JPS60255957A - Steel for cold forging - Google Patents

Steel for cold forging

Info

Publication number
JPS60255957A
JPS60255957A JP11234784A JP11234784A JPS60255957A JP S60255957 A JPS60255957 A JP S60255957A JP 11234784 A JP11234784 A JP 11234784A JP 11234784 A JP11234784 A JP 11234784A JP S60255957 A JPS60255957 A JP S60255957A
Authority
JP
Japan
Prior art keywords
less
steel
ferrite
cold forging
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11234784A
Other languages
Japanese (ja)
Other versions
JPH0215604B2 (en
Inventor
Takashi Matsumoto
隆 松本
Kimihiro Shibata
公博 柴田
Masahide Ike
池 政秀
Katsunori Takada
高田 勝典
Kenji Isogawa
礒川 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11234784A priority Critical patent/JPS60255957A/en
Publication of JPS60255957A publication Critical patent/JPS60255957A/en
Publication of JPH0215604B2 publication Critical patent/JPH0215604B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To improve the cold forgeability and dimensional accuracy of a steel contg. prescribed percentages of C, Si, Mn and Cr by heat treating the steel under prescribed conditions. CONSTITUTION:A steel consisting of, by weight, 0.05-0.3% C, 0.5-3% Si, 0.5- 2% Mn, 0.3-1.5% Cr and the balance Fe is refined. The steel is cooled from a temp. in the ferrite-austenite two-phase temp. range at the air cooling rate or higher to obtain a steel for cold forging having a fine structure consisting of ferrite and pearlite, ferrite, pearlite and bainite, or ferrite and bainite.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、機械構造用部品のうち、とくに冷間鍛造に
より製造される部品の素材として好適な冷間鍛造用鋼に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a cold forging steel suitable as a material for machine structural parts, particularly parts manufactured by cold forging.

(従来技術) 従来、冷間鍛造するのに使用される機械構造用鋼として
は、炭素鋼(SC)、クロム鋼(SCr)、クロムモリ
ブデン鋼(SCM)。
(Prior Art) Conventionally, mechanical structural steels used for cold forging include carbon steel (SC), chromium steel (SCr), and chromium molybdenum steel (SCM).

ニッケルクロムモリブデン鋼(SNCM)などがあり、
例えば自動車の操舵、駆動機構のシャフト類には廉価な
炭素鋼が多用されている。この冷間鍛造は、熱間鍛造に
比較して加工精度が高く材料歩留りも良いため、近年は
素材成形に占めるその割合が増加する傾向にある。そし
て、一般に、冷間鍛造に供される炭素鋼に対しては、セ
メンタイトを球状化して高い変形能を与えるために、球
状化熱処理(SA処理)が施される。
There are nickel chromium molybdenum steels (SNCM), etc.
For example, inexpensive carbon steel is often used for the shafts of automobile steering and drive mechanisms. Cold forging has higher processing accuracy and better material yield than hot forging, so its proportion in forming materials has tended to increase in recent years. Generally, carbon steel subjected to cold forging is subjected to spheroidization heat treatment (SA treatment) in order to spheroidize cementite and give it high deformability.

る。Ru.

しかしながら、このような従来の冷間鍛造に使用される
機械構造用鋼にあっては、球状化熱処理を行うためにA
1変態点直上で1時間程度の均熱保持をしたのち、引き
続きA1変態点直下へ10℃/hr程度の速度で冷却す
ることが必要とされ、球状化を行う際の余熱処理に10
hr以上の時間が必要となっていたため、生産性が低い
うえにエネルギー消費が膨大なものになるという問題点
があった。
However, in the case of mechanical structural steel used for such conventional cold forging, A
After soaking for about 1 hour just above the A1 transformation point, it is necessary to continue cooling at a rate of about 10°C/hr to just below the A1 transformation point.
Since the time required for this process was more than 30 hours, there were problems in that productivity was low and energy consumption was enormous.

(発明の目的) この発明は、このような従来の問題点に着目してなされ
たもので、球状化熱処理のような長時間の熱処理を必要
とせず、しかも冷間における変形能が高く、冷間鍛造し
て製造される部品の素材として好適な冷間鍛造用鋼を提
供することを目的としている。
(Objective of the Invention) The present invention was made by focusing on these conventional problems, and does not require long-term heat treatment such as spheroidization heat treatment, has high deformability in cold, and can be The object of the present invention is to provide cold forging steel suitable as a material for parts manufactured by cold forging.

(発明の構成) この発明の第一発明による冷間鍛造用鋼は、重量%で、
C:0.05〜0.3%、Si :0.5〜3%、Mn
 : 0.5〜2%、Cr:0.3〜1.5%を基本成
分とし、必要に応じて、Ni:2%以下、Mo+0.5
%以下のうちの1種または2種、および必要に応じて、
結晶粒微細化元素としてAI・0.1%以下、Nb:0
.3%以下、Ta:0.3%以下、Ti:0.3%以下
(Structure of the Invention) The cold forging steel according to the first invention of the present invention has, in weight%,
C: 0.05-0.3%, Si: 0.5-3%, Mn
: 0.5-2%, Cr: 0.3-1.5% as basic components, Ni: 2% or less, Mo+0.5 as necessary.
% or less, and if necessary,
As a grain refining element, AI: 0.1% or less, Nb: 0
.. 3% or less, Ta: 0.3% or less, Ti: 0.3% or less.

