annealed wire, although it uses a non-tempered wire. Therefore, the conventional spheroidizing annealing and quenching/tempering processes can be omitted without deteriorating the tool life during cold forging, resulting in significant savings. On the other hand, compared to conventional non-heat-treated bolts, tool life can be extended, tooling costs, which account for a large portion of bolt manufacturing costs, can be significantly reduced, and productivity can be improved by reducing the number of tool changes. Improvements have been made and the industrial effects are extremely significant.

Claims (1)

【特許請求の範囲】 1 重量%で、 C:0.15%以上0.30%以下 Si:0.03%以上0.55%以下 Mn:1.1%以上2.0%以下 を含有し、残部がFeおよび不可避的不純物より
なる鋼材を、線材に熱間圧延後コイルに捲取り、
3〜10秒間徐冷または放冷してオーステナイト粒
径を均一にした後、熱湯浴中で冷却してフエライ
ト・パーラト組織とした線材に、減面率20%以上
50%以下の引抜き加工を施し、その後剪断、頭部
成形、ねじ転造することを特徴とする高張力非調
質ボルトの製造方法。 2 熱湯浴中で冷却の開始温度が700〜900℃であ
る特許請求の範囲第1項に記載の高張力非調質ボ
ルトの製造方法。 3 熱湯浴中で冷却し熱湯浴からの引上げ温度が
400℃〜パーライト変態温度以下である特許請求
の範囲第1または第2項に記載の高張力非調質ボ
ルトの製造方法。
[Claims] A steel material containing, in 1% by weight, C: 0.15% or more and 0.30% or less, Si: 0.03% or more and 0.55% or less, Mn: 1.1% or more and 2.0% or less, and the balance is Fe and unavoidable impurities. , after hot rolling the wire rod, winding it into a coil,
After 3 to 10 seconds of slow cooling or cooling to make the austenite grain size uniform, the wire rod is cooled in a hot water bath to form a ferrite/parlato structure with an area reduction of 20% or more.
A method for producing high-tensile non-temperature bolts characterized by subjecting them to 50% or less drawing processing, followed by shearing, head forming, and thread rolling. 2. The method for manufacturing a high-tensile non-temperature bolt according to claim 1, wherein the starting temperature of cooling in a hot water bath is 700 to 900°C. 3 Cool in a hot water bath until the temperature at which it is withdrawn from the hot water bath is
The method for manufacturing a high-tensile non-temperature bolt according to claim 1 or 2, wherein the temperature is 400°C to below the pearlite transformation temperature.
JP24389087A 1987-09-30 1987-09-30 Production of high tensile bolt Granted JPS6487717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24389087A JPS6487717A (en) 1987-09-30 1987-09-30 Production of high tensile bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24389087A JPS6487717A (en) 1987-09-30 1987-09-30 Production of high tensile bolt

Publications (2)

Publication Number Publication Date
JPS6487717A JPS6487717A (en) 1989-03-31
JPH0530884B2 true JPH0530884B2 (en) 1993-05-11

Family

ID=17110514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24389087A Granted JPS6487717A (en) 1987-09-30 1987-09-30 Production of high tensile bolt

Country Status (1)

Country Link
JP (1) JPS6487717A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735545B2 (en) * 1989-04-17 1995-04-19 新日本製鐵株式会社 High tension non-heat treated bolt manufacturing method
US6109851A (en) * 1999-01-13 2000-08-29 Illinois Tool Works Inc. Screws having selected heat treatment and hardening
DE102004022248B4 (en) * 2004-05-04 2007-06-14 Zf Friedrichshafen Ag Process for the production of balls or ball segments, as well as subsequently manufactured ball element for two-part ball studs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145734A (en) * 1983-02-10 1984-08-21 Nippon Steel Corp Manufacture of high tensile bolt of not less than 70kg/mm2 tensile strength
JPS59147738A (en) * 1983-02-14 1984-08-24 Nippon Steel Corp Manufacture of high tensile bolt having tensile strength of above 80kg/mm2
JPS60255957A (en) * 1984-05-31 1985-12-17 Nissan Motor Co Ltd Steel for cold forging
JPS61104024A (en) * 1984-10-25 1986-05-22 Kobe Steel Ltd Production of high strength and high toughness wire rod
JPS6220820A (en) * 1985-07-20 1987-01-29 Kobe Steel Ltd Cold working method
JPS62139818A (en) * 1985-12-13 1987-06-23 Kobe Steel Ltd Production of high-strength and high-toughness wire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145734A (en) * 1983-02-10 1984-08-21 Nippon Steel Corp Manufacture of high tensile bolt of not less than 70kg/mm2 tensile strength
JPS59147738A (en) * 1983-02-14 1984-08-24 Nippon Steel Corp Manufacture of high tensile bolt having tensile strength of above 80kg/mm2
JPS60255957A (en) * 1984-05-31 1985-12-17 Nissan Motor Co Ltd Steel for cold forging
JPS61104024A (en) * 1984-10-25 1986-05-22 Kobe Steel Ltd Production of high strength and high toughness wire rod
JPS6220820A (en) * 1985-07-20 1987-01-29 Kobe Steel Ltd Cold working method
JPS62139818A (en) * 1985-12-13 1987-06-23 Kobe Steel Ltd Production of high-strength and high-toughness wire

Also Published As

Publication number Publication date
JPS6487717A (en) 1989-03-31

Similar Documents

Publication Publication Date Title
US4619714A (en) Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
US4576656A (en) Method of producing cold rolled steel sheets for deep drawing
JP2000256741A (en) Manufacture of hot rolled bar or wire
JPH083640A (en) Production of high-tensile non-heat treated bolt
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
JPS6159379B2 (en)
JPH0530884B2 (en)
JPH02274810A (en) Production of high tensile untempered bolt
JPH0967622A (en) Production of high strength non-heat treated steel wire for bolt, excellent in cold heading property
US3502514A (en) Method of processing steel
KR100328039B1 (en) A Method Manufacturing Wire Rods for cold Heading
JPH06346146A (en) Production of wire rod for cold forming coil spring and device therefor
JPH04346618A (en) Drawn steel wire rod
JPS6357484B2 (en)
JPH07292419A (en) Production of steel sheet for vessel, excellent in fluting resistance
JP2698374B2 (en) Method of manufacturing high-strength PC steel rod
JPH0841537A (en) Production of steel for high strength and high toughness bolt
KR940007365B1 (en) Method of manufacturing steel rod
USRE29240E (en) As-worked, heat treated cold-workable hypoeutectoid steel
KR100435460B1 (en) A method for manufacturing steel wire for steel cord
JPH0369967B2 (en)
JPH1143721A (en) High strength spring steel and its manufacture
JPS5942055B2 (en) Manufacturing method for high-tensile steel wires and steel bars
KR20210108001A (en) Method for preparing stainless wire rod having excellent cold heading
JPH0143816B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 15