Zr:0.1%以下、N:0.03%以下のうちの1種
または2種以上を含有し、残部Feおよび不純物からな
り、フェライトーオーステナイトニ相温度域から空冷あ
るいはそれ以上の冷却速度で冷却し、微細なすなわちよ
り好ましくは結晶粒度番号6番以上、特に好ましくは7
番か8番以上の微細なフェライト−パーライト、フェラ
イト−パーライト−ベイナイト、あるいはフェライト−
ベイナイト組織を有することを特徴としており。
Contains one or more of the following: Zr: 0.1% or less, N: 0.03% or less, the remainder consisting of Fe and impurities, and has a cooling rate of air cooling or higher from the ferrite-austenite two-phase temperature range. and cooled with a fine grain size, more preferably grain size number 6 or higher, particularly preferably 7.
Fine ferrite of size 8 or above - pearlite, ferrite - pearlite - bainite, or ferrite -
It is characterized by having a bainite structure.

同一の目的を達成する第二発明による冷間鍛造用鋼は、
重量%で、C:0.05〜0°、 3 %、 S i:
0.5〜3%、Mn、: 0.5〜2%、Cr:0.3
%〜1.5%を基本成分とし、必要に応じて、Ni:2
%以下、Mo+0.5%以下のうちの1種または2種、
および必要に応じて、結晶粒微細化元素としてAI+0
.1%以下、Nb:0.3%以下、Ta:0.3%以下
、Ti:0゜3%以下、Zr:0.1%以下、N:0.
03%以下のうちの1種または2種以上を含有し、残部
Feおよび不純物からなり、冷間鍛造に先立つ素材圧延
における仕上圧延時にAr、変態点〜Ar3変態点+1
00℃の温度範囲で少なくとも20%以上の圧下率を加
えた後空冷またはそれ以上の冷却速度で冷却することに
よって、前記の熱処理材よりもさらに微細なフェライト
−パーライト。
A cold forging steel according to a second invention that achieves the same purpose is:
In weight%, C: 0.05-0°, 3%, Si:
0.5-3%, Mn: 0.5-2%, Cr: 0.3
% to 1.5% as a basic component, and if necessary, Ni:2
% or less, one or two of Mo + 0.5% or less,
and if necessary, AI+0 as a grain refining element.
.. 1% or less, Nb: 0.3% or less, Ta: 0.3% or less, Ti: 0°3% or less, Zr: 0.1% or less, N: 0.
03% or less, and the remainder consists of Fe and impurities, and the Ar transformation point to Ar3 transformation point +1 during finish rolling in material rolling prior to cold forging.
A finer ferrite-pearlite than the above-mentioned heat-treated material is obtained by applying a rolling reduction of at least 20% or more in a temperature range of 00°C and then cooling with air cooling or a cooling rate higher than that.

フェライト−パーライト−ベイナイト、あるいはフェラ
イト−ベイナイト組織を有することを特徴とし、変形能
のより一層の向上を図るようにしたものである。
It is characterized by having a ferrite-pearlite-bainite or ferrite-bainite structure, and is designed to further improve deformability.

次に、この発明による冷間鍛造用鋼の成分範囲(重量%
)の限定理由について説明する。
Next, the composition range (weight%) of the steel for cold forging according to this invention
) will be explained below.

C:0.05〜0.3% Cは、機械構造用鋼としての強度、特に焼入れ硬さを確
保するために有効な元素であり、強度を考慮して下限は
0.05%とした。また、十分に広いフェライトーオー
ステナイトニ相の温度範囲を得るために0.3%を上限
とした。
C: 0.05 to 0.3% C is an effective element for ensuring strength as a mechanical structural steel, especially quenching hardness, and the lower limit was set to 0.05% in consideration of strength. Further, in order to obtain a sufficiently wide temperature range of the ferrite-austenite dual phase, the upper limit was set to 0.3%.

Si:0.5〜3% Siは、フェライトーオーステナイトニ相の温度範囲を
広げるために有効な元素であるので、0.5%以上の添
加を必要とする。また、フェライト組織の強化にも有効
な元素モあるが、過度の添加では変形抵抗の増大ならび
に靭性の低下を招くので、上限を3%とした。
Si: 0.5 to 3% Si is an effective element for widening the temperature range of the ferrite-austenite dual phase, and therefore needs to be added in an amount of 0.5% or more. Further, although there are some elements that are effective in strengthening the ferrite structure, excessive addition causes an increase in deformation resistance and a decrease in toughness, so the upper limit was set at 3%.

Mn:0.5〜2% Mnは、溶製時において脱酸、脱硫に有効な元素である
E同時に、焼入れ硬さを確保するためにも有効な元素で
ある。そして、十分な脱酸、脱硫効果を得ると同時に焼
入性を向上させるために、下限を0.5%とした。しか
し、過度に添加すると冷間鍛造性を低下させるので、上
限を2%とした。
Mn: 0.5-2% Mn is an effective element for deoxidizing and desulfurizing during melting, and is also an effective element for ensuring hardening hardness. In order to obtain sufficient deoxidation and desulfurization effects and at the same time improve hardenability, the lower limit was set to 0.5%. However, if added excessively, cold forgeability will be reduced, so the upper limit was set at 2%.

Cr:0.3〜1.5% Crは、焼入れ性を向上させるとともに黒鉛化を防止す
るために有効な元素であり、このような効果を得るため
に下限を0.3%とした。しかし、靭性の低下を考慮し
て上限を1.5%とした。
Cr: 0.3 to 1.5% Cr is an effective element for improving hardenability and preventing graphitization, and in order to obtain such effects, the lower limit was set to 0.3%. However, in consideration of the decrease in toughness, the upper limit was set at 1.5%.

Ni:2%以下、Mo:0.5%以下のうちの1種また
は2種 Ni、Moは鍛造後の調質において焼入性をより一層向
上させて基地の強化をはかるのに有効な元素であるので
、必要に応じて上記基本成分に対してさらに添加するの
もよいが、Ni含有量が2%をこえ、Mo含有量が0.
5%をこえると靭性が劣化するので、Niは2%以下、
Moは0.5%以下とした。
One or two of Ni: 2% or less, Mo: 0.5% or less Ni and Mo are effective elements to further improve hardenability and strengthen the base during tempering after forging. Therefore, it is good to add more to the above basic components if necessary, but if the Ni content exceeds 2% and the Mo content exceeds 0.
If it exceeds 5%, the toughness will deteriorate, so Ni should be 2% or less.
Mo was set to 0.5% or less.

AQ:0.1%以下、Nb:0.3%以下、Ta:0.
396以下、Ti:0.3%以下、Zr:o、i%以下
、N:0.03%以下のうちの1種または2種以上 Al、Nb、Ta、T(、Zr、Nは、炭窒化物の形成
により結晶粒を微細化し、冷間における変形能を向上さ
せるのに有効な元素であるので、必要に応じてこれらの
1種または2種以上を添加するのも良いやしかし、Af
L含有量が0.1%をこえ、Nb含有量が0.3%をこ
え、Ta含有量が0.396をこえ、TI含有量が0.
3%をこえ、Zr含有量が0.1%をこえると、炭窒化
物が粗大化することにより、結晶粒微細化効果がかえっ
て低下し、冷間における変形能の低下を招くので、添加
する場合はそれぞれ前記した上限とする必要がある。ま
た、N含有量が0.03%をこえるとNのブローホール
によって鋼塊または鋳片の健全性が損なわれるので、N
の上限は0.03%とした。
AQ: 0.1% or less, Nb: 0.3% or less, Ta: 0.
396 or less, Ti: 0.3% or less, Zr: o, i% or less, N: 0.03% or less Al, Nb, Ta, T (, Zr, N are carbon Af
The L content exceeds 0.1%, the Nb content exceeds 0.3%, the Ta content exceeds 0.396, and the TI content exceeds 0.3%.
If the Zr content exceeds 3% and the Zr content exceeds 0.1%, the carbonitrides become coarser, thereby reducing the crystal grain refining effect and causing a decrease in cold deformability, so it is added. In each case, it is necessary to meet the above-mentioned upper limit. In addition, if the N content exceeds 0.03%, the integrity of the steel ingot or slab will be damaged by N blowholes, so N
The upper limit was set at 0.03%.

そのほか、冷間における変形能を高めて冷間鍛造性を向
上させるために、[0]:0.003%以下、S:0.
02%以下に規制することも必要に応じて望ましい。
In addition, in order to increase cold deformability and improve cold forgeability, [0]: 0.003% or less, S: 0.
It is also desirable to regulate it to 0.02% or less, if necessary.

そして、このように成分調整した鋼を、フェライトーオ
ーステナイトニ相温度域から空冷またはそれ以上の速度
で冷却し、微細なフェライ)−パーライト、フェライト
−パーライト−ベイナイト、あるいはフェライト−ベイ
ナイト組織とすることにより、冷間における変形能に著
しく優れた機械構造用鋼を得ることができ、これを素材
として、アウターレース、ハウジングシャフトなどの等
速ジヨイント部品や、リヤスピンドル、アクスルシャフ
トなどのアクスル部品を球状化熱処理を施すことなく冷
間鍛造によって加工することが可能となる。
Then, the steel whose composition has been adjusted in this manner is cooled from the ferrite-austenite dual phase temperature range by air cooling or at a higher rate to form a fine ferrite-pearlite, ferrite-pearlite-bainite, or ferrite-bainite structure. As a result, it is possible to obtain a mechanical structural steel with outstanding cold deformability, and this material can be used to make constant velocity joint parts such as outer races and housing shafts, and axle parts such as rear spindles and axle shafts into spherical shapes. It becomes possible to process by cold forging without applying heat treatment.

また、前述のごとく成分調整した鋼を冷間鍛造に先立つ
素材圧延における仕上圧延時にAr、変態点〜Ar3変
態点+100″Cの温度範囲で少なくとも20%以上の
圧下率を加えた後空冷またはそれ以上の冷却速度で冷却
することによって、前記の熱処理材よりもさらに微細な
フェライト−パーライト、フェライト−パーライト−ベ
イナイト、あるいはフェライト−ヘイナイト組織とする
ことにより、冷間における変形能をさらに向上させるこ
とができ、冷間鍛造用として著しく優れた特性の機械構
造用鋼とすることができる。ここで、冷間鍛造に先立つ
素材圧延における仕上圧延時にAr、変態点〜Ar3変
態点+100℃の温度範囲で少なくとも20%以上の圧
下率を加えることとしたのは、Ar3変態点+100℃
よりも高い温度で圧延しても微細な組織を得ることがで
きず、冷間鍛造性がかえって改善されなくなるためであ
り、またAr、変態点よりも低い温度で圧延すると加工
の影響が残り、同様に冷間鍛造性が低下するためであり
、さらに圧下率を20%以上とすることによって組織の
微細化をはかることができ、これにより冷間鍛造性を改
善することができるためであり、これよりも小さい圧下
率ではほとんど効果がないためである。
In addition, the steel whose composition has been adjusted as described above is subjected to a reduction rate of at least 20% in the temperature range of Ar transformation point to Ar3 transformation point + 100"C during finish rolling in material rolling prior to cold forging, and then air cooled or By cooling at the above cooling rate, it is possible to further improve the cold deformability by creating a ferrite-pearlite, ferrite-pearlite-bainite, or ferrite-heinite structure that is finer than that of the heat-treated material. It can be made into a mechanical structural steel with extremely excellent properties for cold forging.Here, during the finish rolling of the material prior to cold forging, Ar is applied in the temperature range from the transformation point to the Ar3 transformation point + 100°C. The reason why we decided to apply a rolling reduction rate of at least 20% was at Ar3 transformation point +100°C.
This is because even if rolled at a temperature higher than Ar, a fine structure cannot be obtained and cold forgeability will not be improved, and if rolled at a temperature lower than the Ar or transformation point, the effects of processing will remain. This is because cold forgeability similarly decreases, and furthermore, by setting the reduction ratio to 20% or more, it is possible to refine the structure, thereby improving cold forgeability. This is because a rolling reduction ratio smaller than this has almost no effect.

(実施例1) w41表に示す化学成分の鋼を溶製したのち造塊し、鍛
造によって直径32amの丸棒を製作した。
(Example 1) Steel having the chemical composition shown in Table W41 was melted and ingot-formed, and a round bar with a diameter of 32 am was manufactured by forging.

次いで、各丸棒に対して925℃X1hr加熱空冷の条
件で焼ならしを施し、次に6焼ならし材を直径25m−
に旋削加工したのち、同じく第1表に示す加熱、均熱保
持温度でlhr保持したあと空冷処理を行った。続いて
、それぞれの処理材より第1図ないし第3図に示すよう
な上、下底面に円錐状孔1aを有する円柱状■溝付圧縮
試験片1 (D=14+u、H=21腸■、θ;30°
、d、=0.8mm、R=0.15 腸膳、 α = 
120 ° 、 d2 =0.57mm)を作製し、ア
ムスラー試験機に上下端面拘束ダイスを取り付けて圧縮
試験を行った。
Next, each round bar was normalized under the conditions of heating and air cooling at 925°C for 1 hour, and then the 6-temperature normalized material was
After turning, the specimens were heated and held for 1 hour at the soaking temperature shown in Table 1, and then air-cooled. Next, from each treated material, a cylindrical grooved compression test piece 1 (D=14+u, H=21 intestine) having conical holes 1a on the upper and lower bottom surfaces as shown in FIGS. 1 to 3 was prepared. θ;30°
, d, = 0.8 mm, R = 0.15 intestinal meal, α =
120°, d2 = 0.57 mm), and a compression test was performed using an Amsler tester with upper and lower end face constraint dies attached.

そして、圧縮試験の際に、V溝1b中にクラックが発生
したときの圧縮率を割れ発生限界として変形能の評価を
行った。その結果を炭素鋼540C,548Cの球状化
熱処理材(S A)の結果とともに同じく第1表に示す
Then, during the compression test, the deformability was evaluated by setting the compression rate at which a crack occurred in the V-groove 1b as the crack occurrence limit. The results are shown in Table 1 along with the results for the spheroidized heat-treated carbon steels (SA) of 540C and 548C.

/ 第1表に示すように、化学成分がこの発明の範囲内にあ
る鋼種はいずれもフェライトーオーステナイトニ相温度
域からの空冷により微細な。
/ As shown in Table 1, all steel types whose chemical composition falls within the scope of the present invention are finely refined by air cooling from the ferrite-austenite dual phase temperature range.

フェライト−パーライト組織となり、540C。It has a ferrite-pearlite structure and is 540C.

548Cを上回る変形能を示した。また、Si含有量が
多すぎるNo、 5およびCr含有量が多すぎるNo、
7はこれよりも変形能が低いという結果になった。
It showed deformability exceeding that of 548C. In addition, No. 5 has too much Si content and No. 5 has too much Cr content.
7 had a lower deformability than this.

(実施例2) 次に、第1表に示す鋼種のうちNo、l (540C)
、No、2 (S48C)およびNo、3〜5.8〜1
0について、実施例1と同じ条件の焼ならし材を直径2
5腸腸に加工した後、第2表に示す焼入れ温度でlhr
加熱したのち油冷する焼入れを行い、次いでNo、 3
〜5.8〜10の鋼に対しては170℃にlhr加熱し
たのち空冷する焼もどしを行い、No、l 、 No、
 2に対しては600℃にlhr加熱したのち急冷する
焼もどしを行ったのち硬さ測定、引張試験および衝撃試
験を行った。このとき、硬さ測定はロックウェルCスケ
ールで行い、引張試験はJIS 4号試験片(縮小サイ
ズ)を用いて行い、衝撃試験はJIS 3号シャルピー
試験片を用いて行った。これらの結果をNo、1(34
0C)、No、2 (348C)の調質材の結果と共に
同じく第2表に示す。
(Example 2) Next, among the steel types shown in Table 1, No. l (540C)
, No. 2 (S48C) and No. 3-5.8-1
0, the normalized material under the same conditions as Example 1 was
5 After processing into intestine, lhr at the quenching temperature shown in Table 2.
After heating, quenching is performed by oil cooling, and then No. 3
~5. For steels of 8 to 10, tempering is performed by heating to 170°C for lhr and then cooling in air, No, l, No,
For No. 2, tempering was performed by heating to 600° C. for 1 hour and then rapidly cooling, and then hardness measurement, tensile test, and impact test were performed. At this time, the hardness measurement was performed using the Rockwell C scale, the tensile test was performed using a JIS No. 4 test piece (reduced size), and the impact test was performed using a JIS No. 3 Charpy test piece. These results are No. 1 (34
The results are also shown in Table 2 along with the results for the tempered materials No. 0C), No. 2 (348C).

この実施例においては焼入れ温度が二相温度域であるた
め、焼入れ組織は微細なフェライト−マルテンサイトあ
るいはベイナイトとなり、この発明にょる鋼種No、3
.4.8〜1oでは、引張強度、衝撃値ともにS4.O
C,548Cの調質材を上回った。しかし、Siが3%
をこえるNo、 5においては衝撃値が540C,34
8Cの調質材を下回った。
In this example, since the quenching temperature is in the two-phase temperature range, the quenching structure becomes fine ferrite-martensite or bainite, and steel type No. 3 according to the present invention
.. At 4.8 to 1o, both tensile strength and impact value are S4. O
C,548C tempered material. However, Si is 3%
For No. 5, the impact value is 540C, 34
It was lower than 8C tempered material.

(実施例3) 次に、第1表に示すこの発明によるNo、 8〜lO鋼
に対し、第3表に示したフエライトーオーステナイトニ
相温度域からの塩浴処理を施し、実施例1の場合と同様
の試験片による圧縮試験を行って割れ発生限界を測定し
た。その結果を同じ〈第3表に示す。
(Example 3) Next, the No. 8 to 1O steel according to the present invention shown in Table 1 was subjected to salt bath treatment in the ferrite-austenite dual phase temperature range shown in Table 3, and A compression test was conducted using the same test piece as in the case above to measure the cracking limit. The results are shown in Table 3.

第3表に示すように、この実施例における処理によって
、この発明の3鋼種(No、 6〜8)は微細なフェラ
イト−ベイナト組織となり、いずれも炭素鋼SA処理材
と同等以上の変形能を示した。
As shown in Table 3, the three steel types (Nos. 6 to 8) of this invention became fine ferrite-bainite structures through the treatment in this example, and all of them had deformability equal to or higher than that of the SA-treated carbon steel. Indicated.

(実施例4) 次に、第1表に示すこの発明によるNo、 4 。(Example 4) Next, No. 4 according to this invention shown in Table 1.

10鋼の直径27.1mm、29.9mm、32.3a
mの丸棒材に対し、第4表に示す圧延温度および圧下率
で圧延を施して直径を25酊とした後、実施例1と同様
の試験片を作製して圧縮試験を行うことにより割れ発生
限界を測定した。その結果を同じく第4表に示す。
10 steel diameter 27.1mm, 29.9mm, 32.3a
After rolling a round bar with a diameter of 25 mm at the rolling temperature and reduction ratio shown in Table 4, test pieces similar to those in Example 1 were prepared and subjected to a compression test to detect cracks. The generation limit was measured. The results are also shown in Table 4.

/″ 第4表に示すように、素材圧延における仕上圧延時にA
r、変態点〜Ar3変態点+100℃の温度範囲で20
%以上の圧下率を加えた場合に、その後の冷間塑性加工
における割れ発生限界が大きくなり、冷間塑性加工性を
向上させることができることが確かめられた。
/'' As shown in Table 4, A during finish rolling in material rolling.
r, 20 in the temperature range of transformation point to Ar3 transformation point + 100°C
It was confirmed that when a rolling reduction of % or more is applied, the crack generation limit in subsequent cold plastic working increases, and cold plastic workability can be improved.

(発明の効果) 以上説明してきたように、この発明による冷間鍛造用鋼
は、重量%で、C:0.05〜0.3%、Si+0.5
〜3%、Mn:0.5〜2%。
(Effects of the Invention) As explained above, the cold forging steel according to the present invention has C: 0.05 to 0.3%, Si+0.5% by weight.
~3%, Mn: 0.5-2%.

Cr:0.3%〜1.5%を基本成分とし、必要に応し
て、Ni+2%以下、Mo+0.5%以下のうちの1種
または2種、および必要に応じて、Al:O,1%以下
、Nb:0.3%以下、Ta:0.3%以下、Ti:0
.3%以下、Zr:0.1%以下、N:0.03%以下
のうちの1種または2種以上を含有し、残部Feおよび
不純物からなり、フエライトーオーステナイトニ相温度
域からの空冷あるいはそれ以上の冷却速度での冷却を行
うことにより、もしくは、冷間鍛造に先立つ素材圧延に
おける仕上圧延時にAr、変態点〜Ar3変態点+10
0℃の温度範囲で少なくとも20%以上の圧下率の加え
た後空冷またはそれ以上の冷却速度での冷却を行うこと
により、フェライト−パーライト、フェライト−パーラ
イト−ベイナト、あるいはフェライト−ベイナイトの微
細組織を有するものであることから、冷間において高い
変形能が得られ、したがって従来のような処理時間が長
くかつ莫大なエネルギーを必要とする球状化熱処理を施
すことなく、冷間における変形能が著しく良好であって
冷間鍛造性にすぐれたものであり、アウターレース、ハ
ウジングシャフトなどの等速ジヨイント部品や、リヤス
ピンドル、アクスルシャフトなどのアクスル部品の冷間
鍛造が容易に可能であり、寸法精度が高く歩留りが良好
である冷間鍛造の各種機械構造用部品への適用範囲を著
しく拡大することができるという非常に優れた効果が得
られる。
The basic component is Cr: 0.3% to 1.5%, and if necessary, one or two of Ni + 2% or less, Mo + 0.5% or less, and Al: O, 1% or less, Nb: 0.3% or less, Ta: 0.3% or less, Ti: 0
.. 3% or less, Zr: 0.1% or less, N: 0.03% or less, and the remainder consists of Fe and impurities, and is air-cooled from the ferrite-austenite two-phase temperature range or By performing cooling at a cooling rate higher than that, or during finish rolling in material rolling prior to cold forging, Ar transformation point ~ Ar3 transformation point + 10
A microstructure of ferrite-pearlite, ferrite-pearlite-bainite, or ferrite-bainite can be formed by applying a reduction rate of at least 20% or more in a temperature range of 0°C and then cooling with air or a cooling rate higher than that. Because of this, high deformability in cold conditions can be obtained, and therefore the deformability in cold conditions is extremely good without the need for conventional spheroidization heat treatment, which takes a long time and requires a huge amount of energy. It has excellent cold forging properties, making it easy to cold forge constant velocity joint parts such as outer races and housing shafts, and axle parts such as rear spindles and axle shafts, with excellent dimensional accuracy. A very excellent effect can be obtained in that the scope of application of cold forging, which has a high yield and good yield, to various mechanical structural parts can be significantly expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1w42図および第3図はこの発明の実施例にお
いて使用した圧縮試験片の各々全体説明図、V@部拡大
説明図、センタ一孔部拡大説明図である。 特許出願人 日産自動車株式会社 特許出願人 大同特殊鋼株式会社 代理人弁理士 小 塩 豊 第1 第2] 第3
FIG. 1W42 and FIG. 3 are an overall explanatory diagram, an enlarged explanatory diagram of the V@ part, and an enlarged explanatory diagram of the center hole, respectively, of the compression test piece used in the embodiment of the present invention. Patent applicant Nissan Motor Co., Ltd. Patent applicant Daido Steel Co., Ltd. Representative patent attorney Yutaka Oshio 1st 2nd] 3rd

Claims (6)

【特許請求の範囲】[Claims] (1) 重量%で、C:0.05〜0.3%。 Si:0.5〜3%、Mn:0.5〜2%。 Cr:0.3%〜1.5%を基本成分とし、残部Feお
よび不純物からなり、フエライトーオーステナイトニ相
温度域から空冷またはそれ以上の冷却速度で冷却し、微
細なフェライト−パーライト、フェライト−パーライト
−ベイナイト、あるいはフェライト−ベイナイト組織を
有することを特徴とする冷間鍛造用鋼。
(1) C: 0.05 to 0.3% by weight. Si: 0.5-3%, Mn: 0.5-2%. Cr: 0.3% to 1.5% as a basic component, the balance consisting of Fe and impurities, and is cooled from the ferrite-austenite two-phase temperature range with air cooling or a cooling rate higher than that to produce fine ferrite-pearlite, ferrite- A steel for cold forging characterized by having a pearlite-bainite or ferrite-bainite structure.
(2) 残部Feが、重量%で、Ni:2%以下、Mo
:0.5%以下のうちの1種または2種を含有する特許
請求の範囲第(1’)項記載の冷間鍛造用鋼。
(2) The balance Fe is 2% or less by weight, Ni: 2% or less, Mo
The steel for cold forging according to claim (1'), containing one or two of: 0.5% or less.
(3)残部Feが、重量%で、Al:0.1%以下、N
b:0.3%以下、Ta:0.3%以下。 Ti:0.3%以下、Zr:0.1%以下、N:0.0
3%以下のうちの1種または2種以上を含有する特許請
求の範囲第(1)項または第(2)項記載の冷間鍛造用
鋼。
(3) Remaining Fe is % by weight, Al: 0.1% or less, N
b: 0.3% or less, Ta: 0.3% or less. Ti: 0.3% or less, Zr: 0.1% or less, N: 0.0
The steel for cold forging according to claim (1) or (2), which contains one or more of 3% or less.
(4) 重量%で、C:0.05〜0.3%。 Si:0.5〜3%、Mn:0.5〜2%。 Cr:0.3〜1.5%を基本成分とし、残部Feおよ
び不純物からなり、冷間鍛造に先立つ素材圧延における
仕上圧延時に、Ar、変態点〜Ar3変態点+lOO℃
の温度範囲で少なくとも20%以上の圧下率を加えた後
、空冷またはそれ以上の冷却速度で冷却し、微細なフェ
ライト−パーライト、フェライト−パーライト−ベイナ
イト、あるいはフェライト−ベイナイト組織を有するこ
とを特徴とする冷間鍛造用鋼。
(4) C: 0.05 to 0.3% by weight. Si: 0.5-3%, Mn: 0.5-2%. Cr: 0.3 to 1.5% as a basic component, with the balance consisting of Fe and impurities, and during finish rolling in material rolling prior to cold forging, Ar, transformation point ~ Ar3 transformation point + lOO℃
After applying a reduction rate of at least 20% in a temperature range of Steel for cold forging.
(5) 残部Feが、重量%で、Ni:2%以下、Mo
+0.5%以下のうちの1種才たは2種を含有する特許
請求の範囲第(4)項記載の冷間鍛造用鋼。
(5) The balance Fe is % by weight, Ni: 2% or less, Mo
The steel for cold forging according to claim (4), which contains one or two of the following: +0.5% or less.
(6)残部Feが1重量%で、Al:O,1%以下、N
b:0.3%以下、Ta:0.3%以下。 Ti:0.3%以下、Zr:0.1%以下、N:0.0
3%以下のうちの1種または2種を含有する特許請求範
囲第(4)項または第(5)項記載の冷間鍛造用鋼
(6) Remaining Fe is 1% by weight, Al: O, 1% or less, N
b: 0.3% or less, Ta: 0.3% or less. Ti: 0.3% or less, Zr: 0.1% or less, N: 0.0
Cold forging steel according to claim (4) or (5) containing one or two of 3% or less
JP11234784A 1984-05-31 1984-05-31 Steel for cold forging Granted JPS60255957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11234784A JPS60255957A (en) 1984-05-31 1984-05-31 Steel for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11234784A JPS60255957A (en) 1984-05-31 1984-05-31 Steel for cold forging

Publications (2)

Publication Number Publication Date
JPS60255957A true JPS60255957A (en) 1985-12-17
JPH0215604B2 JPH0215604B2 (en) 1990-04-12

Family

ID=14584412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11234784A Granted JPS60255957A (en) 1984-05-31 1984-05-31 Steel for cold forging

Country Status (1)

Country Link
JP (1) JPS60255957A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260042A (en) * 1986-05-02 1987-11-12 Daido Steel Co Ltd High strength unrefined tough steel
JPS62260040A (en) * 1986-05-06 1987-11-12 Daido Steel Co Ltd High-strength non-heattreated tough and hard steel
JPS6487717A (en) * 1987-09-30 1989-03-31 Nippon Steel Corp Production of high tensile bolt
US5201965A (en) * 1991-04-15 1993-04-13 Hitachi Metals, Ltd. Heat-resistant cast steel, method of producing same, and exhaust equipment member made thereof
CN103233169A (en) * 2013-05-02 2013-08-07 武汉钢铁(集团)公司 High-strength thin-specification steel plate with excellent shape and production method thereof
CN111206191A (en) * 2020-03-06 2020-05-29 马鞍山钢铁股份有限公司 Ti-V composite microalloyed superfine bainite non-quenched and tempered steel and forging and cooling control process and production process thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838529A (en) * 1971-09-22 1973-06-06
JPS4921321A (en) * 1972-06-20 1974-02-25
JPS50161411A (en) * 1974-06-21 1975-12-27
JPS5114818A (en) * 1974-07-30 1976-02-05 Nippon Steel Corp Kochoryokusenzai oyobi bokono seizoho
JPS5351121A (en) * 1976-10-20 1978-05-10 Sumitomo Metal Ind Ltd Production of medium or low carbn high tensile wire rod
JPS55128568A (en) * 1979-03-23 1980-10-04 Sumitomo Metal Ind Ltd Heat-treated high tensile steel
JPS56102554A (en) * 1980-01-16 1981-08-17 Daido Steel Co Ltd Low strain case hardening steel
JPS56133451A (en) * 1980-03-24 1981-10-19 Kubota Ltd Oil loading pipe
JPS5767130A (en) * 1980-10-14 1982-04-23 Kawasaki Steel Corp Production of hot rolled dual phase high tensile steel plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838529A (en) * 1971-09-22 1973-06-06
JPS4921321A (en) * 1972-06-20 1974-02-25
JPS50161411A (en) * 1974-06-21 1975-12-27
JPS5114818A (en) * 1974-07-30 1976-02-05 Nippon Steel Corp Kochoryokusenzai oyobi bokono seizoho
JPS5351121A (en) * 1976-10-20 1978-05-10 Sumitomo Metal Ind Ltd Production of medium or low carbn high tensile wire rod
JPS55128568A (en) * 1979-03-23 1980-10-04 Sumitomo Metal Ind Ltd Heat-treated high tensile steel
JPS56102554A (en) * 1980-01-16 1981-08-17 Daido Steel Co Ltd Low strain case hardening steel
JPS56133451A (en) * 1980-03-24 1981-10-19 Kubota Ltd Oil loading pipe
JPS5767130A (en) * 1980-10-14 1982-04-23 Kawasaki Steel Corp Production of hot rolled dual phase high tensile steel plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260042A (en) * 1986-05-02 1987-11-12 Daido Steel Co Ltd High strength unrefined tough steel
JPS62260040A (en) * 1986-05-06 1987-11-12 Daido Steel Co Ltd High-strength non-heattreated tough and hard steel
JPS6487717A (en) * 1987-09-30 1989-03-31 Nippon Steel Corp Production of high tensile bolt
JPH0530884B2 (en) * 1987-09-30 1993-05-11 Nippon Steel Corp
US5201965A (en) * 1991-04-15 1993-04-13 Hitachi Metals, Ltd. Heat-resistant cast steel, method of producing same, and exhaust equipment member made thereof
CN103233169A (en) * 2013-05-02 2013-08-07 武汉钢铁(集团)公司 High-strength thin-specification steel plate with excellent shape and production method thereof
CN111206191A (en) * 2020-03-06 2020-05-29 马鞍山钢铁股份有限公司 Ti-V composite microalloyed superfine bainite non-quenched and tempered steel and forging and cooling control process and production process thereof

Also Published As

Publication number Publication date
JPH0215604B2 (en) 1990-04-12

Similar Documents

Publication Publication Date Title
US5252153A (en) Process for producing steel bar wire rod for cold working
CN113862576B (en) Non-quenched and tempered steel, crankshaft and production method thereof
KR20010060772A (en) A non qt steel having superior strength and toughness and a method for manufacturing wire rod by using it
US6036790A (en) Non-tempered steel for mechanical structure
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
JPS60255957A (en) Steel for cold forging
KR100536660B1 (en) Steel wire with superior impact absorption energy at law temperature and the method of making the same
US6123785A (en) Product and process for producing constant velocity joint having improved cold workability and strength
JP2888135B2 (en) High durability high strength non-heat treated steel and its manufacturing method
JPH0425343B2 (en)
JPS63166949A (en) Non-heattreated steel for hot forging
JP2000017374A (en) Age hardening type high strength bainitic steel and its production
JPH04371547A (en) Production of high strength and high toughness steel
JPH01116032A (en) Production of high-strength-high-toughness un-tempered steel
JPH0219175B2 (en)
JPH0526850B2 (en)
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
WO2023248556A1 (en) Steel for high-frequency hardening
US5496516A (en) Dual purpose steel and products produced therefrom
JPS61104049A (en) Steel for machine structural use
JP4103191B2 (en) High hardness steel for induction hardening with excellent corrosion resistance
JPH02133521A (en) Production of tempered high tensile steel plate having excellent toughness
JP3054981B2 (en) How to manufacture high fatigue strength forged products
JPH01129953A (en) High strength non-heat treated steel and its manufacture
JP2024002995A (en) Steel for induction hardening